JP2007147397A - Method for operating reactor, and instrument and method for surveying the same - Google Patents

Method for operating reactor, and instrument and method for surveying the same Download PDF

Info

Publication number
JP2007147397A
JP2007147397A JP2005341112A JP2005341112A JP2007147397A JP 2007147397 A JP2007147397 A JP 2007147397A JP 2005341112 A JP2005341112 A JP 2005341112A JP 2005341112 A JP2005341112 A JP 2005341112A JP 2007147397 A JP2007147397 A JP 2007147397A
Authority
JP
Japan
Prior art keywords
fuel assembly
fluorescence
nuclear reactor
inspection
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005341112A
Other languages
Japanese (ja)
Other versions
JP2007147397A5 (en
JP5184746B2 (en
Inventor
Yoshio Araki
義雄 荒木
Akihiro Hara
昭浩 原
Junko Watanabe
順子 渡辺
Akira Kuwako
彰 桑子
Masayo Kato
昌代 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005341112A priority Critical patent/JP5184746B2/en
Publication of JP2007147397A publication Critical patent/JP2007147397A/en
Publication of JP2007147397A5 publication Critical patent/JP2007147397A5/ja
Application granted granted Critical
Publication of JP5184746B2 publication Critical patent/JP5184746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a survey instrument for a reactor which detects the hydrogen concentration in a member of an object to be surveyed, such as a fuel assembly in a nondestructive manner to analyze and evaluate it, without mechanically or physically damaging the member. <P>SOLUTION: This survey instrument has the object to be surveyed, such as an irradiated fuel assembly 11 that is installed erect in the reactor water of the reactor or in the water of a fuel pool 21, a cylindrical closed vessel 22 installed facing the object, a laser apparatus 23 which outputs a pulse laser beam (a), an irradiation optical system 24 which condenses the beam (a), by passing it through the inside of the vessel 22 and irradiates the surface of the member of the object with the beam (a), a fluorescence condensing optical system 25 which guides fluorescence (b) emitted from the atoms and ions of the plasma generated on the surface of the member of the object by irradiation with the beam (a) and makes the fluorescence (b) condense, a spectral means 26 which outputs the light intensity detection signal for each wavelength of the fluorescence (b) and a computer 27, into which the fluorescent wavelength and a light intensity signal for each wavelength are input to calculate sorts and concentrations of elements and analyze them through laser plasma spectroscopy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料の平均取出し燃焼度を増加させ、原子炉の燃料経済性を向上させた原子炉およびその運転方法ならびに原子炉の検査装置およびその検査方法に関する。   The present invention relates to a nuclear reactor and an operation method thereof, a nuclear reactor inspection apparatus, and an inspection method thereof that increase an average fuel burnup and improve a fuel economy of a nuclear reactor.

沸騰水型原子炉(以下、BWRという。)や加圧水型原子炉(以下、PWRという。)、低減速軽水炉(以下、PMWRという。)、超臨界圧軽水冷却高速増殖炉(以下、SCFBRという。)等の原子炉は、冷却材に水が用いられる。この原子炉の燃料集合体部材には、ジルコニウムの合金であるジルカロイ材料が一般的に使用されている。   Boiling water reactor (hereinafter referred to as BWR), pressurized water reactor (hereinafter referred to as PWR), reduced speed light water reactor (hereinafter referred to as PMWR), supercritical pressure light water cooled fast breeder reactor (hereinafter referred to as SCFBR). ) Etc., water is used as a coolant. A zircaloy material that is an alloy of zirconium is generally used for the fuel assembly member of this nuclear reactor.

ジルカロイは、中性子吸収ロスが少ないという燃料集合体の部材材料として優れた性質を有するが、燃料集合体が高温・高圧の水中に置かれることにより、ジルカロイ材料中に水素を吸収し、蓄積し易い性質を有するジルカロイ材料に蓄積される水素濃度が固溶限度を超えるような高濃度になると水素化物として析出し、水素化物が連なって組織化すると、機械的・物理的強度が低下し、いわゆる水素脆化と呼ばれる現象が表われることが知られている。   Zircaloy has excellent properties as a material for a fuel assembly with low neutron absorption loss. However, when the fuel assembly is placed in high-temperature and high-pressure water, it easily absorbs hydrogen and accumulates in the zircaloy material. When the concentration of hydrogen accumulated in the Zircaloy material having properties exceeds the solid solution limit, it precipitates as hydride, and when the hydride is organized together, mechanical and physical strength decreases, so-called hydrogen It is known that a phenomenon called embrittlement appears.

商業的に運転されている沸騰水型原子炉(BWR)や加圧水型原子炉(PWR)においては燃料集合体が原子炉の炉心に装荷され、発電に使用される期間が短かい。原子炉の炉心に装荷されて発電に使用された燃料集合体は、その後、原子炉から取出され、新規燃料集合体と交換されるまでの積算発熱量である取出し燃焼度が小さいため、燃料集合体部材の水素脆化現象は起こりえない。これらの原子炉において燃料集合体の燃焼期間や取出し燃焼度の大きさは、主に燃料集合体内の核分裂によりエネルギーを発生するウラン235の濃縮度の上限によって決まっている。   In a commercially operated boiling water reactor (BWR) or pressurized water reactor (PWR), the fuel assembly is loaded into the core of the reactor and used for power generation in a short period. The fuel assembly loaded into the reactor core and used for power generation is then taken out of the reactor and its removal burnup, which is the cumulative calorific value until it is replaced with a new fuel assembly, is small. The hydrogen embrittlement phenomenon of the body member cannot occur. In these nuclear reactors, the duration of combustion of the fuel assemblies and the magnitude of the burnup rate are determined mainly by the upper limit of the enrichment of uranium 235 that generates energy by fission in the fuel assemblies.

しかし、将来型の原子炉として研究されている低減速軽水炉(PMWR)、超臨界圧軽水冷却高速増殖炉(SCFBR)においては、沸騰水型原子炉や加圧水型原子炉における取り出し燃焼度の数倍の取出し燃焼度実現を目指して高い取り出し燃焼度を目標としており、原子炉の炉心に燃料集合体が装荷されて発電に供されている時間も長くなるため、燃料集合体の部材の候補であるジルカロイの水素脆化が問題になってくる可能性がある。   However, in the reduced speed light water reactor (PMWR) and supercritical pressure light water cooled fast breeder reactor (SCFBR), which are being studied as future types of nuclear reactors, they are several times the burn-up burn-up in boiling water reactors and pressurized water reactors. The target is a high burn-up burnup with the goal of realizing a high burn-up burnup time, and the fuel assembly is loaded into the reactor core for a longer period of time for power generation. Zircaloy hydrogen embrittlement may become a problem.

将来型原子炉では、長期にわたる発電により水素濃度が少しずつ高くなり、燃料集合体の部材が固溶限度を超えるような高濃度になって水素脆化が進行してくる可能性がある。水素濃度が固溶限度を越えて高濃度化する現象が顕著になってくると燃料集合体の健全性が担保できなくなる可能性があり、水素脆化は一体の燃料を使って発電しうる発電電力量、即ち燃料経済性を制限する要因の一つになる可能性があると考えられる。   In future reactors, hydrogen concentration gradually increases due to long-term power generation, and there is a possibility that hydrogen embrittlement will proceed at such a high concentration that the members of the fuel assembly exceed the solid solution limit. If the phenomenon of hydrogen concentration exceeding the solid solution limit becomes prominent, the integrity of the fuel assembly may not be guaranteed, and hydrogen embrittlement is a power generation that can generate electricity using a single fuel. It may be one of the factors that limit the amount of electric power, that is, fuel economy.

超高燃焼度を目指し開発中の将来型の原子炉においては、超高燃焼度実現のため燃料内のウラン濃縮度の制限は緩和されているはずなので、燃料集合体の健全性に関する要因として重要なのは燃料集合体部材の水素脆化と燃料被覆管の内圧の増加である。   In future-type nuclear reactors that are being developed for ultra-high burnup, the limit on uranium enrichment in the fuel should be relaxed to achieve ultra-high burnup, which is an important factor for fuel assembly health. This is due to hydrogen embrittlement of the fuel assembly member and an increase in the internal pressure of the fuel cladding.

低減速軽水炉(PMWR)、超臨界圧軽水冷却高速増殖炉(SCFBR)等の将来型の原子炉においては、原子炉で所定の期間使用した燃料であっても、燃料集合体の部材を燃料集合体の健全性の観点から検査し、水素脆化と燃料内圧の観点から問題ないことが分かれば原子炉に再装荷してさらに発電に使える場合も多いと考えられる。   In future-type nuclear reactors such as low-speed light water reactor (PMWR) and supercritical pressure light water-cooled fast breeder reactor (SCFBR), even if the fuel has been used for a predetermined period in the reactor, It is thought that there are many cases where the reactor is reloaded and used for further power generation if it is inspected from the viewpoint of the health of the body and found that there is no problem from the viewpoint of hydrogen embrittlement and internal pressure of fuel.

燃料集合体の燃料健全性に係わる2つの要因の中で燃料被覆管の内圧増加は核分裂生成物放出に係わるものである。この燃料の内圧の評価技術としては燃料集合体のプレナム部で放射性同位体Kr−85を測定することにより、核分裂生成物(FP)ガス放出率を評価する技術が燃料の非破壊分析手法として既に確立している。   Among the two factors related to the fuel integrity of the fuel assembly, the increase in the internal pressure of the fuel cladding tube is related to the release of fission products. As a technique for evaluating the internal pressure of this fuel, a technique for evaluating the fission product (FP) gas release rate by measuring the radioisotope Kr-85 in the plenum portion of the fuel assembly has already been used as a non-destructive analysis technique for fuel. Established.

また、従来の燃料集合体の部材の水素濃度を分析する方法としては、使用した燃料を燃料プールにて一定期間冷却した後、燃料集合体を解体し、部材を試料片に切断し、高温炉にて溶解し出てきた水素をガス分析器や質量分析器で検出する方法等が特許文献1〜3で知られている。
特開平6−289181号公報 特開平10−185843号公報 特開2002−181795号公報
In addition, as a conventional method for analyzing the hydrogen concentration of the members of the fuel assembly, after the used fuel is cooled in the fuel pool for a certain period of time, the fuel assembly is disassembled, the member is cut into sample pieces, and the high temperature furnace Patent Documents 1 to 3 disclose a method of detecting hydrogen dissolved out by a gas analyzer or a mass analyzer.
JP-A-6-289181 Japanese Patent Laid-Open No. 10-185843 JP 2002-181795 A

従来の燃料集合体の部材の水素濃度分析技術では、部材の水素濃度分析後に、水素脆化の観点から問題のないことが分かり、燃料健全性が担保されることが判明しても、燃料集合体の部材が試料片に切断されているために、再組み立てして原子炉に戻すことができなかった。   In the conventional hydrogen concentration analysis technology for the members of the fuel assembly, it is clear that there is no problem from the viewpoint of hydrogen embrittlement after analyzing the hydrogen concentration of the member. Because the body parts were cut into sample pieces, they could not be reassembled and returned to the reactor.

本発明は、上述した事情を考慮してなされたもので、燃料集合体等の検査対象物の部材に機械的、物理的な損傷を与えることなく、非破壊にて部材の水素濃度を分析できる原子炉およびその運転方法ならびに原子炉の検査装置およびその検査方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and can analyze the hydrogen concentration of a member in a non-destructive manner without causing mechanical and physical damage to a member of an inspection target such as a fuel assembly. An object of the present invention is to provide a nuclear reactor and a method for operating the nuclear reactor, an inspection apparatus for the nuclear reactor, and an inspection method therefor.

本発明の他の目的は、照射済み燃料集合体の部材の溶解・切断等の破壊的分析を行なうことなく、水素脆化と燃料の内圧管理が可能となって燃料の健全性を担保し、高い燃焼度の原子炉炉心の実現が容易で燃料の経済性を向上させた原子炉およびその運転方法を提供するにある。   Another object of the present invention is to ensure the integrity of the fuel by enabling hydrogen embrittlement and internal pressure management of the fuel without performing destructive analysis such as melting and cutting of the irradiated fuel assembly member, It is an object of the present invention to provide a nuclear reactor that can easily realize a high burnup reactor core and improve fuel economy, and an operating method thereof.

本発明の別の目的は、照射済み燃料集合体等の検査対象物の中で水素脆化し易い燃料被覆管、スペーサ等の部材表面の水素含有率の変化を簡単に精度よく検出することができる原子炉の検査装置およびその検査方法を提供するにある。   Another object of the present invention is to easily and accurately detect a change in the hydrogen content of the surface of a member such as a fuel cladding tube or a spacer that is likely to be hydrogen embrittled in an inspection object such as an irradiated fuel assembly. It is in providing the inspection apparatus of a nuclear reactor, and its inspection method.

本発明に係る原子炉は、上述した課題を解決するために、原子炉炉心に装荷される4体1組の燃料集合体により構成される炉心ユニットと、この炉心ユニットの中央部に形成される空間に長手方向に昇降自在に設けられる横断面十字型制御棒とを有し、前記炉心ユニットには、水素濃度分析が行なわれ、水素脆化の懸念のないと判定された燃料集合体が継続して装荷され、多数の炉心ユニットで原子炉炉心が構成されたことを特徴とするものである。   In order to solve the above-described problems, a nuclear reactor according to the present invention is formed in a core unit composed of a set of four fuel assemblies loaded in a nuclear reactor core, and in the central portion of the core unit. A cross-shaped cross-shaped control rod provided in the space so as to be movable up and down in the longitudinal direction. The core unit is subjected to a hydrogen concentration analysis and continues to be a fuel assembly determined to be free from hydrogen embrittlement. Thus, the reactor core is composed of a large number of core units.

また、本発明に係る原子炉の運転方法は、上述した課題を解決するために、原子炉の炉心に4体1組の燃料集合体を装荷して炉心ユニットを構成し、この炉心ユニットの中央部に形成される十字型空間に横断面十字状の制御棒を長手方向に昇降自在に収納させる一方、前記炉心ユニットを基本単位として多数の炉心ユニットを平面視円形に近い配置構造に配設し、前記炉心ユニットに、水素分析されて水素脆化の懸念のない燃料集合体を継続使用し、前記制御棒を昇降移動させて原子炉炉心の出力制御を行なうことを特徴とする運転方法である。   Further, in order to solve the above-described problems, the reactor operating method according to the present invention is configured by loading a set of four fuel assemblies into the core of the reactor to form a core unit, and the center of the core unit. A control rod having a cross-shaped cross section is housed in a cross-shaped space formed in the section so as to be movable up and down in the longitudinal direction, while a large number of core units are arranged in a substantially circular arrangement in plan view with the core unit as a basic unit. The operation method is characterized in that a fuel assembly that has been analyzed for hydrogen and has no fear of hydrogen embrittlement is continuously used in the core unit, and the output of the reactor core is controlled by moving the control rod up and down. .

さらに、本発明に係る原子炉の検査装置は、上述した課題を解決するために、原子炉の炉水中あるいは燃料プールの水中に立設状態で設置された照射済みの燃料集合体等の検査対象物と、この検査対象物に対向して設置される筒状密閉容器と、パルスレーザ光を出力させるレーザ装置と、このレーザ装置から出力されたパルスレーザ光を筒状密閉容器内を通して前記検査対象物の部材表面に集光照射させる照射光学系と、パルスレーザ光の照射により検査対象物の部材表面に生成されたプラズマの原子・イオンから放出される蛍光を案内し、集光させる蛍光集光光学系と、この蛍光集光光学系を案内された蛍光を入射させ、波長毎に分けるとともに波長毎の光強度検出信号を出力する分光手段と、分光手段からの蛍光波長と波長毎の光強度信号を入力して元素の種類と濃度を計算してレーザプラズマ分光法により分析する演算手段とを有することを特徴とするものである。   Furthermore, in order to solve the above-described problems, the reactor inspection apparatus according to the present invention is an inspection target for irradiated fuel assemblies and the like installed in a standing state in the reactor water of the reactor or the water of the fuel pool. An object, a cylindrical sealed container placed opposite to the inspection object, a laser device for outputting pulsed laser light, and the pulsed laser light output from the laser device through the cylindrical sealed container Irradiating optical system for condensing and irradiating the object surface of the object, and fluorescence condensing for guiding and condensing the fluorescence emitted from the atoms and ions of the plasma generated on the surface of the object to be inspected by the irradiation of the pulse laser beam An optical system, a spectroscopic unit that makes the guided fluorescence enter the fluorescent light collecting system, divides the light into each wavelength and outputs a light intensity detection signal for each wavelength, and the fluorescence wavelength from the spectroscopic unit and the light intensity for each wavelength. Trust The type and density of the input to element by calculating the is characterized in that it has a calculation means for analyzing the laser plasma spectroscopy.

またさらに、本発明に係る原子炉の検査方法は、上述した課題を解決するために、チャンネルボックス内に複数の燃料棒を収容し、内部を冷却材が通過するように配置された複数の燃料集合体と、この燃料集合体内の空間に長手方向に移動可能に配置された制御棒とを有し、前記燃料集合体等の検査対象物の部材の水素濃度を分析する原子炉の検査方法において、前記原子炉の定期検査時に、前記検査対象物の部材の水素濃度を、レーザプラズマ分光法により非破壊にて分析することを特徴とする検査方法である。   Still further, in order to solve the above-described problems, the nuclear reactor inspection method according to the present invention accommodates a plurality of fuel rods in a channel box, and a plurality of fuels arranged so that a coolant passes through the inside. In an inspection method for a nuclear reactor having an assembly and a control rod arranged to be movable in a longitudinal direction in a space in the fuel assembly, and analyzing a hydrogen concentration of a member of an inspection object such as the fuel assembly In the inspection method, the hydrogen concentration of the member to be inspected is analyzed nondestructively by laser plasma spectroscopy at the time of periodic inspection of the nuclear reactor.

本発明によれば、低減速軽水炉や超臨界圧軽水冷却増殖炉等の超高燃焼度実現を目指す原子炉において、定期検査時に燃料集合体等の検査対象物の部材を切断したり、溶融することなく、検査対象物の燃料集合体の健全性を、検査対象物の部材に物理的・機械的な損傷を与えずに非破壊にて水素濃度を分析できる。   According to the present invention, in a nuclear reactor aiming at realization of an ultra-high burnup such as a reduced-speed light water reactor or a supercritical light water-cooled breeder reactor, a member of an inspection object such as a fuel assembly is cut or melted during a periodic inspection. Therefore, it is possible to analyze the soundness of the fuel assembly of the inspection object and the hydrogen concentration in a non-destructive manner without causing physical or mechanical damage to the member of the inspection object.

燃料集合体の部材の水素濃度を分析した結果、その部材の水素濃度が水素脆化状態の判定基準である所定の水素濃度より低いことが分れば、従来の技術に記載の方法で燃料の内圧上昇が問題ないことが評価できるので、燃料集合体の健全性が担保されることになり、継続使用して燃料集合体の原子炉への装荷期間の延長または、照射済み燃料集合体の取り出し燃焼度を大幅に増加させることができ、従来に比べ原子炉の燃料経済性を著しく向上させることができる可能性がある。   As a result of analyzing the hydrogen concentration of the member of the fuel assembly, if it is found that the hydrogen concentration of the member is lower than a predetermined hydrogen concentration which is a criterion for determining the hydrogen embrittlement state, the method described in the prior art is used. Since it can be evaluated that there is no problem with the increase in internal pressure, the integrity of the fuel assembly can be guaranteed, and it can be continuously used to extend the loading period of the fuel assembly to the reactor or to remove the irradiated fuel assembly. The burnup can be greatly increased, and the fuel economy of the reactor may be significantly improved compared to the conventional one.

本発明に係る原子炉およびその運転方法ならびに原子炉の検査装置およびその検査方法の実施の形態について、添付図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS An embodiment of a nuclear reactor, an operating method thereof, a nuclear reactor inspection apparatus, and an inspection method thereof according to the present invention will be described with reference to the accompanying drawings.

本発明に係る原子炉は、原子炉の炉心に複数の燃料集合体が装荷され、冷却材に水を用い、この水が燃料集合体の間を冷却材として流れるタイプの低減速軽水炉(PMWR)や超臨界圧水軽水冷却高速環境炉(SCFBR)等に好適に適用される原子炉である。この原子炉では、4体1組の燃料集合体が多数組原子炉の炉心に装荷され、平断面円形の炉心構造に構成される。4体1組の燃料集合体間に囲まれる空間を、横断面十字型制御棒が往復する構造となっている。   A nuclear reactor according to the present invention is a reduced speed light water reactor (PMWR) of a type in which a plurality of fuel assemblies are loaded on a reactor core, water is used as a coolant, and this water flows as a coolant between fuel assemblies. And a supercritical pressure light water cooled fast environmental reactor (SCFBR). In this nuclear reactor, a set of four fuel assemblies is loaded on the core of a large number of nuclear reactors, and a flat core structure is formed. A cross-shaped cross-shaped control rod reciprocates in a space surrounded by one set of four fuel assemblies.

[第1の実施形態]
図1は本発明に係る原子炉の炉心10に装荷される燃料集合体11を示す斜視図である。
[First Embodiment]
FIG. 1 is a perspective view showing a fuel assembly 11 loaded in a reactor core 10 according to the present invention.

原子炉としての軽水炉やSCFBRの炉心10には、4体1組の燃料集合体11が多数組碁盤目状に配列されて装荷され、2行2列、4体1組の燃料集合体11から炉心ユニット12が構成される。炉心ユニット12の中央部に形成される十字型空間13に横断面十字型制御棒14が制御棒駆動手段15にて長手方向の上下方向に往復動するようになっている。燃料集合体11は角筒状のチャンネルボックス内に多数の燃料棒が収納される。   A core of a light water reactor or SCFBR as a nuclear reactor 10 is loaded with a set of four fuel assemblies 11 arranged in a grid pattern from two rows and two columns, one set of fuel assemblies 11. A core unit 12 is configured. A cross-shaped cross-shaped control rod 14 reciprocates vertically in the longitudinal direction by a control rod driving means 15 in a cross-shaped space 13 formed at the center of the core unit 12. The fuel assembly 11 contains a large number of fuel rods in a rectangular tube box.

制御棒駆動手段15は制御棒14の上端(あるいは下端)に結合される制御棒駆動軸16を有し、この制御棒駆動軸16にて4体1組の燃料集合体11間の空間13を長手方向に沿って昇降せしめられる。   The control rod drive means 15 has a control rod drive shaft 16 coupled to the upper end (or lower end) of the control rod 14, and the control rod drive shaft 16 forms a space 13 between four fuel assemblies 11. It can be raised and lowered along the longitudinal direction.

原子炉の炉心10に装荷される2行2列、4体1組の燃料集合体11は、制御棒駆動手段15により昇降せしめられる制御棒14の位置により、制御棒3の中性子吸収率が変化する。原子炉の運転中は、燃料集合体11からの発熱が所要の発熱量となるように、制御棒14の昇降位置が常に制御される。   The neutron absorption rate of the control rod 3 of the two-row, two-column, four-body set of fuel assemblies 11 loaded on the reactor core 10 varies depending on the position of the control rod 14 moved up and down by the control rod driving means 15. To do. During the operation of the nuclear reactor, the raising / lowering position of the control rod 14 is always controlled so that the heat generated from the fuel assembly 11 becomes a required heat generation amount.

原子炉の状態は、発電のための運転を行なっている運転状態と、不測の要因(事態)により一時運転を停止している一時停止状態と、原子炉を停止し、保守点検を行なっている定期検査状態に大別される。原子炉の状態が運転状態又は一時停止状態にある期間を運転期間、定期検査状態にある期間を定期検査期間という。原子炉は、運転期間と定期検査期間が交互に繰り返すように運転が計画される。   The status of the nuclear reactor is the operating state in which it is operating for power generation, the temporary stop state in which the temporary operation is stopped due to unforeseen factors (situations), and the nuclear reactor is stopped for maintenance and inspection. Roughly divided into regular inspection states. The period in which the state of the reactor is in the operating state or the suspended state is referred to as the operating period, and the period in which the reactor is in the periodic inspection state is referred to as the periodic inspection period. The operation of the nuclear reactor is planned so that the operation period and the periodic inspection period are repeated alternately.

原子炉では、一定の期間発電に使用した燃料集合体11はこの定期検査期間中に取り出され、燃料プールに移され所定期間冷却され、原子炉には新しい燃料集合体11が装荷される。   In the nuclear reactor, the fuel assembly 11 used for power generation for a certain period is taken out during this periodic inspection period, transferred to the fuel pool, cooled for a predetermined period, and a new fuel assembly 11 is loaded into the nuclear reactor.

従来の原子炉であるBWRやPWRでは、燃料集合体は所定の運転期間経過後無条件に取り出され、新しい燃料集合体と交換されることになるが、本発明の実施形態によれば、検査対象物としての燃料集合体11の部材の水素濃度分析により水素脆化の懸念が無いことが示されて、なおかつ燃料の内圧の増加も問題なければ、燃料集合体11をさらに継続して使用することが可能となる。従って、継続使用可能な燃料集合体11を原子炉の炉心10へ再装荷したり、そのまま継続使用することによって、燃料集合体11全体の使用期間を延ばすことができ、燃焼度の向上を図ることができる。この実施形態では、継続使用可能な燃料集合体を炉心10に再装荷して原子炉を運転させることで、所定の発電量に必要な燃料の使用数量を低減し、燃料経済性を向上させることが可能となる。   In the conventional nuclear reactors BWR and PWR, the fuel assembly is unconditionally taken out after a predetermined operation period and replaced with a new fuel assembly. According to the embodiment of the present invention, the inspection is performed. If the hydrogen concentration analysis of the member of the fuel assembly 11 as an object indicates that there is no concern about hydrogen embrittlement and there is no problem in increasing the internal pressure of the fuel, the fuel assembly 11 is used further continuously. It becomes possible. Therefore, by reloading the fuel assembly 11 that can be used continuously to the reactor core 10 or by continuing to use the fuel assembly 11 as it is, the entire fuel assembly 11 can be used for a longer period of time and the burnup can be improved. Can do. In this embodiment, a fuel assembly that can be continuously used is reloaded into the core 10 to operate the nuclear reactor, thereby reducing the amount of fuel used for a predetermined power generation amount and improving fuel economy. Is possible.

この原子炉では、燃料集合体11の水素脆化診断による燃料健全性の担保を図り、燃料の健全性を確保しつつ燃焼度の向上を図ることができる。   In this nuclear reactor, the fuel integrity can be ensured by the hydrogen embrittlement diagnosis of the fuel assembly 11, and the burnup can be improved while ensuring the fuel integrity.

図2は、原子炉の炉心10に配置される燃料集合体11と制御棒14の配置例を示す平面図である。この原子炉の炉心配置構造は、2行2列、4体1組の燃料集合体11と制御棒14の配置を基本単位として、多数単位、例えば32単位を配置した例を模式的に示したものである。図2に示された原子炉の炉心10は、燃料から発生した中性子を効率よく利用可能とするため、平面視円形に近い配置構造とした例であり、この炉心配置構成例では、原子炉の炉心10に燃料集合体11を配置可能なスペースが4×32=128体分あることになる。   FIG. 2 is a plan view showing an arrangement example of the fuel assemblies 11 and the control rods 14 arranged in the core 10 of the nuclear reactor. This reactor core arrangement structure schematically shows an example in which a large number of units, for example, 32 units, are arranged with the arrangement of the fuel assemblies 11 and the control rods 14 in two rows and two columns and one set as basic units. Is. The reactor core 10 shown in FIG. 2 is an example of an arrangement structure close to a circular shape in plan view so that neutrons generated from the fuel can be used efficiently. In this core arrangement configuration example, There will be 4 × 32 = 128 spaces in the core 10 where the fuel assemblies 11 can be placed.

[第2の実施形態]
図3は、原子炉の炉心に装荷される燃料集合体の部材水素濃度を分析する原子炉の検査方法の実施形態を示す原理図である。
[Second Embodiment]
FIG. 3 is a principle diagram showing an embodiment of a nuclear reactor inspection method for analyzing a hydrogen concentration of a member of a fuel assembly loaded in a nuclear reactor core.

この実施形態は、検査対象物としての燃料集合体11を構成する部材、例えば燃料被覆管、スペーサ等のジルカロイ製部材の水素含有率を分析するレーザプラズマ分光法の原理を示すもので、燃料集合体11を構成する部材の表面に所要のパルス幅、例えば100ナノ秒程度以下のパルスレーザ光aを集光照射させ、部材表面のミクロン単位の薄い層を瞬間的に加熱蒸発、原子化させ、数万度のプラズマ状態を生成する。   This embodiment shows the principle of laser plasma spectroscopy for analyzing the hydrogen content of a member constituting a fuel assembly 11 as an inspection object, for example, a zircaloy member such as a fuel cladding tube or a spacer. The surface of the member constituting the body 11 is focused and irradiated with a pulse laser beam a having a required pulse width, for example, about 100 nanoseconds or less, and a thin layer of micron units on the surface of the member is instantaneously heated and evaporated and atomized. Generate tens of thousands of degrees of plasma.

生成されたプラズマ18におけるプラズマ状態の原子やイオンは高エネルギーな励起状態にある。レーザ光はパルスレーザ光であり、レーザパルス幅の時間を繰返してレーザ光aのエネルギーが照射されない時間帯では、プラズマ18における原子やイオンは光の放出等を行なってエネルギーを失い安定した基底状態に戻る。低いエネルギー状態に戻っていくときに放出する蛍光bをレーザプラズマ分光法で波長分析を行なうものである。   The plasma atoms and ions in the generated plasma 18 are in a high-energy excited state. The laser beam is a pulsed laser beam, and in the time zone in which the laser pulse width is repeated and the energy of the laser beam a is not irradiated, the atoms and ions in the plasma 18 emit light and lose energy to stabilize the ground state. Return to. The fluorescence b emitted when returning to the low energy state is subjected to wavelength analysis by laser plasma spectroscopy.

蛍光aの波長は、原素の種類やエネルギー状態によって異なる。また、プラズマ18中に存在する同じ元素の原子数が多いと、その元素固有の蛍光の強度も強くなる。   The wavelength of the fluorescence a varies depending on the type of element and energy state. Further, when the number of atoms of the same element existing in the plasma 18 is large, the intensity of fluorescence inherent to the element also increases.

したがって、パルスレーザ光aを燃料集合体11の部材表面に照射してプラズマ18を生成し、このプラズマ18における原子の種類やイオンから放出される蛍光bの波長とその蛍光強度を測定し、分析することで、蛍光波長から元素の種類と蛍光強度を非破壊で特定でき、その蛍光aの波長毎の強度から元素の濃度を分析することができる。   Accordingly, the surface of the fuel assembly 11 is irradiated with the pulsed laser beam a to generate plasma 18, and the type of atoms in the plasma 18 and the wavelength of fluorescence b emitted from the ions and the intensity of the fluorescence are measured and analyzed. By doing so, the element type and fluorescence intensity can be specified nondestructively from the fluorescence wavelength, and the concentration of the element can be analyzed from the intensity for each wavelength of the fluorescence a.

このように、燃料集合体11の部材表面に、パルスレーザ光を集光照射させ、そのレーザエネルギーにより部材表面の構成原子をプラズマ化し、このプラズマ18から放出される蛍光bの発光スペクトルの波長と波長毎の蛍光強度から、燃料集合体11の部材の材料組成を分析することができる。この材料組成の分析方法をレーザプラズマ分析法という。   In this way, the surface of the member of the fuel assembly 11 is focused and irradiated with pulsed laser light, the constituent energy on the surface of the member is converted into plasma by the laser energy, and the wavelength of the emission spectrum of the fluorescence b emitted from the plasma 18 The material composition of the member of the fuel assembly 11 can be analyzed from the fluorescence intensity for each wavelength. This material composition analysis method is called laser plasma analysis method.

[第3の実施形態]
図4は、燃料集合体11の部材の水素濃度を分析する原子炉の検査装置およびその検査方法の第1実施形態を示すものである。
[Third Embodiment]
FIG. 4 shows a first embodiment of a reactor inspection apparatus for analyzing the hydrogen concentration of members of the fuel assembly 11 and an inspection method therefor.

図4に示された原子炉の検査装置20は、原子炉の炉中あるいは燃料プール21の水中に立設状態で設置された照射済みの燃料集合体12と、この燃料集合体12の長手方向に沿って昇降可能な角筒状あるいは円筒状の筒状密閉容器22と、パルスレーザ光aを出力させるレーザ装置23と、このレーザ装置23から出力されたパルスレーザ光aを燃料集合体11の部材表面に集光照射させる照射光学系24と、パルスレーザ光aの照射により部材表面が瞬間的に加熱蒸発、原子化されて数万度のプラズマ状態となり、発生したプラズマ状態の原子やイオンから放出される蛍光bを案内する蛍光集光光学系25と、この蛍光集光光学系25を案内され、集光された蛍光bを波長毎に分け、内蔵された光センサで蛍光強度を検出する分光手段26と、この分光手段26で測定された蛍光の波長と波長毎の光強度信号が入力される演算手段としてのコンピュータ27とを有する。   The reactor inspection apparatus 20 shown in FIG. 4 includes an irradiated fuel assembly 12 installed upright in the reactor or in the water of the fuel pool 21, and the longitudinal direction of the fuel assembly 12. A rectangular cylindrical or cylindrical sealed container 22 that can be moved up and down along with, a laser device 23 that outputs a pulsed laser beam a, and a pulsed laser beam a output from the laser device 23 into the fuel assembly 11. The irradiation optical system 24 for condensing and irradiating the surface of the member, and the surface of the member is instantaneously heated and evaporated and atomized by the irradiation of the pulsed laser light a to form a plasma state of tens of thousands of degrees, and from the generated plasma state atoms and ions A fluorescence condensing optical system 25 that guides the emitted fluorescence b, and the fluorescence b that has been guided through the fluorescence condensing optical system 25 and is divided for each wavelength, and the fluorescence intensity is detected by a built-in optical sensor. Spectroscopic means 2 When, and a computer 27 as an arithmetic means of the light intensity signal for each wavelength and the wavelength of fluorescence measured by the spectral means 26 is input.

分光手段26は、プラズマの発生から水素固有の波長の蛍光を区別する蛍光分光部と、水素固有の波長とその波長強度を検出する光センサ等の蛍光検出部とを有する。コンピュータ27内では、蛍光の波長と波長毎の強度とから水素等の元素の種類と相対的な元素濃度が計算され、計算結果は図示しない表示手段に表示される。表示手段は、演算手段としてのコンピュータに付設されたディスプレイであったり、また、無線あるいは有線を介して遠隔のディスプレイに接続され、このディスプレイに表示させるようにしてもよい。   The spectroscopic unit 26 includes a fluorescence spectroscopic unit that distinguishes fluorescence having a wavelength unique to hydrogen from generation of plasma, and a fluorescence detection unit such as an optical sensor that detects a wavelength unique to hydrogen and its wavelength intensity. In the computer 27, the element concentration such as hydrogen and the relative element concentration are calculated from the fluorescence wavelength and the intensity for each wavelength, and the calculation result is displayed on a display means (not shown). The display means may be a display attached to the computer as the calculation means, or may be connected to a remote display via wireless or wired connection and displayed on this display.

筒状密閉容器22は、頂部にレーザ装置23からのパルスレーザ光aや蛍光bを透過させる透過窓30を有する一方、筒状密閉容器22内の底部には全反射ミラー31が設置される。全反射ミラー31で向きが変えられて直角方向に反射されたパルスレーザ光aは密閉容器22の側部に設けられた集光レンズ32により集光されてエネルギー密度が高められ、検査対象物である燃料集合体11の部材表面に集光照射されるようになっている。また、筒状密閉容器22の上方には穴あきミラー34が斜設され、この穴あきミラー34の穴34aからレーザ装置23から発振されたパルスレーザ光aを筒状密閉容器22内に案内している。   The cylindrical sealed container 22 has a transmission window 30 that transmits the pulse laser light a and the fluorescence b from the laser device 23 at the top, and a total reflection mirror 31 is installed at the bottom of the cylindrical sealed container 22. The pulsed laser light a whose direction is changed by the total reflection mirror 31 and reflected in a right angle direction is condensed by a condensing lens 32 provided on the side of the sealed container 22 to increase the energy density. A member surface of a certain fuel assembly 11 is focused and irradiated. Further, a perforated mirror 34 is obliquely disposed above the cylindrical sealed container 22, and the pulsed laser light a oscillated from the laser device 23 is guided into the cylindrical sealed container 22 from the hole 34 a of the perforated mirror 34. ing.

照射光学系24は穴あきミラー34の穴部、透過窓、全反射ミラー32および集光レンズ33から構成され、レーザ装置23から発振されたパルス幅100ナノ秒以下のパルスレーザ光aを水中に設置された検査対象物である照射済み燃料集合体11の部材表面に集光照射させるようになっている。   The irradiation optical system 24 includes a hole portion of a perforated mirror 34, a transmission window, a total reflection mirror 32, and a condensing lens 33. Pulse laser light a having a pulse width of 100 nanoseconds or less oscillated from the laser device 23 is put into water. The member surface of the irradiated fuel assembly 11 which is the inspection object installed is condensed and irradiated.

燃料集合体11の部材表面を集光照射させることにより部材表面にプラズマを生成し、生成されたプラズマによる測定対象元素からの蛍光bが発生する。発生した蛍光は、蛍光検査光学系25を通って分光器26に案内される。蛍光集光光学系25は、集光レンズ33、全反射ミラー32、透過窓31、穴あきミラー34および集光レンズ35により構成される。   Plasma is generated on the surface of the member by condensing and irradiating the member surface of the fuel assembly 11, and fluorescence b is generated from the measurement target element by the generated plasma. The generated fluorescence is guided to the spectroscope 26 through the fluorescence inspection optical system 25. The fluorescence condensing optical system 25 includes a condensing lens 33, a total reflection mirror 32, a transmission window 31, a perforated mirror 34, and a condensing lens 35.

燃料集合体11の部材表面に集光照射されて生成されるプラズマからの蛍光は、集光レンズ33により平行光となって、全反射ミラー32で反射され、筒状密閉容器22内を通り、透過窓31から穴あきミラー34のミラー面で大部分が反射し、反射した蛍光bは集光レンズ35で集光されて分光手段26に入射され、この分光手段26にて蛍光bの波長と波長毎の蛍光強度が検出される。この検出信号はコンピュータ27に送られてレーザプラズマ分光法により分析処理され、元素の種類と相対的な元素濃度が計算され、その計算結果は表示手段に表示されるようになっている。   Fluorescence from the plasma generated by condensing and irradiating the member surface of the fuel assembly 11 becomes parallel light by the condensing lens 33, is reflected by the total reflection mirror 32, passes through the cylindrical sealed container 22, Most of the light is reflected by the mirror surface of the perforated mirror 34 from the transmission window 31, and the reflected fluorescent light b is collected by the condenser lens 35 and incident on the spectroscopic means 26. The fluorescence intensity for each wavelength is detected. This detection signal is sent to the computer 27 and analyzed by laser plasma spectroscopy, the element type and the relative element concentration are calculated, and the calculation result is displayed on the display means.

次に、原子炉の検査装置の作用を説明する。   Next, the operation of the nuclear reactor inspection apparatus will be described.

この原子炉の検査装置20は、レーザ装置23から発振されたパルスレーザ光aを斜設された穴あきミラー34の穴34aを通り、筒状密閉容器22内に形成される照射光学系24に案内され、筒状密閉容器22の下部側面に配置された集光レンズ33にて分析対象となる検査対象物の照射済み燃料集合体11の部材表面に集光照射される。   This nuclear reactor inspection apparatus 20 passes through a hole 34a of a perforated mirror 34 obliquely provided with a pulsed laser beam a oscillated from a laser apparatus 23, and enters an irradiation optical system 24 formed in a cylindrical hermetic container 22. Guided and focused on the member surface of the irradiated fuel assembly 11 of the inspection object to be analyzed by the condenser lens 33 disposed on the lower side surface of the cylindrical sealed container 22.

ここで、レーザ装置23から出力されるレーザ光aは、パルス幅100ナノ秒以下、例えば数ナノ秒から100ナノ秒のパルス幅を有するパルスレーザ光である。このパルスレーザ光aを燃料集合体11の部材表面に集光照射させると、部材表面のミクロン単位の薄い層が瞬間的に加熱蒸発、原子化されて数万度のプラズマ状態となり、プラズマ18を生成する。   Here, the laser beam a output from the laser device 23 is a pulse laser beam having a pulse width of 100 nanoseconds or less, for example, a pulse width of several nanoseconds to 100 nanoseconds. When this pulsed laser beam a is condensed and irradiated on the member surface of the fuel assembly 11, a thin layer of micron units on the member surface is instantaneously heated and evaporated and atomized into a plasma state of several tens of thousands of degrees. Generate.

燃料集合体11の部材表面が局所的(ポイント的)にプラズマ状態となり、生成されるプラズマ18により、プラズマ状態の原子やイオンから蛍光bが放出される。この蛍光bはパルスレーザ光aの照射経路(進行経路)とは逆に走査され、集光レンズ33で平行光となり、この蛍光bは全反射ミラー32にて進行方向が変えられ、筒状密閉容器22内を上昇し、この密閉容器22上面の透過窓31を通過し、大部分は穴あきミラー34で反射して向きが横方向に変えられて集光レンズ35で集光され、分光手段26に入射される。   The member surface of the fuel assembly 11 is locally (point-like) in a plasma state, and the generated plasma 18 emits fluorescence b from atoms and ions in the plasma state. The fluorescence b is scanned in the opposite direction to the irradiation path (traveling path) of the pulsed laser light a, becomes parallel light by the condenser lens 33, and the traveling direction of the fluorescence b is changed by the total reflection mirror 32, and is sealed in a cylindrical shape. Ascends inside the container 22 and passes through the transmission window 31 on the top surface of the sealed container 22. Most of the light is reflected by the perforated mirror 34, changed in the direction to the horizontal direction, and condensed by the condenser lens 35. 26 is incident.

分光手段26では、入射された蛍光bが波長毎に分けられ、さらに、分光手段26に内蔵された光センサにより波長毎の蛍光強度が測定される。分光手段26にて測定された蛍光の波長と、波長毎の光強度信号は検出信号となってコンピュータ27に伝送される。コンピュータ27内では、蛍光の波長と波長毎の光強度から元素の種類と相対的な元素濃度が計算され、その計算結果が表示手段(図示せず)に表示される。   In the spectroscopic means 26, the incident fluorescence b is divided for each wavelength, and the fluorescence intensity for each wavelength is measured by an optical sensor built in the spectroscopic means 26. The fluorescence wavelength measured by the spectroscopic means 26 and the light intensity signal for each wavelength are transmitted to the computer 27 as detection signals. In the computer 27, the element type and relative element concentration are calculated from the fluorescence wavelength and the light intensity for each wavelength, and the calculation result is displayed on a display means (not shown).

また、コンピュータ27は、内蔵されるプログラムの働きにより、周期的にトリガー信号cをレーザ装置23に送ることで、レーザ装置23から出力されるレーザパルスの発射タイミングを制御することができる。また、コンピュータ27は、プラズマ18からの蛍光bを分光手段26で測定するタイミングを分析対象元素、ここでは水素原子の蛍光発生寿命に合わせ、測定(分析)対象元素の発光に無関係なバックランド発光と区別し易い最適な条件にタイミング制御することで、プラズマ18からの測定対象元素の蛍光信号のみを精度よく、効率的に測定することができる。   Further, the computer 27 can control the emission timing of the laser pulse output from the laser device 23 by periodically sending the trigger signal c to the laser device 23 by the function of the built-in program. Further, the computer 27 matches the timing at which the fluorescence b from the plasma 18 is measured by the spectroscopic means 26 with the fluorescence generation lifetime of the element to be analyzed, here, the hydrogen atom, and the backland emission that is not related to the light emission of the element to be measured (analyzed). By controlling the timing to an optimum condition that is easily distinguishable from the plasma 18, it is possible to accurately and efficiently measure only the fluorescence signal of the measurement target element from the plasma 18.

また、筒状密閉容器22を図4の上下方向の矢印Aで示すように昇降させ、上下方向に図示しない昇降駆動装置で動かすことで、燃料集合体11を固定したまま、燃料集合体11を構成する部材表面の異なる場所にプラズマ18を生成し、その移動プラズマからの発光(蛍光)を常に分光手段26に入射され、蛍光の波長と光強度の情報をコンピュータ27で計算処理することで、燃料集合体11の部材表面の異なる場所の水素濃度を測定することができる。   Further, the cylindrical airtight container 22 is moved up and down as indicated by an arrow A in the vertical direction in FIG. 4 and is moved in the vertical direction by a lift driving device (not shown), so that the fuel assembly 11 is fixed while the fuel assembly 11 is fixed. Plasma 18 is generated at different locations on the constituent member surface, light emission (fluorescence) from the moving plasma is always incident on the spectroscopic means 26, and information on the fluorescence wavelength and light intensity is calculated and processed by the computer 27. The hydrogen concentration at different locations on the member surface of the fuel assembly 11 can be measured.

この水素濃度測定操作を、連続したレーザパルス毎に、または、複数のレーザパルス毎に連続的に実施することによって、燃料集合体11の部材表面における水素濃度の上下方向(長手方向)分布を測定することができる。   By performing this hydrogen concentration measurement operation for each continuous laser pulse or for each of a plurality of laser pulses, the vertical (longitudinal) distribution of the hydrogen concentration on the member surface of the fuel assembly 11 is measured. can do.

図4に示す原子炉の検査装置20の変形例では、筒状密閉容器22を上下方向Aに動かすことで、パルスレーザ光aの照射位置、即ちプラズマ生成位置を上下方向に動かして水素濃度の上下方向分布を測定する例を説明したが、筒状密閉容器22を水平方向に移動させる水平移動機構(水平走査光学系)を設けて、パルスレーザ光aの照射位置を水平方向に移動させて水素濃度の水平方向分布を測定できるようにしてもよい。さらに、原子炉の検査装置20では、レーザ光の照射位置を上下方向と水平方向の2つの移動方向の組み合せとして、燃料集合体11の部材表面の水素濃度の2次元的な分布測定を行なうことができるようにしてもよい。   In the modification of the nuclear reactor inspection apparatus 20 shown in FIG. 4, by moving the cylindrical airtight container 22 in the vertical direction A, the irradiation position of the pulsed laser light a, that is, the plasma generation position is moved in the vertical direction. Although the example of measuring the vertical distribution has been described, a horizontal movement mechanism (horizontal scanning optical system) for moving the cylindrical airtight container 22 in the horizontal direction is provided, and the irradiation position of the pulse laser beam a is moved in the horizontal direction. The horizontal distribution of the hydrogen concentration may be measured. Further, the nuclear reactor inspection apparatus 20 performs two-dimensional distribution measurement of the hydrogen concentration on the member surface of the fuel assembly 11 by combining the irradiation position of the laser beam with two movement directions of the vertical direction and the horizontal direction. You may be able to.

また、この原子炉の検査装置20では、レーザ装置23から燃料集合体11を構成する部材の表面に、図5に示すように、パルス幅が数ナノ秒から10数ナノ秒、例えば10ナノ秒程度のパルスレーザ光を集光照射させ、燃料集合体11の部材表面のミクロン単位の薄い層が瞬間的に加熱蒸発、原子化し、数万度のプラズマ状態のプラズマを生成させてもよい。   Further, in this nuclear reactor inspection apparatus 20, as shown in FIG. 5, the pulse width is from several nanoseconds to several tens of nanoseconds, for example, 10 nanoseconds, on the surface of the member constituting the fuel assembly 11 from the laser device 23. It is also possible to collect and irradiate about a pulsed laser beam, and a thin layer in units of microns on the surface of the member of the fuel assembly 11 may be instantaneously heated and evaporated and atomized to generate plasma in a plasma state of tens of thousands of degrees.

燃料集合体11の部材表面に形成されるプラズマ状態の原子やイオンは高エネルギ状態により、パルスレーザ光aは、レーザパルス幅の間の時間帯の期間には、エネルギが存在しないので、レーザパルス幅の間の時間帯では、プラズマ中の原子やイオンは光(蛍光)の放出等を行なうことで、エネルギーを失なって低エネルギ状態(安定したエネルギ準位)に戻っていく。   Since the atoms and ions in the plasma state formed on the surface of the member of the fuel assembly 11 are in a high energy state, the pulse laser beam a has no energy during the period of the time zone between the laser pulse widths. In the time zone between the widths, the atoms and ions in the plasma lose light and return to a low energy state (stable energy level) by emitting light (fluorescence).

このとき、プラズマを構成する原子から放出される蛍光の波長は、原子の種類やエネルギー状態によって異なっており、この蛍光の波長と光強度を測定することで構成元素の種類と濃度を分析評価することができる。   At this time, the wavelength of the fluorescence emitted from the atoms constituting the plasma differs depending on the type and energy state of the atoms, and the type and concentration of the constituent elements are analyzed and evaluated by measuring the wavelength and light intensity of the fluorescence. be able to.

図6は、パルスレーザ光aの照射によって生成されたプラズマ18およびその周辺を拡大した図である。   FIG. 6 is an enlarged view of the plasma 18 generated by the irradiation of the pulsed laser beam a and its periphery.

1パルスのパルスレーザ光の照射によって、燃料集合体11の部材表面37の極薄い層(ミクロンオーダの薄層)が加熱蒸発、原子化されてプラズマ18が生成される。部材表面37が加熱蒸発、原子化されて空間中に飛散した原子の大部分は、燃料集合体11の部材表面37に戻ることは無いので、パルスレーザ光aの照射を受けた部分は図6に示すように極わずかであるが減肉することになる。   By irradiation with one pulse of pulse laser light, an extremely thin layer (micron order thin layer) on the member surface 37 of the fuel assembly 11 is heated and evaporated and atomized to generate plasma 18. Since most of the atoms scattered in the space after the member surface 37 is heated and evaporated and atomized do not return to the member surface 37 of the fuel assembly 11, the portion irradiated with the pulse laser beam a is shown in FIG. As shown in Fig. 4, the thickness is reduced slightly.

パルスレーザ光aの照射により燃料集合体11の部材材料が減肉した表面層38は、レーザ光aのパルス毎に部材表面37から薄い層として削られていくことになるので、部材表面37の同じ位置にレーザ光aのパルス照射を繰り返すと、極わずかであるが、部材表面37から少しづつ深い部分の表面が露出してくる。したがって、レーザ光aのパルス毎に、プラズマ18からの蛍光の波長と光強度を測定することによって、水素の濃度の深さ方向の変化を測定することができる。   The surface layer 38 in which the member material of the fuel assembly 11 has been thinned by irradiation with the pulsed laser beam a is scraped as a thin layer from the member surface 37 for each pulse of the laser beam a. When the pulse irradiation of the laser beam “a” is repeated at the same position, the surface of the portion that is slightly deeper from the member surface 37 is exposed although it is very slight. Therefore, by measuring the wavelength and light intensity of the fluorescence from the plasma 18 for each pulse of the laser light a, the change in the depth direction of the hydrogen concentration can be measured.

[第4の実施形態]
図7は、本発明に係る原子炉の検査装置およびその検査方法の他の実施形態を示す図である。
[Fourth Embodiment]
FIG. 7 is a diagram showing another embodiment of the nuclear reactor inspection apparatus and the inspection method thereof according to the present invention.

この実施形態の原子炉の検査装置20Aを説明するに当り、図4に示された原子炉の検査装置20と同じ構成には、同一符号を付してその説明を簡略化あるいは省略する。   In describing the nuclear reactor inspection apparatus 20A of this embodiment, the same components as those in the nuclear reactor inspection apparatus 20 shown in FIG. 4 are denoted by the same reference numerals, and description thereof is simplified or omitted.

図7に示された原子炉の検査装置20Aは、筒状密閉容器22の集光レンズ33付近の下部側面を囲むように外側方に突出する筒状の間隔保持スペーサ40が設けられる。間隔保持スペーサ40は、水中設置の燃料集合体11の部材表面に対向し、かつその部材表面に密着するようにゴムパッキン等の密封パッキン41が備えられ、この間隔保持スペーサ40および密封パッキン41により、筒状密閉容器22と燃料集合体11の部材表面との間に、集光レンズを覆う真空容器43が構成される。   The reactor inspection apparatus 20A shown in FIG. 7 is provided with a cylindrical spacing spacer 40 that protrudes outward so as to surround the lower side surface of the cylindrical sealed container 22 near the condenser lens 33. The interval holding spacer 40 is provided with a sealing packing 41 such as a rubber packing so as to face the member surface of the fuel assembly 11 installed underwater and to be in close contact with the member surface. Between the cylindrical sealed container 22 and the member surface of the fuel assembly 11, a vacuum container 43 that covers the condenser lens is configured.

筒状の真空容器43には、水(水蒸気)やガス等の流体を排出できるように排出(排気)配管44が接続され、この排出配管44の先には排気装置45が設けられる。   A discharge (exhaust) pipe 44 is connected to the cylindrical vacuum vessel 43 so that fluid such as water (water vapor) and gas can be discharged, and an exhaust device 45 is provided at the end of the discharge pipe 44.

図7に示された原子炉の検査装置20Aは、レーザ装置23を作動させてパルスレーザ光aを照射して水素測定を非破壊にて行なう前に、排気装置45により、筒状真空容器43内の水(水素等)やガス等の流体を排出し、真空容器43内の空間に水蒸気及び水素が充分に少なくなるように予めセットする。   The reactor inspection apparatus 20A shown in FIG. 7 activates the laser apparatus 23 to irradiate the pulsed laser light a to perform hydrogen measurement in a nondestructive manner. The fluid such as water (hydrogen, etc.) and gas is discharged, and the space in the vacuum vessel 43 is set in advance so that water vapor and hydrogen are sufficiently reduced.

筒状の真空容器43内を真空引きして水蒸気及び水素が充分に少なくなるように負圧あるいは真空状態にセットした後、検査対象物である燃料集合体11の部材表面の水素含有率の変化を測定する作業が行なわれる。   After the inside of the cylindrical vacuum vessel 43 is evacuated and set to a negative pressure or a vacuum state so that water vapor and hydrogen are sufficiently reduced, a change in the hydrogen content on the surface of the member of the fuel assembly 11 which is the inspection object The work of measuring is performed.

次に、原子炉の検査装置20Aの作用を説明する。   Next, the operation of the nuclear reactor inspection apparatus 20A will be described.

この原子炉の検査装置20Aでは、筒状密閉容器22を燃料集合体11の部材表面に燃料プール21等の水中に立設状態で対向配置した後、筒状真空容器43の密封パッキン41を燃料集合体11の部材表面に密着させる。   In this nuclear reactor inspection apparatus 20A, after the cylindrical sealed container 22 is disposed facing the member surface of the fuel assembly 11 in a standing state in the water of the fuel pool 21 or the like, the sealed packing 41 of the cylindrical vacuum container 43 is used as the fuel. The assembly 11 is closely attached to the member surface.

その後、排出装置45を作動させて筒状真空容器43内の水蒸気や水素を排気配管44を通して排気し、真空容器43内を負圧あるいは真空状態にセットする。このセット状態で集光レンズ33と燃料集合体11の部材表面との間隔が所要の値に保持される。   Thereafter, the discharge device 45 is operated to exhaust the water vapor and hydrogen in the cylindrical vacuum vessel 43 through the exhaust pipe 44, and the inside of the vacuum vessel 43 is set to a negative pressure or a vacuum state. In this set state, the distance between the condenser lens 33 and the member surface of the fuel assembly 11 is maintained at a required value.

筒状真空容器43内を負圧あるいは真空状態にセットした後、レーザ装置23を作動させてパルスレーザ光aを出力させる。出力されたパルスレーザ光aは、斜設された穴あきミラー34の穴34aから筒状密閉容器22の透過窓31を通過して筒状密閉容器22内を進み、この密閉容器22内に斜設された全反射ミラー32によって方向が変えられ、集光レンズ33にて分析対象となる燃料集合体11の部材表面に集光照射される。   After the inside of the cylindrical vacuum vessel 43 is set to a negative pressure or a vacuum state, the laser device 23 is operated to output the pulse laser beam a. The output pulsed laser beam a passes through the transmission window 31 of the cylindrical sealed container 22 from the hole 34a of the perforated mirror 34 provided obliquely, travels through the cylindrical sealed container 22, and obliquely enters the sealed container 22 therein. The direction is changed by the provided total reflection mirror 32, and the condensing lens 33 focuses and irradiates the member surface of the fuel assembly 11 to be analyzed.

すなわち、レーザ装置23から出力されるパルスレーザ光aは、照射光学系24を通って走査され、燃料集合体11の部材表面に集光照射され、エネルギー密度が高められる。レーザ装置23から出力されるレーザ光aは、パルス幅の100ナノ秒以下、好ましくは数ナノ秒から10数ナノ秒、例えば10ナノ秒程度のパルスレーザ光が用いられる。レーザ装置23から発振されたパルスレーザ光が燃料集合体11の部材表面に集光照射されると、エネルギ密度が高められ、部材表面の薄い層が瞬間的に加熱蒸発し、原子化され、数万度のプラズマ状態となる。   That is, the pulsed laser light a output from the laser device 23 is scanned through the irradiation optical system 24 and focused on the member surface of the fuel assembly 11 to increase the energy density. As the laser light a output from the laser device 23, pulse laser light having a pulse width of 100 nanoseconds or less, preferably from several nanoseconds to several tens of nanoseconds, for example, about 10 nanoseconds is used. When the pulse laser beam oscillated from the laser device 23 is focused and irradiated on the member surface of the fuel assembly 11, the energy density is increased, and a thin layer on the member surface is instantaneously heated and evaporated, atomized, and several It becomes a plasma state of ten thousand degrees.

プラズマ状態の部材表面では、生成されたプラズマ18状態の原子やイオンから蛍光bが放出されており、放出された蛍光bはレーザ光aの進行経路とは逆に蛍光集光光学系25内を進む。   On the surface of the member in the plasma state, the fluorescence b is emitted from the generated atoms and ions in the plasma 18 state, and the emitted fluorescence b passes through the fluorescence condensing optical system 25 contrary to the traveling path of the laser light a. move on.

燃料集合体11の部材表面のプラズマから生成された原子やイオンの蛍光は、集光レンズ33で平行光となり、全反射ミラー32にて進行方向を変えられ、筒状密閉容器22内を上昇し、密閉容器22上面の透過窓31を通過し、大部分の蛍光bは穴あきミラー34で反射されて横方向に進み、集光レンズ35にて集光され、分光手段26に入射される。   Fluorescence of atoms and ions generated from the plasma on the member surface of the fuel assembly 11 becomes parallel light by the condensing lens 33, the traveling direction is changed by the total reflection mirror 32, and the inside of the cylindrical sealed container 22 rises. The majority of the fluorescent light b passes through the transmission window 31 on the upper surface of the sealed container 22, is reflected by the perforated mirror 34, travels in the lateral direction, is collected by the condenser lens 35, and enters the spectroscopic means 26.

分光手段26では、入射した蛍光bが波長毎に分けられ、さらに分光手段26内蔵の光センサにより波長毎の蛍光の光強度が測定される。分光手段26にて測定された蛍光の波長と波長毎の光強度の検出信号はコンピュータ27に伝送される。コンピュータ27内では蛍光の波長と波長毎の強度からレーザプラズマ分光法を用いて元素の種類と相対的な濃度が計算され、その計算結果が表示手段(図示せず)に表示される。   In the spectroscopic means 26, the incident fluorescence b is divided for each wavelength, and the light intensity of the fluorescent light for each wavelength is measured by a photosensor built in the spectroscopic means 26. The fluorescence wavelength measured by the spectroscopic means 26 and the detection signal of the light intensity for each wavelength are transmitted to the computer 27. In the computer 27, the element type and relative concentration are calculated from the fluorescence wavelength and the intensity for each wavelength using laser plasma spectroscopy, and the calculation result is displayed on a display means (not shown).

また、コンピュータ27はレーザ装置23にトリガー信号を送ることでレーザパルスの発射のタイミングを制御するとともに、プラズマ18からの蛍光bを分光手段26で測定するタイミングを最適な条件に制御することで、プラズマ18からの各元素の蛍光信号のみを精度良く正確に測定できるようにする。   In addition, the computer 27 sends a trigger signal to the laser device 23 to control the timing of laser pulse emission, and to control the timing at which the fluorescence b from the plasma 18 is measured by the spectroscopic means 26 to an optimum condition. Only the fluorescence signal of each element from the plasma 18 can be measured accurately and accurately.

この原子炉の検査装置20Aは、このときレーザ照射対象の燃料集合体11の部材表面は筒状の真空容器43に囲まれており、水蒸気及び水素の残留は十分少ないので、レーザ光aのパルス照射により生成したプラズマ18中の水素は燃料集合体11の部材内部から部材の材料の構成元素とともにレーザ光aにより加熱・蒸発・原子化され、プラズマ化される。このプラズマ18からの蛍光には水分等由来の水素によるバックグラウンド蛍光信号が少ないため精度良く材料中の水素濃度を測定することができる。   In this reactor inspection apparatus 20A, the member surface of the fuel assembly 11 to be irradiated with the laser is surrounded by a cylindrical vacuum vessel 43 at this time, and the residual water vapor and hydrogen are sufficiently small. Hydrogen in the plasma 18 generated by irradiation is heated, evaporated, atomized by the laser beam a together with the constituent elements of the material of the member from the member of the fuel assembly 11, and is turned into plasma. Since the fluorescence from the plasma 18 has a small background fluorescence signal due to hydrogen derived from moisture or the like, the hydrogen concentration in the material can be accurately measured.

[第1変形例]
図8は、本発明の原子炉の検査装置の他の実施形態における第1変形例を示すものである。
[First Modification]
FIG. 8 shows a first modification in another embodiment of the nuclear reactor inspection apparatus of the present invention.

図8は、図7に示された原子炉の検査装置20Aにおける筒状真空容器43の周辺を拡大した領域を示すもので、他の構成は図7に示された検査装置20Aと異ならないので同じ構成には同一符号を付して説明を省略する。   FIG. 8 shows an enlarged area around the cylindrical vacuum vessel 43 in the reactor inspection apparatus 20A shown in FIG. 7, and the other configuration is not different from the inspection apparatus 20A shown in FIG. The same components are denoted by the same reference numerals and description thereof is omitted.

図8に示された拡大図は、筒状真空容器43に排気装置45を接続するとともに、不活性ガス供給装置46を接続し、排気と給気を開閉弁47,48,49の開閉操作により切り換え得るようにしたものである。   In the enlarged view shown in FIG. 8, an exhaust device 45 is connected to the cylindrical vacuum vessel 43 and an inert gas supply device 46 is connected to exhaust and supply air by opening and closing the on-off valves 47, 48 and 49. It can be switched.

排気配管44の途中に給気配管50が接続され、この給気配管50の他端に不活性ガス供給装置46が接続される。   An air supply pipe 50 is connected in the middle of the exhaust pipe 44, and an inert gas supply device 46 is connected to the other end of the air supply pipe 50.

第1変形例においては、レーザ装置23を作動させてレーザ光aを照射し、水素測定を行なう前に開閉弁47,48を開き、開閉弁49を閉じた状態で排気装置45により筒状真空容器43内の水およびガスを排出(排気)し、真空容器43内の水蒸気及び水素が充分少なくなるようにセットする。   In the first modification, the laser device 23 is operated to irradiate the laser beam a, and the on-off valves 47 and 48 are opened before the hydrogen measurement is performed, and the on-off valve 49 is closed. The water and gas in the container 43 are discharged (exhaust), and the water vapor and hydrogen in the vacuum container 43 are set to be sufficiently reduced.

その後、開閉弁48を閉じて開閉弁49を開き、真空容器43内に不活性ガスを導入する。   Thereafter, the on-off valve 48 is closed and the on-off valve 49 is opened to introduce an inert gas into the vacuum vessel 43.

真空容器43内に不活性ガスが不活性ガス供給装置46から導入された後、開閉弁49を閉じて不活性ガスの供給を停止し、再度、開閉弁48を開いて排気装置45にて真空容器43内のガスを排気する。なお、排気管44と給気管50の接続部に三方切換弁を設け、開閉弁48と49を省略してもよい。   After the inert gas is introduced into the vacuum vessel 43 from the inert gas supply device 46, the on-off valve 49 is closed to stop the supply of the inert gas, and the on-off valve 48 is opened again to make a vacuum in the exhaust device 45. The gas in the container 43 is exhausted. A three-way switching valve may be provided at the connection between the exhaust pipe 44 and the air supply pipe 50, and the on-off valves 48 and 49 may be omitted.

真空容器43内の排気と給気とを繰り返し、いわゆるガス置換操作を行なうことで、真空容器43内に残留する水蒸気や水素ガスを極力低減させる。   By repeating the exhaust and supply of air in the vacuum vessel 43 and performing a so-called gas replacement operation, water vapor and hydrogen gas remaining in the vacuum vessel 43 are reduced as much as possible.

そして、筒状真空容器43内に水蒸気や水素ガスを極力低減させた状態でレーザ装置23を作動させてパルスレーザ光aを燃料集合体11の部材表面に集光照射させ、その蛍光を測定することで、プラズマ18からの蛍光bに含まれる水分等由来の水素となるバックグラウンド蛍光信号をさらに少なくでき、燃料集合体11の材料中に含まれる水素濃度を精度よく、正確に測定することができる。   Then, the laser device 23 is operated in a state where water vapor and hydrogen gas are reduced as much as possible in the cylindrical vacuum vessel 43, and the pulse laser beam a is focused on the member surface of the fuel assembly 11, and the fluorescence is measured. Thus, the background fluorescence signal that becomes hydrogen derived from moisture contained in the fluorescence b from the plasma 18 can be further reduced, and the concentration of hydrogen contained in the material of the fuel assembly 11 can be accurately and accurately measured. it can.

図8に示される原子炉の検査装置20Bにおいては、ガス置換操作の後で、開閉弁48を閉じ、開閉弁49を開いて不活性ガス供給装置46により不活性ガスを供給し、水素濃度測定中の筒状真空容器43内を0.5乃至3気圧の雰囲気条件に維持する。最適な不活性ガス雰囲気圧力となる圧力に達するまで、不活性ガスを供給した後で、パルスレーザ光aの照射による水素蛍光信号の測定を行うことが可能である。   In the nuclear reactor inspection apparatus 20B shown in FIG. 8, after the gas replacement operation, the on-off valve 48 is closed, the on-off valve 49 is opened, and the inert gas is supplied by the inert gas supply apparatus 46 to measure the hydrogen concentration. The inside of the cylindrical vacuum vessel 43 is maintained at atmospheric conditions of 0.5 to 3 atmospheres. It is possible to measure the hydrogen fluorescence signal by the irradiation with the pulsed laser beam a after supplying the inert gas until the pressure reaches the optimum inert gas atmosphere pressure.

なお、筒状真空容器43内に供給される不活性ガスとしては、例えば、入手し易く安価なHeガスあるいはArガスが採用される。不活性ガスは水素濃度測定前のガス置換操作の都度、または測定中も真空容器43内に供給されるため、入手し易いこと、レーザ光aの照射によりプラズマ18が生成された際、不活性ガス自身の発生が強いと、水素の蛍光信号に比べて不溶なバックグラウンド信号が強くなってしまうため、不活性ガス自身の発生が弱いことが重要である。これらの観点から不活性ガスの種類としてはHeまたはArガスを用いると効率よく水素濃度を測定することができる。   As the inert gas supplied into the cylindrical vacuum vessel 43, for example, easily available and inexpensive He gas or Ar gas is employed. Since the inert gas is supplied into the vacuum vessel 43 every time the gas replacement operation is performed before the hydrogen concentration measurement or during the measurement, the inert gas is easily available, and is inert when the plasma 18 is generated by irradiation with the laser beam a. If the generation of the gas itself is strong, the insoluble background signal becomes stronger than the fluorescence signal of hydrogen, so it is important that the generation of the inert gas itself is weak. From these viewpoints, the hydrogen concentration can be efficiently measured by using He or Ar gas as the kind of inert gas.

[第2変形例]
図9は本発明に係る原子炉の検査装置の他の実施形態における第2変形例を示すものである。
[Second Modification]
FIG. 9 shows a second modification of another embodiment of the nuclear reactor inspection apparatus according to the present invention.

この第2変形例に示された原子炉の検査装置20Cは、筒状真空容器43内にガスを給排させる構成に特徴を有し、他の構成は、図7に示された原子炉の検査装置20Aと構成を同じくするので、同じ構成には同一符号を付して説明を簡略ないし省略する。   The reactor inspection apparatus 20C shown in the second modification is characterized in that gas is supplied to and discharged from the cylindrical vacuum vessel 43, and the other structure is the same as that of the reactor shown in FIG. Since the configuration is the same as that of the inspection apparatus 20A, the same components are denoted by the same reference numerals, and description thereof is simplified or omitted.

図9は、筒状真空容器43の周辺を拡大して示すもので、筒状の真空容器43から水や水蒸気を排気する排気装置45と、真空容器43内に不活性ガスを供給する不活性ガス供給装置46と、このガス供給装置46および各開閉弁47,48,49の作動制御を行なう不活性ガス供給制御装置52と、真空容器43内の不活性ガス雰囲気条件を維持するため、真空容器43内のガス圧力を測定するガス圧力計53とを有する。   FIG. 9 is an enlarged view of the periphery of the cylindrical vacuum vessel 43. The exhaust device 45 exhausts water and water vapor from the cylindrical vacuum vessel 43, and the inert gas supplying the inert gas into the vacuum vessel 43. In order to maintain the inert gas atmosphere conditions in the gas supply device 46, the inert gas supply control device 52 that controls the operation of the gas supply device 46 and the on-off valves 47, 48, and 49, and the vacuum vessel 43, a vacuum is provided. A gas pressure gauge 53 for measuring the gas pressure in the container 43.

図9に示された原子炉の検査装置20Cは、筒状密閉容器22の下部側方の集光レンズ33を設定した部分を外側から覆うように筒状の間隔保持スペーサ40が配置され、この間隔保持スペーサ40の先端にゴムパッキン等の密封パッキン41が装着される。間隔保持スペーサ40の先端に装着された密封パッキン41が燃料集合体11の部材表面に装着されて筒状の真空容器43が構成される。   In the reactor inspection apparatus 20C shown in FIG. 9, a cylindrical interval holding spacer 40 is disposed so as to cover a portion where the condensing lens 33 on the lower side of the cylindrical sealed container 22 is set from the outside. A sealing packing 41 such as a rubber packing is attached to the tip of the interval holding spacer 40. A sealing packing 41 attached to the tip of the interval holding spacer 40 is attached to the surface of the member of the fuel assembly 11 to form a cylindrical vacuum container 43.

筒状の真空容器43には、水およびガスを排出する排気管44が接続され、この排気管44は途中にガス圧力計53、開閉弁47,48が設けられ、その先端に排気装置45が接続される。   An exhaust pipe 44 for discharging water and gas is connected to the cylindrical vacuum vessel 43. The exhaust pipe 44 is provided with a gas pressure gauge 53 and on-off valves 47 and 48, and an exhaust device 45 is provided at the tip thereof. Connected.

また、排気管44は、両開閉弁47,48の間にガス供給配管50が接続され、このガス供給配管50も途中に開閉弁49を備えて不活性ガス供給装置46に接続される。   The exhaust pipe 44 is connected to a gas supply pipe 50 between the on-off valves 47 and 48, and the gas supply pipe 50 is also provided with an on-off valve 49 and connected to the inert gas supply device 46.

この不活性ガス供給装置46と開閉弁47,48,49は不活性ガス供給制御装置52によって作動制御され、真空容器43内の気体の排気と不活性ガスの供給を制御するガス置換制御機構54が構成される。一方、ガス圧力計53からの圧力検出信号は、不活性ガス供給制御装置52に入力される構成となっている。   The inert gas supply device 46 and the on-off valves 47, 48, and 49 are controlled by an inert gas supply control device 52, and a gas replacement control mechanism 54 that controls the exhaust of the gas in the vacuum vessel 43 and the supply of the inert gas. Is configured. On the other hand, the pressure detection signal from the gas pressure gauge 53 is input to the inert gas supply control device 52.

図9に示された原子炉の検査装置20Cにおいては、筒状密閉容器22を燃料集合体11に対向設置し、筒状の真空容器43を燃料集合体11の部材表面に装着し、真空容器43内を密封状態にセットする。このセット状態によりレーザ装置23から発振されるレーザ光aを照射光学系24を介して燃料集合体11の部材表面に集光照射して水素測定を行なう前に、開閉弁47,48を開き、開閉弁49を閉じた状態で排気装置45を作動させ、筒状真空容器43内の水やガスを排気し、真空容器43内の水蒸気や水素が充分少なくなるようにする。   In the nuclear reactor inspection apparatus 20C shown in FIG. 9, a cylindrical sealed container 22 is installed opposite to the fuel assembly 11, a cylindrical vacuum container 43 is mounted on the surface of the fuel assembly 11, and the vacuum container 43 is set in a sealed state. Before the hydrogen measurement is performed by condensing and irradiating the member surface of the fuel assembly 11 with the laser light a oscillated from the laser device 23 through the irradiation optical system 24 in this set state, the on-off valves 47 and 48 are opened, The exhaust device 45 is operated with the on-off valve 49 closed to exhaust water and gas in the cylindrical vacuum vessel 43 so that water vapor and hydrogen in the vacuum vessel 43 are sufficiently reduced.

排気装置45で真空引きを行なって水やガスを排気した後、開閉弁48を閉じ、開閉弁49を開いて、筒状の真空容器43内に不活性ガスを供給する。   After evacuating the exhaust device 45 to exhaust water and gas, the on-off valve 48 is closed and the on-off valve 49 is opened to supply an inert gas into the cylindrical vacuum vessel 43.

筒状の真空容器43内に不活性ガスが導入された後、開閉弁49を閉じて不活性ガスの供給を停止し、再度、開閉弁48を開き、排気装置45にて真空容器43内のガスを排気させる。この真空容器43への給排操作は不活性ガス供給制御装置52により制御され、真空容器43へのガスの給排が繰り返される。   After the inert gas is introduced into the cylindrical vacuum vessel 43, the on-off valve 49 is closed to stop the supply of the inert gas, the on-off valve 48 is opened again, and the exhaust device 45 is used to open the inside of the vacuum vessel 43. Exhaust the gas. The supply / discharge operation to / from the vacuum container 43 is controlled by the inert gas supply control device 52, and the supply / discharge of gas to / from the vacuum container 43 is repeated.

真空容器43からのガスの排気動作が終了したら、開閉弁48を閉じ、開閉弁49を開き、筒状真空容器43内に不活性ガスを供給する。水素濃度測定中において真空容器43の雰囲気条件を維持する観点から、最適な不活性ガス雰囲気圧力となるまで、ガス圧力計53のガス圧力検出信号に従って不活性ガスを供給するように不活性ガス供給制御装置52により制御する。   When the exhaust operation of the gas from the vacuum vessel 43 is completed, the on-off valve 48 is closed, the on-off valve 49 is opened, and an inert gas is supplied into the cylindrical vacuum vessel 43. From the viewpoint of maintaining the atmospheric conditions of the vacuum vessel 43 during the measurement of the hydrogen concentration, the inert gas is supplied so that the inert gas is supplied in accordance with the gas pressure detection signal of the gas pressure gauge 53 until the optimum inert gas atmospheric pressure is reached. Control is performed by the control device 52.

この真空容器43内の不活性ガス圧力の供給制御は、その後、レーザ光aの集光照射による水素蛍光信号の測定の経過中においても、ガス圧力計53の変化により、真空容器43内から不活性ガスの洩れや、水蒸気侵入による雰囲気圧力の変化を検知して、開閉弁47,49を開いて追加の不活性ガスを供給制御する。   The supply control of the inert gas pressure in the vacuum vessel 43 is not performed from the inside of the vacuum vessel 43 due to a change in the gas pressure gauge 53 even during the measurement of the hydrogen fluorescence signal by the focused irradiation of the laser beam a. By detecting leakage of active gas or changes in atmospheric pressure due to water vapor intrusion, the on-off valves 47 and 49 are opened to control supply of additional inert gas.

不活性ガスの追加の供給制御により、燃料集合体11の部材表面、すなわち測定表面付近の雰囲気を、水素濃度分析に適した雰囲気条件に維持することで、部材表面の分析対象位置や状態が変わっても、常時精度よく燃料集合体11の部材中の水素濃度計測を行なうことができる。   By the additional supply control of the inert gas, the analysis target position and state of the member surface are changed by maintaining the member surface of the fuel assembly 11, that is, the atmosphere in the vicinity of the measurement surface, in an atmosphere condition suitable for hydrogen concentration analysis. However, the hydrogen concentration in the member of the fuel assembly 11 can always be measured with high accuracy.

図3乃至図9に示す原子炉の検査装置においては、レーザプラズマ分光法により水素原子からの蛍光bの発光を計測して水素濃度分析を行なう例を示したが、図10に示される実施例では、水素濃度分析を行なうだけでなく、検査対象物としての燃料集合体11の部材の構成元素であるジルコニウム、鉄、クロムさらに雰囲気や水に存在する酸素のうち、一種以上の元素からの蛍光bの波長とその光強度を測定することができる。例えば水素原子の固有波長の蛍光bの光強度信号とジルコニウム原子の固有波長の蛍光bの光強度信号の比を計算評価することにより、水素とジルコニウムの相対濃度に対応した分析結果を得ることができる。   In the reactor inspection apparatus shown in FIGS. 3 to 9, the example in which the emission of the fluorescence b from the hydrogen atom is measured by laser plasma spectroscopy and the hydrogen concentration analysis is performed is shown. However, the embodiment shown in FIG. Then, in addition to the hydrogen concentration analysis, the fluorescence from one or more elements among zirconium, iron, chromium, which are constituent elements of the members of the fuel assembly 11 as the inspection object, and oxygen present in the atmosphere and water. The wavelength of b and its light intensity can be measured. For example, an analysis result corresponding to the relative concentration of hydrogen and zirconium can be obtained by calculating and evaluating the ratio of the light intensity signal of the fluorescence b having the intrinsic wavelength of hydrogen atoms and the light intensity signal of the fluorescence b having the intrinsic wavelength of zirconium atoms. it can.

水素原子の固有波長の蛍光bの強度だけから水素濃度を計算評価すると分析対象の燃料集合体11の部材表面の状態、例えば不純物の付着状態によってレーザ光aの吸収の度合いが変わってしまい、同じエネルギーのレーザパルスを照射してもプラズマ18からの水素原子の固有波長の蛍光bの強度が変動してしまう。蛍光強度が変動してしまう場合でも、水素原子と同じようにジルコニウム原子の固有波長の蛍光bの強度も同じに変動しているため、2種の原子固有の蛍光強度比を使うことで、分析対象の表面状態が異なる場合においても精度良く水素濃度を計算し、評価することができる。   If the hydrogen concentration is calculated and evaluated only from the intensity of the fluorescence b of the intrinsic wavelength of the hydrogen atom, the degree of absorption of the laser beam a varies depending on the state of the member surface of the fuel assembly 11 to be analyzed, for example, the state of impurity adhesion. Even if the laser pulse of energy is irradiated, the intensity of the fluorescence b having the intrinsic wavelength of hydrogen atoms from the plasma 18 will fluctuate. Even if the fluorescence intensity fluctuates, the intensity of the fluorescence b at the intrinsic wavelength of the zirconium atom varies in the same way as the hydrogen atom, so the analysis can be performed by using the ratio of the fluorescence intensity peculiar to the two atoms. Even when the surface state of the object is different, the hydrogen concentration can be accurately calculated and evaluated.

このように、水素濃度を十分に確保するには水素原子固有波長の蛍光bの信号と比をとる元素の種類としては、水素濃度を分析対象の材料の構成元素の中で、水素濃度より十分高い濃度で存在している元素を選定することが望ましい。   Thus, in order to ensure a sufficient hydrogen concentration, the type of element that takes a ratio to the signal of the fluorescence b at the natural wavelength of the hydrogen atom, the hydrogen concentration is more than the hydrogen concentration among the constituent elements of the material to be analyzed. It is desirable to select elements that are present in high concentrations.

図10はレーザ光aのパルスにより生成されたプラズマ18から発光した蛍光について、横軸に蛍光の波長を示し縦軸にその波長の蛍光の強度を模式的に示したものである。水素の蛍光信号ピークPのピーク高さ、またはピーク面積の信号は水素濃度に対応しているが、これだけでは水素濃度しか分析できない。例えば図7おいて分光手段26の分光波長をスキャンすることで図10のような波長P,R,S毎の蛍光信号強度が得られる。   FIG. 10 shows the fluorescence emitted from the plasma 18 generated by the pulse of the laser beam a, with the horizontal axis representing the fluorescence wavelength and the vertical axis schematically representing the fluorescence intensity at that wavelength. The signal of the peak height or peak area of the fluorescence signal peak P of hydrogen corresponds to the hydrogen concentration, but only this can analyze the hydrogen concentration. For example, by scanning the spectral wavelength of the spectral means 26 in FIG. 7, the fluorescence signal intensities for the wavelengths P, R, and S as shown in FIG. 10 are obtained.

これにより、ジルコニウムの蛍光信号の波長の蛍光信号強度、すなわちジルコニウムの蛍光ピークRのピーク高さまたはピーク面積からジルコニウム濃度を評価して、2つの比を計算することで、燃料集合体11の部材中の2つの成分の組成を分析できる。   Thus, by evaluating the zirconium concentration from the fluorescence signal intensity at the wavelength of the zirconium fluorescence signal, that is, the peak height or area of the zirconium fluorescence peak R, and calculating the two ratios, the member of the fuel assembly 11 is obtained. The composition of the two components in it can be analyzed.

さらに、異なる蛍光波長のピーク、元素Xの蛍光ピークS、元素Xとして例えば酸素の場合、燃料集合体11の部材の酸素との相対濃度を計算評価することが可能である。元素Xとして鉄やクロムを選定した場合も同様である。また元素Xとしてジルコニウムと酸素の2種を同時に測定した場合には、ジルコニウムと酸素の比率、即ち酸化状態を分析することも可能でなる。   Furthermore, when the peak of different fluorescence wavelength, the fluorescence peak S of the element X, and the element X are, for example, oxygen, the relative concentration of the member of the fuel assembly 11 with oxygen can be calculated and evaluated. The same applies when iron or chromium is selected as the element X. Further, when two kinds of zirconium and oxygen are simultaneously measured as the element X, the ratio of zirconium and oxygen, that is, the oxidation state can be analyzed.

図11は、原子炉の定期検査の際に、水素濃度の検査および燃料集合体11の新燃料への交換の手順例を示すフロー図である。   FIG. 11 is a flowchart showing an example of a procedure for inspecting the hydrogen concentration and replacing the fuel assembly 11 with a new fuel during the periodic inspection of the reactor.

図11に示された原子炉の検査方法および運転方法では、定期検査中の燃料集合体11の部材の水素濃度検査およびその結果による燃料集合体の新規燃料集合体への交換の手順のフローを示したものである。   In the nuclear reactor inspection method and operation method shown in FIG. 11, the flow of the procedure for the hydrogen concentration inspection of the members of the fuel assembly 11 during the periodic inspection and the replacement of the fuel assembly to the new fuel assembly as a result is performed. It is shown.

また、図12に示された原子炉の検査方法および運転方法では、定期検査中の燃料集合体11の部材の水素濃度検査およびその検査結果による燃料集合体の新規燃料集合体への交換の手順のフローを示したものである。   In the nuclear reactor inspection method and operation method shown in FIG. 12, the procedure for the hydrogen concentration inspection of the members of the fuel assembly 11 during the periodic inspection and the replacement of the fuel assembly with a new fuel assembly based on the inspection result. This flow is shown.

本発明の実施形態では、照射済み燃料集合体の中で水素脆化しやすいジルカロイで構成された燃料被覆管、スペーサ等の燃料集合体11の部材表面の水素含有率の変化を簡単に検出するための新たな検査方法およびその検査装置を説明した。   In the embodiment of the present invention, in order to easily detect a change in the hydrogen content of the surface of a member of the fuel assembly 11 such as a fuel cladding tube or a spacer made of zircaloy which is easily hydrogen embrittled in the irradiated fuel assembly. A new inspection method and inspection apparatus thereof have been described.

この原子炉の検査装置および検査方法では、レーザプラズマ分光法で検査対象物である燃料集合体11の部材材料表面に集光させたパルスレーザを照射してそのレーザエネルギーにより材料表面の構成原子をプラズマ化し、プラズマ18からの発光スペクトル(蛍光b)の波長と及び波長毎の光強度の情報から部材材料の組成分析を行うものである。   In this nuclear reactor inspection apparatus and inspection method, a laser beam focused on a member material surface of a fuel assembly 11 that is an object to be inspected by laser plasma spectroscopy is used to irradiate constituent atoms on the material surface by the laser energy. The composition of the member material is analyzed from the information of the wavelength of the emission spectrum (fluorescence b) from the plasma 18 and the light intensity for each wavelength.

この原子炉の検査装置および検査方法では、レーザプラズマ分光法を原子炉の炉水中又は使用済み燃料プール21中に設置された照射済み燃料集合体の構成材料、例えば燃料被覆管、スペーサのジルカロイ製の部位の水素含有率の分析に適用する。   In this nuclear reactor inspection apparatus and inspection method, laser plasma spectroscopy is applied to constituent materials of irradiated fuel assemblies installed in the reactor water or in the spent fuel pool 21, such as fuel cladding tubes and spacers made of Zircaloy. It is applied to the analysis of the hydrogen content of the site.

このレーザ誘起プラズマ分光分析法を使うと従来のように燃料集合体の構成材料の溶解、切断等破壊的な分析を行う必要がなく、その場(オンサイト)にて燃料集合体11の構成部材の機械的、物理的損傷を伴うことなく分析を行うことが可能となる。従って、定期検査時又は使用済み時等に原子炉の炉中又は燃料プール21内におかれた検査対象物を、設置状態のままジルカロイ中の水素濃度を測定検査することができ、非破壊で水素脆化状況を診断することができる。   When this laser-induced plasma spectroscopy is used, it is not necessary to perform destructive analysis such as melting and cutting of the constituent material of the fuel assembly as in the prior art, and the constituent members of the fuel assembly 11 on the spot (on-site) Analysis can be performed without any mechanical or physical damage. Therefore, the hydrogen concentration in Zircaloy can be measured and inspected for inspection objects placed in the reactor or in the fuel pool 21 at the time of periodic inspection or when used, etc., in a non-destructive manner. The hydrogen embrittlement situation can be diagnosed.

従って、燃料の健全性を担保する上で重要な水素脆化と燃料被覆管の内圧の管理が可能になるため、燃料集合体に高い燃焼度の実現が容易になり、燃料の経済性を向上させた原子炉の運転が実現できる。   Therefore, hydrogen embrittlement and the control of the internal pressure of the fuel cladding tube, which are important in ensuring the soundness of the fuel, become possible, making it easy to achieve a high burnup in the fuel assembly and improving the fuel economy. The operation of the nuclear reactors made can be realized.

本発明に係る原子炉の炉心に装荷される4体1組、2行2列の燃料集合体からなる炉心ユニットの構成を示す斜視図。The perspective view which shows the structure of the core unit which consists of 1 set of 4 bodies loaded in the core of the reactor which concerns on this invention, and a fuel assembly of 2 rows 2 columns. 本発明に係る原子炉の一実施形態を示すもので、原子炉炉心に配置される燃料集合体の配置を模式的に示す平面図。The top view which shows one Embodiment of the nuclear reactor which concerns on this invention, and shows typically arrangement | positioning of the fuel assembly arrange | positioned at a nuclear reactor core. 原子炉炉心に装荷される燃料集合体等の検査対象物の水素濃度を分析する検査原理を説明する原理図。The principle figure explaining the inspection principle which analyzes the hydrogen concentration of inspection objects, such as a fuel assembly loaded into a nuclear reactor core. 本発明に係る原子炉の検査装置およびその検査方法の実施形態を模式的に示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows typically embodiment of the inspection apparatus and the inspection method of the reactor which concern on this invention. 本発明に係る原子炉の検査装置に備えられる検査対象物へのパルスレーザ光照射領域を示す図。The figure which shows the pulse laser beam irradiation area | region to the test object with which the inspection apparatus of the reactor which concerns on this invention is equipped. 図5に示されたパルスレーザ光の照射領域を拡大して示す図。The figure which expands and shows the irradiation area | region of the pulse laser beam shown by FIG. 本発明に係る原子炉の検査装置およびその検査方法の他の実施形態を模式的に示す構成図。The block diagram which shows typically other embodiment of the inspection apparatus of the reactor which concerns on this invention, and its inspection method. 図7に示された原子炉の検査装置の他の実施形態における第1変形例を部分的に示す図。The figure which shows partially the 1st modification in other embodiment of the inspection apparatus of the reactor shown by FIG. 図7に示された原子炉の検査装置の他の実施形態における第2変形例を部分的に示す図。The figure which shows partially the 2nd modification in other embodiment of the inspection apparatus of the reactor shown by FIG. パルスレーザ光の照射により生成されたプラズマから発光した蛍光の波長と蛍光強度の関係を示す図。The figure which shows the relationship between the wavelength of the fluorescence light-emitted from the plasma produced | generated by irradiation of the pulse laser beam, and fluorescence intensity. 原子炉の定期検査の際の水素濃度検査及び新しい燃料集合体への交換の手順を示すフロー図。The flowchart which shows the procedure of the hydrogen concentration test | inspection in the case of the periodic inspection of a nuclear reactor, and replacement | exchange to a new fuel assembly. 原子炉の定期検査の際の水素濃度検査及び新しい燃料集合体への交換手順例を示すフロー図。The flowchart which shows the hydrogen concentration test | inspection in the case of the periodic inspection of a nuclear reactor, and the replacement procedure example to a new fuel assembly.

符号の説明Explanation of symbols

10 原子炉の炉心
11 燃料集合体
12 炉心ユニット
13 空間
14 制御棒
15 制御棒駆動手段
16 制御棒駆動軸
18 プラズマ
20,20A,20B,20C 原子炉の検査装置
21 燃料プール(原子炉の炉水)
22 筒状密閉容器
23 レーザ装置
24 照射光学系
25 蛍光集光光学系
26 分光手段
27 コンピュータ
31 透過窓
32 全反射ミラー
33 集光レンズ
34 穴あきミラー
35 集光レンズ
37 部材表面
38 表面層
40 間隔保持スペーサ
41 密封パッキン
43 真空容器
44 排出(排気)配管
45 排出装置(排気装置)
46 不活性ガス供給装置
47〜49 開閉弁
50 給気管
52 不活性ガス供給制御装置
53 ガス圧力計
54 ガス置換制御機構
DESCRIPTION OF SYMBOLS 10 Reactor core 11 Fuel assembly 12 Core unit 13 Space 14 Control rod 15 Control rod drive means 16 Control rod drive shaft 18 Plasma 20, 20A, 20B, 20C Reactor inspection device 21 Fuel pool (reactor water )
22 cylindrical sealed container 23 laser device 24 irradiation optical system 25 fluorescence condensing optical system 26 spectroscopic means 27 computer 31 transmission window 32 total reflection mirror 33 condensing lens 34 perforated mirror 35 condensing lens 37 member surface 38 surface layer 40 interval Holding spacer 41 Sealing packing 43 Vacuum container 44 Discharge (exhaust) piping 45 Discharge device (exhaust device)
46 Inert Gas Supply Device 47-49 Open / Close Valve 50 Air Supply Pipe 52 Inert Gas Supply Control Device 53 Gas Pressure Gauge 54 Gas Replacement Control Mechanism

Claims (16)

原子炉炉心に装荷される4体1組の燃料集合体により構成される炉心ユニットと、この炉心ユニットの中央部に形成される空間に長手方向に昇降自在に設けられる横断面十字型制御棒とを有し、前記炉心ユニットには、水素濃度分析が行われ水素脆化の懸念がないと判定された燃料集合体が継続して装荷され、多数の炉心ユニットで原子炉炉心が構成されたことを特徴とする原子炉。 A core unit composed of a set of four fuel assemblies loaded in the nuclear reactor core, and a cross-shaped cross-shaped control rod provided in a space formed in the center of the core unit so as to be movable up and down in the longitudinal direction; The core unit was continuously loaded with a fuel assembly that had been analyzed for hydrogen concentration and determined to be free of hydrogen embrittlement, and the reactor core was configured with a number of core units. A nuclear reactor characterized by 原子炉の炉心に4体1組の燃料集合体を装荷して炉心ユニットを構成し、この炉心ユニットの中央部に形成される十字型空間に横断面十字状の制御棒を長手方向に昇降自在に収納させる一方、前記炉心ユニットを基本単位として多数の炉心ユニットを平面視円形に近い配置構造に配設し、前記炉心ユニットに、水素分析されて水素脆化の懸念のない燃料集合体を継続使用し、前記制御棒を昇降移動させて原子炉炉心の出力制御を行なうことを特徴とする原子炉の運転方法。 A set of four fuel assemblies is loaded on the reactor core to form a core unit, and a control rod with a cross-shaped cross section can be moved up and down in the longitudinal direction in a cross-shaped space formed in the center of the core unit. In the meantime, a large number of core units are arranged in a circular arrangement in plan view with the core unit as a basic unit, and a fuel assembly that is analyzed for hydrogen and has no fear of hydrogen embrittlement is continued in the core unit. A method for operating a nuclear reactor, comprising: controlling the power output of a nuclear reactor core by moving the control rod up and down. 前記燃料集合体の部材をレーザプラズマ分光法を用いて部材の水素濃度あるいは水素濃度分布を非破壊検査し、前記燃料集合体の部材の水素濃度が所定値以下である場合に、上記燃料集合体またはこの燃料集合体に代表されるグループの燃料集合体を継続使用させることを特徴とする請求項2に記載の原子炉の運転方法。 When the fuel assembly member is subjected to non-destructive inspection of the hydrogen concentration or hydrogen concentration distribution of the member using laser plasma spectroscopy, and the hydrogen concentration of the fuel assembly member is a predetermined value or less, the fuel assembly 3. The method of operating a nuclear reactor according to claim 2, wherein a fuel assembly of a group represented by the fuel assembly is continuously used. 前記燃料集合体の部材をレーザプラズマ分光法を用いて部材の水素濃度あるいは水素濃度分布を非破壊検査し、前記燃料集合体の部材の水素濃度が所定値以上である場合に、上記燃料集合体またはこの燃料集合体に代表されるグループの燃料集合体を新規燃料集合体に交換し、
前記燃料集合体の水素濃度が設定値以下である場合は、前記燃料集合体またはこの燃料集合体に代表されるグループの燃料集合体を継続使用させ、原子炉の運転を再開させることを特徴とする請求項2に記載の原子炉の運転方法。
When the fuel assembly member is subjected to non-destructive inspection of the hydrogen concentration or hydrogen concentration distribution of the member using laser plasma spectroscopy, and the hydrogen concentration of the fuel assembly member is a predetermined value or more, the fuel assembly Or replace the fuel assembly of the group represented by this fuel assembly with a new fuel assembly,
When the hydrogen concentration of the fuel assembly is equal to or lower than a set value, the fuel assembly or a group of fuel assemblies represented by the fuel assembly is continuously used, and the operation of the reactor is resumed. A method of operating a nuclear reactor according to claim 2.
原子炉の炉水中あるいは燃料プールの水中に立設状態で設置された照射済みの燃料集合体等の検査対象物と、
この検査対象物に対向して設置される筒状密閉容器と、
パルスレーザ光を出力させるレーザ装置と、
このレーザ装置から出力されたパルスレーザ光を筒状密閉容器内を通して前記検査対象物の部材表面に集光照射させる照射光学系と、
パルスレーザ光の照射により検査対象物の部材表面に生成されたプラズマの原子・イオンから放出される蛍光を案内し、集光させる蛍光集光光学系と、
この蛍光集光光学系を案内された蛍光を入射させ、波長毎に分けるとともに波長毎の光強度検出信号を出力する分光手段と、
分光手段からの蛍光波長と波長毎の光強度信号を入力して元素の種類と濃度を計算してレーザプラズマ分光法により分析する演算手段とを有することを特徴とする原子炉の検査装置。
Inspection objects such as irradiated fuel assemblies installed standing in reactor water or fuel pool water,
A cylindrical sealed container placed opposite to the inspection object;
A laser device for outputting pulsed laser light;
An irradiation optical system for condensing and irradiating the surface of a member of the inspection object through the inside of a cylindrical sealed container with a pulse laser beam output from the laser device;
A fluorescence condensing optical system that guides and collects the fluorescence emitted from the atoms and ions of the plasma generated on the surface of the member to be inspected by the irradiation of the pulse laser beam;
Spectroscopic means for making the fluorescence guided by this fluorescence condensing optical system incident, dividing the wavelength and outputting a light intensity detection signal for each wavelength,
An inspection apparatus for a nuclear reactor, comprising: a calculation means for inputting a fluorescence wavelength from a spectroscopic means and a light intensity signal for each wavelength, calculating a kind and concentration of an element, and analyzing the element by laser plasma spectroscopy.
前記筒状密閉容器に、燃料集合体等の検査対象物の部材表面周辺を気密空間に形成可能な真空容器と、この真空容器内に水素原子の発光に適した負圧あるいは陽圧のガス雰囲気を形成させる排気装置とを備え、前記真空容器内で検査対象物の部材表面にレーザ光を集光照射させ、真空容器内でプラズマを発生させ、このプラズマから蛍光中の水素固有波長の蛍光を測定するようにしたことを特徴とする請求項5に記載の原子炉の検査装置。 A vacuum vessel capable of forming an airtight space around a member surface of an inspection object such as a fuel assembly in the cylindrical sealed vessel, and a negative or positive pressure gas atmosphere suitable for light emission of hydrogen atoms in the vacuum vessel And an exhaust device for forming a laser beam, condensing and irradiating a laser beam on the surface of a member to be inspected in the vacuum vessel, generating a plasma in the vacuum vessel, and generating a fluorescence having a hydrogen intrinsic wavelength in the fluorescence from the plasma. 6. The nuclear reactor inspection apparatus according to claim 5, wherein measurement is performed. 前記筒状密閉容器の下部側方に設けられた真空容器に、真空容器内を負圧のガス雰囲気を形成する排気装置と、上記真空容器内に不活性ガスを供給する不活性ガス供給装置と、前記真空容器内の気体の排気と不活性ガスの供給を切換制御可能なガス置換制御機構とを備えたことを特徴とする原子炉の検査装置。 An exhaust device for forming a negative pressure gas atmosphere in the vacuum vessel in a vacuum vessel provided on the lower side of the cylindrical sealed vessel, and an inert gas supply device for supplying an inert gas into the vacuum vessel An inspection apparatus for a nuclear reactor, comprising a gas replacement control mechanism capable of switching and controlling the exhaust of gas in the vacuum vessel and the supply of inert gas. 前記筒状密閉容器は、燃料集合体等の検査対象物の長手方向に昇降自在に設けられ、
前記筒状密閉容器の昇降により、レーザ装置から出力されるパルスレーザ光の照射位置をレーザ光のパルス毎に又は複数のパルス毎に移動させ、検査対象物の対象部位表面との水素濃度分析を長手方向に分析可能としたことを特徴とする請求項5に記載の原子炉の検査装置。
The cylindrical sealed container is provided so as to be movable up and down in the longitudinal direction of an inspection object such as a fuel assembly,
By moving the cylindrical airtight container up and down, the irradiation position of the pulsed laser beam output from the laser device is moved for each pulse of the laser beam or for each of a plurality of pulses, and the hydrogen concentration analysis with the target part surface of the inspection object is performed. The nuclear reactor inspection apparatus according to claim 5, wherein analysis is possible in a longitudinal direction.
前記筒状密閉容器は固定設置され、検査対象物の対象部位に照射されるパルスレーザ光の照射位置を固定し、パルスレーザ光の照射によって生成されたプラズマからの蛍光を、パルスレーザ光照射位置を変えずに連続して取得することにより、燃料集合体等の検査対象物の部材深さ方向の水素濃度分布を分析可能としたことを特徴とする原子炉の検査装置。 The cylindrical airtight container is fixedly installed, the irradiation position of the pulse laser light irradiated to the target part of the inspection object is fixed, and the fluorescence from the plasma generated by the irradiation of the pulse laser light is changed to the pulse laser light irradiation position. A reactor inspection apparatus characterized by being able to analyze a hydrogen concentration distribution in a member depth direction of an inspection object such as a fuel assembly by continuously acquiring the same without changing the above. 前記分光手段は、検査対象物の対象部位に照射されたパルスレーザ光により生成されたプラズマの発光から水素固有の波長の蛍光を区別する蛍光分光部と、水素固有の波長とその蛍光の強度を検出する蛍光検出部とを有する請求項5に記載の原子炉の検査装置。 The spectroscopic means includes a fluorescence spectroscopic unit for distinguishing fluorescence having a wavelength unique to hydrogen from light emission of plasma generated by pulsed laser light applied to a target site of an inspection object, and a wavelength unique to hydrogen and the intensity of the fluorescence. The nuclear reactor inspection apparatus according to claim 5, further comprising: a fluorescence detection unit that detects the fluorescence detection unit. チャンネルボックス内に複数の燃料棒を収容し、内部を冷却材が通過するように配置された複数の燃料集合体と、この燃料集合体間の空間に長手方向に移動可能に配置された制御棒とを有し、前記燃料集合体等の検査対象物の部材の水素濃度を分析する原子炉の検査方法において、
前記原子炉の定期検査時に、前記検査対象物の部材の水素濃度を、レーザプラズマ分光法により非破壊にて分析することを特徴とする原子炉の検査方法。
A plurality of fuel assemblies that contain a plurality of fuel rods in a channel box and through which a coolant passes, and control rods that are arranged to be movable in the longitudinal direction in a space between the fuel assemblies. And a nuclear reactor inspection method for analyzing a hydrogen concentration of a member of an inspection target such as the fuel assembly,
A method of inspecting a nuclear reactor, wherein the hydrogen concentration of a member of the inspection object is analyzed nondestructively by laser plasma spectroscopy at the time of periodic inspection of the nuclear reactor.
レーザ装置から出力されるパルスレーザ光を検査対象物の部材表面に集光照射させ、
照射されたパルスレーザ光のエネルギーにより検査対象物の元素を含むプラズマを生成し、
生成されたプラズマからの発光する蛍光の波長とその光強度を分析することにより、検査対象物の元素組成を分析するレーザプラズマ分光法を用いて、前記検査対象物の水素濃度を分析することを特徴とする請求項11に記載の原子炉の検査方法。
Condensing and irradiating the surface of a member to be inspected with pulsed laser light output from a laser device,
Generate plasma containing the elements of the object to be inspected by the energy of the irradiated pulsed laser beam,
Analyzing the wavelength of fluorescence emitted from the generated plasma and the light intensity thereof, and analyzing the hydrogen concentration of the inspection object using laser plasma spectroscopy for analyzing the elemental composition of the inspection object. The method for inspecting a nuclear reactor according to claim 11, wherein the nuclear reactor is inspected.
前記レーザプラズマ分光法で使用されるパルスレーザ光の照射位置をパルス毎に、または複数のパルス毎に検査対象物の長手方向に移動させ、前記検査対象物の対象部位表面上の水素濃度分布を分析することを特徴とする請求項12に記載の原子炉の検査方法。 The irradiation position of the pulsed laser beam used in the laser plasma spectroscopy is moved in the longitudinal direction of the inspection object for each pulse or for each of a plurality of pulses, and the hydrogen concentration distribution on the surface of the target part of the inspection object is determined. The method for inspecting a nuclear reactor according to claim 12, wherein analysis is performed. 前記レーザプラズマ分光法で使用されるパルスレーザ光の照射位置を変えずに、パルス毎に連続して取得することにより、パルスレーザ光の照射により検査対象物の部材表面が薄く削れていくことに伴い、検査対象物の部材の深さ方向の水素濃度分布を分析することを特徴とする請求項12に記載の原子炉の検査方法。 By continuously acquiring each pulse without changing the irradiation position of the pulse laser beam used in the laser plasma spectroscopy, the surface of the member of the inspection object is thinly cut by the irradiation of the pulse laser beam. Accordingly, the hydrogen concentration distribution in the depth direction of the member of the inspection object is analyzed. 前記検査対象物の部材表面の周辺に気密空間を形成可能な真空容器を設け、上記真空容器内に供給される不活性ガスをヘリウムまたはアルゴンガスとすることを特徴とする請求項12に記載の原子炉の検査方法。 The vacuum container which can form an airtight space around the member surface of the inspection object is provided, and the inert gas supplied into the vacuum container is helium or argon gas. Reactor inspection method. 前記検査対象物の部材表面にパルスレーザ光を集光照射させて生成されるプラズマにより発生する水素固有の波長の蛍光だけでなく、ジルコニウム、鉄、クロムおよび酸素のうち少なくとも1つの元素の固有波長の蛍光を蛍光検出部で検出可能とする請求項12に記載の原子炉の検査方法。 Not only the fluorescence having a wavelength unique to hydrogen generated by plasma generated by condensing and irradiating the surface of a member of the inspection object with pulsed laser light, but also the intrinsic wavelength of at least one element of zirconium, iron, chromium, and oxygen The method for inspecting a nuclear reactor according to claim 12, wherein the fluorescence can be detected by a fluorescence detection unit.
JP2005341112A 2005-11-25 2005-11-25 Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof Expired - Fee Related JP5184746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341112A JP5184746B2 (en) 2005-11-25 2005-11-25 Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341112A JP5184746B2 (en) 2005-11-25 2005-11-25 Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof

Publications (3)

Publication Number Publication Date
JP2007147397A true JP2007147397A (en) 2007-06-14
JP2007147397A5 JP2007147397A5 (en) 2008-06-19
JP5184746B2 JP5184746B2 (en) 2013-04-17

Family

ID=38208975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341112A Expired - Fee Related JP5184746B2 (en) 2005-11-25 2005-11-25 Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof

Country Status (1)

Country Link
JP (1) JP5184746B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524010A (en) * 2008-06-09 2011-08-25 ウェスティングハウス エレクトリック スウェーデン アーベー A method involving measurements on fuel channels of a boiling water reactor fuel assembly
RU2531342C1 (en) * 2013-03-22 2014-10-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Method to assess extent of embrittlement of materials of vver-1000 reactor vessels caused by thermal ageing
CN107887042A (en) * 2017-10-10 2018-04-06 岭东核电有限公司 A kind of fuel factory building hydrogen control experimental stand and fuel factory building hydrogen control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583889A (en) * 1978-12-15 1980-06-24 Westinghouse Electric Corp Method of deciding hydrogen content of reactor fuel pellet
JPS61245088A (en) * 1985-04-24 1986-10-31 日本核燃料開発株式会社 Method of treating spent nuclear fuel element
JPH03138259A (en) * 1989-10-24 1991-06-12 Toshiba Corp Image forming device
JPH0868731A (en) * 1994-08-29 1996-03-12 Hitachi Ltd Method and device for predicting life of plant structure
JPH11138259A (en) * 1997-11-07 1999-05-25 Mitsubishi Heavy Ind Ltd Underwater welding equipment
JP2002181795A (en) * 2000-12-11 2002-06-26 Nippon Nuclear Fuel Dev Co Ltd Measuring method for hydrogen concentration in radioactive material
JP2004191099A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Laser emission spectroscopic analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583889A (en) * 1978-12-15 1980-06-24 Westinghouse Electric Corp Method of deciding hydrogen content of reactor fuel pellet
JPS61245088A (en) * 1985-04-24 1986-10-31 日本核燃料開発株式会社 Method of treating spent nuclear fuel element
JPH03138259A (en) * 1989-10-24 1991-06-12 Toshiba Corp Image forming device
JPH0868731A (en) * 1994-08-29 1996-03-12 Hitachi Ltd Method and device for predicting life of plant structure
JPH11138259A (en) * 1997-11-07 1999-05-25 Mitsubishi Heavy Ind Ltd Underwater welding equipment
JP2002181795A (en) * 2000-12-11 2002-06-26 Nippon Nuclear Fuel Dev Co Ltd Measuring method for hydrogen concentration in radioactive material
JP2004191099A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Laser emission spectroscopic analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524010A (en) * 2008-06-09 2011-08-25 ウェスティングハウス エレクトリック スウェーデン アーベー A method involving measurements on fuel channels of a boiling water reactor fuel assembly
US8699654B2 (en) 2008-06-09 2014-04-15 Westinghouse Electric Sweden Ab Method comprising measurement on fuel channels of fuel assemblies for nuclear boiling water reactors
RU2531342C1 (en) * 2013-03-22 2014-10-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Method to assess extent of embrittlement of materials of vver-1000 reactor vessels caused by thermal ageing
CN107887042A (en) * 2017-10-10 2018-04-06 岭东核电有限公司 A kind of fuel factory building hydrogen control experimental stand and fuel factory building hydrogen control method
CN107887042B (en) * 2017-10-10 2020-01-24 岭东核电有限公司 Fuel plant hydrogen control experiment bench and fuel plant hydrogen control method

Also Published As

Publication number Publication date
JP5184746B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102253029B (en) Apparatus and method for measuring electron temperature of plasma in gas based on laser induction
KR101026236B1 (en) A reactor coolant leakage detection system and the method for the same by using the laser induced plasma spectra
JP2011089989A (en) Elemental composition detection system and method
JP5184746B2 (en) Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof
WO2011046148A1 (en) Non-destructive examination method and device
CN113820035A (en) Femtosecond laser filamentation remote non-contact temperature measuring device and measuring method
US5781602A (en) PGNAA system for non-invasively inspecting RPV weld metal in situ, to determine the presence and amount of trace embrittlement-enhancing element
KR20100076487A (en) Fuel rod scanner using the pulsed neutron generator
Gupta Laser applications in Indian nuclear power programme
JP5288471B2 (en) Apparatus and method for analyzing hydrogen of metal material
US5345478A (en) Method and device for non-destructive examination of a wall of a tank containing a radioactive liquid
Abolhassani et al. Toward an improved understanding of the mechanisms involved in the increased hydrogen uptake and corrosion at high burnups in zirconium based claddings
Woolstenhulme Status Report on Development of MARCH Module Designs
CN214097166U (en) Concrete corrosion state detection system
Harilal et al. Detection of tritium using ultrafast laser-induced breakdown spectroscopy
US5703371A (en) Modified notched energy filter neutron radiography camera for non-destructive determination of hydrogen content of irradiated BWR fuel elements
JP5445833B2 (en) Hydrogen analysis apparatus and method for solid materials
Freyer et al. Hot Cell Pulsed Laser Welding of Neutron Irradiated Type 304 Stainless Steel With a Maximum Damage Dose of 28 DPA
CN112461738A (en) Detection system and detection method for concrete corrosion state
JP2002372495A (en) Liquid quality analysis apparatus
KR102681192B1 (en) Apparatus for simulating liquid sodium environment for generating ultrasonic learning imgaes and method for generating ultrasonic learning imgaes using the same
JP4346464B2 (en) Leak detection device
Chen et al. Elemental Mapping and Shape Measurement by Integrating LIBS and Ultrasonic Technologies for Nuclear Fuel Debris Detection
Vaculovič et al. Determination of carbon in solidified sodium coolant using new ICP-OES methods
CN115274157A (en) Neutron photographic device and method applied to detection of damaged nuclear fuel assembly

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees