JPH0867885A - Cleaner for hydrocarbon fuel - Google Patents

Cleaner for hydrocarbon fuel

Info

Publication number
JPH0867885A
JPH0867885A JP20348094A JP20348094A JPH0867885A JP H0867885 A JPH0867885 A JP H0867885A JP 20348094 A JP20348094 A JP 20348094A JP 20348094 A JP20348094 A JP 20348094A JP H0867885 A JPH0867885 A JP H0867885A
Authority
JP
Japan
Prior art keywords
group
fuel
hydrocarbon
detergent
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20348094A
Other languages
Japanese (ja)
Inventor
Kuniaki Kaga
邦明 加賀
Koichi Igarashi
功一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afton Chemical Japan Corp
Original Assignee
Afton Chemical Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afton Chemical Japan Corp filed Critical Afton Chemical Japan Corp
Priority to JP20348094A priority Critical patent/JPH0867885A/en
Publication of JPH0867885A publication Critical patent/JPH0867885A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE: To obtain the subject cleaner useful for diesel engines, containing a specific lipophilic group and a basic nitrogen-containing cyclic group, having excellent cleaning action, capable of reducing an amount of the cleaner added, providing sufficiently water separating performance by the use of only a small amount of a demulsifier because of suppression of affinity for water. CONSTITUTION: A cleaner of the formula R-Ab -(Ch H2h NH)k (Cn H2n )-Y (R is a lipophilic group comprising a 35-720C hydrocarbon group; A is a bonding group of imido, amido, isocyano, ester or ether; Y is a basic nitrogen-containing cyclic group; (b) is 0 or 1; (h) and (n) are 1-5; (k) and (m) are 0-6). Y of the formula, for example, is a group of formula I [R<2> is a 1-40C (phenyl-substituted) alkyl; R<1> is H or R<2> ; B is a 1-10C alkylene; P is 0-10; Q is 0 or 1], a group of formula II or a group of formula III.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガソリン、ディーゼル
燃料、ジェット燃料、加熱油のような炭化水素燃料組成
物用の清浄剤、および清浄剤含有炭化水素燃料組成物の
技術分野におけるものである。
FIELD OF THE INVENTION This invention is in the technical field of detergents for hydrocarbon fuel compositions such as gasoline, diesel fuel, jet fuel, heating oil, and hydrocarbon fuel compositions containing detergents. .

【0002】[0002]

【従来の技術】炭化水素燃料組成物はこれらの燃料を用
いるエンジンや燃焼装置のいろいろな部分で沈着しやす
く、この沈着物は燃料と空気混合物の流れを妨げたり、
エンジンの効率を損なったりする。一般に清浄剤と呼ば
れる添加剤がこのような沈着物を減少させたり、あるい
は除去するのに使われる。たとえば自動車用ガソリン燃
料添加剤は、キャブレータ式エンジンあるいは燃料噴射
式エンジンにおいて、キャブレータや燃料注入ポートを
汚染する沈着物の生成を防止したり除去するのに使われ
ている。また、ディーゼルエンジンは、燃料噴射ポンプ
から送られる高圧燃料をノズルで霧化して燃焼室内に噴
射し、その燃料を自己着火させており、ノズルの機能と
しては、噴射ポンプの性能を最大限に引き出すととも
に、燃焼室内での燃焼特性を高め、エンジンの出力を高
めるとともに、排出ガスを清浄に保持する等の機能を発
揮することが望まれている。
BACKGROUND OF THE INVENTION Hydrocarbon fuel compositions are prone to deposits in various parts of engines and combustion systems that utilize these fuels, which deposits interfere with the flow of fuel and air mixtures,
It may reduce the efficiency of the engine. Additives, commonly referred to as detergents, are used to reduce or eliminate such deposits. For example, automotive gasoline fuel additives are used in carburetor or fuel injection engines to prevent or eliminate the formation of deposits that contaminate the carburetor and fuel injection ports. In addition, the diesel engine atomizes the high-pressure fuel sent from the fuel injection pump by the nozzle and injects it into the combustion chamber to self-ignite the fuel, and the function of the nozzle is to maximize the performance of the injection pump. At the same time, it is desired to improve the combustion characteristics in the combustion chamber, increase the output of the engine, and exert functions such as keeping exhaust gas clean.

【0003】燃料噴射用ノズルとして、ピントルノズル
やスロットルノズル等各種の形式のノズルが知られてい
る、ディーゼルエンジンでは、ノズルは燃焼室に配置さ
れているため、燃焼にともなう高温高圧の厳しい環境に
さらされ、ノズルの噴孔部に沈着物が付着し、その結果
燃料噴射に異常をきたす場合があった。すなわち、図1
は、スロットルノズルの噴孔部をしめす拡大図であっ
て、針弁1と針弁1を挿入した貫通孔2との間隔が開孔
面積となるが、この噴孔部は燃焼室に直接接しているた
めに、エンジンを継続して運転している間に、カーボン
質を主体とした沈着物が針弁1に生成する。このような
沈着物の量がある程度多くなると開孔面積が狭くなり、
その結果燃料噴射率に変化が生じるために、白煙が生じ
たり、出力が低下したり、さらにはノッキングが起き易
くなったりする等の各種の悪影響が生じるという問題が
あった。
Various types of nozzles such as pintle nozzles and throttle nozzles are known as fuel injection nozzles. In a diesel engine, since the nozzles are arranged in the combustion chamber, they are exposed to a severe environment of high temperature and high pressure accompanying combustion. When exposed, deposits adhered to the injection holes of the nozzles, resulting in abnormal fuel injection. That is, FIG.
FIG. 3 is an enlarged view showing the injection hole portion of the throttle nozzle. The opening area is the distance between the needle valve 1 and the through hole 2 into which the needle valve 1 is inserted, but this injection hole portion is in direct contact with the combustion chamber. Therefore, while the engine is continuously operated, a deposit mainly composed of carbon is generated on the needle valve 1. If the amount of such deposits increases to a certain extent, the area of the open holes will decrease,
As a result, the fuel injection rate changes, which causes various adverse effects such as white smoke, reduced output, and easier knocking.

【0004】一般に清浄剤と呼ばれる炭化水素燃料添加
剤が沈着物を減少させたり、あるいは除去するのに使わ
れているが、その化学構造としては、分子量100〜7
00程度の低分子量界面活性剤あるいは分子量700〜
10,000程度の高分子量界面活性剤に属する化合物
が用いられている。低分子量界面活性剤は、通常、10
0ppm以下の低添加量でノズルの沈着物の生成を防止
するが、沈着物を除去する能力はほとんどない。又強い
極性があるため、自動車エンジン部品の組立に用いられ
るシール材やベアリング等の各種材料を腐食させるおそ
れがある。高分子量界面活性剤は、ノズルの沈着物の生
成を防止し、また除去する能力を有するが、一般的に5
00〜5,000ppmの高添加量が必要となる。とく
に、ガソリン中に添加する場合には、未燃焼燃料中に含
まれる高分子量界面活性剤がエンジンオイル中に溶解し
濃縮していく結果、エンジンオイルの粘度を増加させ燃
費を低下させることが指摘されている。さらに、軽油に
高分子量界面活性剤を溶解させると、貯蔵中に空気中の
水分を燃料に溶解させ、高分子量界面活性剤の添加量が
少ない場合は軽油が曇りを生じ、多い場合はエマルジョ
ン相を生成し、フィルターを詰まらせたり金属部品を腐
食したりする問題があることが知られている。
Hydrocarbon fuel additives, commonly referred to as detergents, are used to reduce or remove deposits, with a chemical structure of molecular weight 100 to 7
Low molecular weight surfactant of about 00 or molecular weight 700-
A compound belonging to a high molecular weight surfactant of about 10,000 is used. The low molecular weight surfactant is usually 10
A low addition amount of 0 ppm or less prevents the formation of deposits in the nozzle, but has little ability to remove deposits. Further, since it has a strong polarity, it may corrode various materials such as seal materials and bearings used for assembling automobile engine parts. High molecular weight surfactants have the ability to prevent and remove nozzle deposit formation, but generally 5
A high addition amount of 00 to 5,000 ppm is required. In particular, when added to gasoline, it was pointed out that the high-molecular-weight surfactant contained in unburned fuel dissolves in engine oil and becomes concentrated, resulting in an increase in engine oil viscosity and a decrease in fuel consumption. Has been done. Furthermore, when a high molecular weight surfactant is dissolved in light oil, the water content in the air is dissolved in the fuel during storage, and when the amount of the high molecular weight surfactant added is low, the light oil becomes cloudy, and when it is high, the emulsion phase It is known that there is a problem in that it causes the clogging of the filter and the corrosion of metal parts.

【0005】燃料の水分離性能の低下を解決する方法と
して抗乳化剤の使用がある。しかしながら、抗乳化剤
は、燃料への溶解性が低いため、使用条件によっては燃
料が濁ったり、沈降して燃料フィルターを詰まらせエン
ジン始動不能になる恐れがあり、またエンジンオイル中
に混入するとすすの凝集をおこしオイルフィルターを詰
まらせエンジンの焼付きをおこす恐れがあるのでできる
だけ添加量を小さく制限することが望ましい。上記問題
点を解決するために、少ない添加量でも洗浄作用がすぐ
れ、抗乳化剤の添加量も低くすることができる高分子量
界面活性剤が望まれていた。
The use of demulsifiers is a method for solving the deterioration of the water separation performance of fuels. However, since the demulsifier has a low solubility in the fuel, the fuel may become muddy or sediment depending on the conditions of use, which may clog the fuel filter and cause the engine to be unable to start, and may be mixed in the engine oil. It is desirable to limit the addition amount as small as possible because it may cause agglomeration, clogging of the oil filter and seizure of the engine. In order to solve the above-mentioned problems, a high molecular weight surfactant which is excellent in cleaning action even with a small addition amount and which can reduce the addition amount of the demulsifier has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ディーゼル
エンジンに用いる燃料を始めとする炭化水素燃料に添加
する清浄剤において、炭化水素燃料への添加量が少なく
ても充分な洗浄作用が得られ、また水分離性能が高く、
抗乳化剤の使用量が少なくても良い炭化水素燃料用の清
浄剤の提供を課題とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a detergent to be added to a hydrocarbon fuel such as a fuel used in a diesel engine, and a sufficient cleaning action can be obtained even if the amount added to the hydrocarbon fuel is small. , High water separation performance,
It is an object of the present invention to provide a detergent for a hydrocarbon fuel which may use a small amount of demulsifier.

【0007】[0007]

【課題を解決するための手段】本発明は、下記一般式
(1)で表される親油基と炭化水素基を置換基として含
んでも良い塩基性含窒素環基を含有する炭化水素燃料用
の清浄剤である。一般式(1) R−Ab−(Ch2hNH)k(Cn2nm−Y (ただし、Rは炭素数35〜720の炭化水素基からな
る親油基、bは0または1、Aはイミド、アミド、イソ
シアノ、エステル、エーテルの各基から選ばれる連結
基、hおよびnは1〜5の整数、kおよびmは0〜6の
整数、Yは塩基性含窒素環基を示す。) また、塩基性含窒素環基が、下記式a)〜e)で示され
る置換基である前記の清浄剤である。
The present invention is for a hydrocarbon fuel containing a lipophilic group represented by the following general formula (1) and a basic nitrogen-containing cyclic group which may contain a hydrocarbon group as a substituent. It is a cleaning agent. Formula (1) R-A b - (C h H 2h NH) k (C n H 2n) m -Y ( wherein, R is a lipophilic group consisting of a hydrocarbon group having 35 to 720 carbon atoms, b is 0 Or 1, A is a linking group selected from imide, amide, isocyano, ester, and ether groups, h and n are integers from 1 to 5, k and m are integers from 0 to 6, and Y is a basic nitrogen-containing ring. And a basic nitrogen-containing cyclic group is a substituent represented by the following formulas a) to e).

【0008】[0008]

【化2】 Embedded image

【0009】(ただし、R1 は水素または、炭素数1〜
40のフェニル基で置換されてもよいアルキル基、R2
は炭素数1〜40のフェニル基で置換されてもよいアル
キル基、Pは0〜10の整数を示し、Bは炭素数1〜1
0のアルキレン基、Qは0又は1を示す。) また、前記した炭化水素燃料用清浄剤を含有した炭化水
素燃料組成物である。さらに、前記した炭化水素燃料用
清浄剤を添加した燃料油を使用することによるディーゼ
ルエンジンのノズルへの沈着物の形成を減少する方法で
ある。(ただし、R1 は水素または、炭素数1〜40の
フェニル基で置換されてもよいアルキル基、R2は炭素
数1〜40のフェニル基で置換されてもよいアルキル
基、Pは0〜10の整数を示し、Bは炭素数1〜10の
アルキレン基、Qは0又は1を示す。) また、前記した炭化水素燃料用清浄剤を含有した炭化水
素燃料組成物である。
(However, R 1 is hydrogen or 1 to 1 carbon atoms.
An alkyl group which may be substituted with a phenyl group of 40, R 2
Is an alkyl group which may be substituted with a phenyl group having 1 to 40 carbon atoms, P is an integer of 0 to 10, and B is 1 to 1 carbon atoms.
An alkylene group of 0 and Q is 0 or 1. ) Further, it is a hydrocarbon fuel composition containing the above-mentioned detergent for hydrocarbon fuel. Further, it is a method of reducing the formation of deposits on the nozzle of a diesel engine by using the fuel oil containing the above-mentioned hydrocarbon fuel detergent. (However, R 1 is hydrogen or an alkyl group which may be substituted with a phenyl group having 1 to 40 carbon atoms, R 2 is an alkyl group which may be substituted with a phenyl group having 1 to 40 carbon atoms, and P is 0 to 10 represents an integer of 10, B represents an alkylene group having 1 to 10 carbon atoms, and Q represents 0 or 1.) Further, the hydrocarbon fuel composition contains the above-mentioned detergent for hydrocarbon fuel.

【0010】すなわち、本発明者が鋭意研究を重ねたと
ころ、沈着物中には多種類の有機酸が含まれておりノズ
ル金属に吸着し、炭素質物質同士を結合している。高分
子量界面活性剤は、自身の官能基の塩基が沈着物の中の
有機酸との中和によりノズルを構成する金属と有機酸の
結合を切り離し、ノズルを洗浄していると考えられる。
そこで高分子量界面活性剤の官能基の塩基性を高めるこ
とによって有機酸との中和を低添加量でも達成できると
の推察のもとに各種の界面活性剤を合成し、性能評価を
行い、高分子量界面活性剤の官能基を塩基性含窒素環基
を少なくとも1つ以上有するものに変えた結果、従来か
ら用いられている清浄剤に比べて著しく清浄作用を向上
させることができ、清浄剤の添加量を低減することが可
能となった。 又、高分子量界面活性剤は極性を持つ官
能基と無極性の炭化水素基より構成されている。官能基
は、極性のある沈着物又はノズル表面の金属層と相互作
用し、炭化水素基は燃料に溶解し、沈着物を除去した
り、沈着物の原因化合物のノズル表面の金属層への吸着
を妨害する清浄剤の機能が生じると考えられる。
That is, the inventors of the present invention have conducted extensive studies and found that many kinds of organic acids are contained in the deposit and are adsorbed on the nozzle metal to bond the carbonaceous substances together. It is considered that the high molecular weight surfactant cleans the nozzle by separating the bond between the metal forming the nozzle and the organic acid by neutralizing the base of its own functional group with the organic acid in the deposit.
Therefore, various surfactants were synthesized based on the assumption that neutralization with an organic acid can be achieved even by adding a small amount by increasing the basicity of the functional group of the high-molecular-weight surfactant, and the performance is evaluated. As a result of changing the functional group of the high molecular weight surfactant to one having at least one basic nitrogen-containing cyclic group, the cleaning action can be remarkably improved as compared with the conventionally used detergents. It has become possible to reduce the addition amount of. The high molecular weight surfactant is composed of a polar functional group and a non-polar hydrocarbon group. The functional group interacts with the polar deposit or the metal layer on the nozzle surface, and the hydrocarbon group dissolves in the fuel to remove the deposit or adsorb the causative compound of the deposit to the metal layer on the nozzle surface. It is believed that a detergent function that interferes with

【0011】さらに、水は極性があり、無極性の炭化水
素である燃料とはそのままでは混合しないが、高分子量
界面活性剤からなる清浄剤を炭化水素燃料に添加すると
炭化水素燃料中の水の量が増加することとなる。これ
は、高分子量界面活性剤の親水性の官能基が、水分を燃
料に溶解させてしまうためであると考えられる。そこで
高分子量界面活性剤の親水性の官能基の近傍に炭化水素
基の立体障害を形成させることによって、水分子との相
互作用を弱めることができるとの推察のもとに合成およ
び性能評価をおこない、高分子量界面活性剤の親水性官
能基に隣接する炭素にアルキル基を結合した場合には、
炭化水素燃料の水分離性能が極めて改善され抗乳化剤の
添加量を低減することができる。
Further, water is polar and does not mix as it is with a fuel which is a non-polar hydrocarbon, but when a detergent comprising a high molecular weight surfactant is added to the hydrocarbon fuel, water in the hydrocarbon fuel is added. The amount will increase. It is considered that this is because the hydrophilic functional group of the high molecular weight surfactant dissolves water in the fuel. Therefore, the synthesis and performance evaluation were conducted based on the assumption that the interaction with water molecules can be weakened by forming a steric hindrance of the hydrocarbon group in the vicinity of the hydrophilic functional group of the high molecular weight surfactant. When an alkyl group is bonded to the carbon adjacent to the hydrophilic functional group of the high molecular weight surfactant,
The water separation performance of the hydrocarbon fuel is remarkably improved, and the addition amount of the demulsifier can be reduced.

【0012】本発明の炭化水素燃料用の清浄剤におい
て、親油基は炭素数35〜720の炭化水素基よりなる
ことが好ましく、ポリイソブテン、ポリプロピレン、ポ
リα−オレフィン、ポリアルキレンオキサイド、その他
炭化水素ポリマーを使用することができる。また、炭素
数は40〜300であることがより好ましく、このよう
な範囲の炭素数を有する親油基を用いることによって炭
化水素燃料への充分な溶解性を得ることができる。ま
た、顔基性含窒素環基と親油基の連結基としては、熱安
定性の高いイミド基であることが好ましく、とくに以下
のものが好ましい。
In the detergent for hydrocarbon fuel of the present invention, the lipophilic group is preferably a hydrocarbon group having a carbon number of 35 to 720, and polyisobutene, polypropylene, poly α-olefin, polyalkylene oxide and other hydrocarbons. Polymers can be used. The carbon number is more preferably 40 to 300, and sufficient solubility in hydrocarbon fuel can be obtained by using the lipophilic group having the carbon number in such a range. The linking group between the face-based nitrogen-containing cyclic group and the lipophilic group is preferably an imide group having high thermal stability, and the following groups are particularly preferable.

【0013】[0013]

【化3】 [Chemical 3]

【0014】また、連結基と塩基性含窒素環基の間に用
いる以下のポリアミンにおいて、 −(Ch2hNH)k(Cn2nm hおよびnは1〜5の整数、kおよびmは0〜6の整数
である。ポリアミンとしては、エチレンジアミン、プロ
ピレンジアミン、1,4−ブタンジアミン、ペンタメチ
レンジアミン、ヘキサメチレンジアミン、ジエチレント
リアミン、トリエチレンテトラミン、テトラエチレンペ
ンタミン、ペンタエチレンヘキサミン等が使用できる。
Further, in the following polyamine used during the linking group and a basic nitrogen-containing cyclic group, - (C h H 2h NH ) k (C n H 2n) m h and n is an integer of 1 to 5, k And m are integers from 0 to 6. As the polyamine, ethylenediamine, propylenediamine, 1,4-butanediamine, pentamethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and the like can be used.

【0015】さらに、塩基性含窒素環基としては、沈着
物と強く相互作用する性質が必要であり、塩基性の度合
いの強い第2級または第3級窒素を含有するものが好ま
しく、上記した式a)〜c)で示されるものが挙げられ
るが、とくに、塩基性含窒素環基内に塩基性窒素を2個
有するa)、b)は極めて強い塩基性を有し高い清浄性
能を示す。また、a)、b)、c)において、R2 が水
素または炭素数40以下のアルキル基であることが好ま
しく、水分離性能を高めるためには、とくに窒素原子に
隣接した炭素原子に結合した炭素数が15以下のアルキ
ル基であることが好ましい。窒素原子に隣接した炭素原
子に結合した炭素数が15以上のアルキル基は、水分離
性能に優れるが、塩基性窒素の立体障害が大きくなりす
ぎ親油性が高まる結果として、清浄性能が低下するので
好ましくない。
Further, the basic nitrogen-containing cyclic group is required to have a property of strongly interacting with a deposit, and a group containing secondary or tertiary nitrogen having a strong degree of basicity is preferable. Examples thereof include those represented by the formulas a) to c). In particular, a) and b) having two basic nitrogens in the basic nitrogen-containing cyclic group have extremely strong basicity and show high cleaning performance. . Further, in a), b) and c), R 2 is preferably hydrogen or an alkyl group having a carbon number of 40 or less, and in order to enhance the water separation performance, it is particularly bonded to a carbon atom adjacent to a nitrogen atom. It is preferably an alkyl group having 15 or less carbon atoms. An alkyl group having 15 or more carbon atoms bonded to a carbon atom adjacent to a nitrogen atom has excellent water separation performance, but since the steric hindrance of basic nitrogen becomes too large and lipophilicity increases, the cleaning performance deteriorates. Not preferable.

【0016】また、本願発明の炭化水素燃料用清浄剤
は、洗浄作用と分散作用の両方の作用を有する添加剤で
あり、清浄剤の燃料への添加量は50〜5,000pp
mであるが、水分離性能は、清浄剤の添加量が増加する
ほど、悪くなり、性能の高い抗乳化剤を高添加する必要
が生じる。また、自動車運転中にエンジン油へ未燃焼の
軽油が溶解する過程で、清浄剤がエンジン油に溶解し、
エンジン油の粘度が増大し、燃料消費量の増大が生じ
る。以上の理由から、清浄剤の燃料への添加量は少ない
方が良く、50〜500ppmが好ましい。また、本発
明の清浄剤は、ガソリン、ディーゼル燃料、ジェット燃
料、加熱油等の炭化水素からなる燃料組成物に適用する
ことができ、特に軽油に使用することが適している。
Further, the detergent for hydrocarbon fuel of the present invention is an additive having both washing action and dispersing action, and the amount of the detergent added to the fuel is 50 to 5,000 pp.
However, the water separation performance becomes worse as the amount of the detergent added increases, and it becomes necessary to add a high-performance demulsifier. In addition, the detergent dissolves in the engine oil during the process of unburned light oil dissolving in the engine oil during vehicle operation,
The viscosity of the engine oil increases and the fuel consumption increases. For the above reasons, the amount of the detergent added to the fuel is preferably as small as possible, and is preferably 50 to 500 ppm. Further, the detergent of the present invention can be applied to a fuel composition composed of hydrocarbons such as gasoline, diesel fuel, jet fuel, and heating oil, and is particularly suitable for use in light oil.

【0017】また、清浄剤は炭化水素燃料の調製の際に
溶解し清浄剤を含む燃料としても良いし、あるいは車等
の燃料タンクへの給油時に清浄剤をそのままあるいはジ
アルキルベンゼンあるいはトリアルキルベンゼンの混合
物である芳香族ナフサ溶剤(Shellsol A、S
hellsol AB)等の炭化水素溶剤によって希釈
したものを投入し混合溶解しても良い。清浄剤には、燃
料の性能を向上させる各種の添加剤と併用しても良く、
燃料が軽油である場合には、セタン価向上剤、抗乳化
剤、防錆剤、安定剤、酸化防止剤、燃焼性促進剤、潤滑
性向上剤、低温流動性向上剤、金属不活性剤、消泡剤、
消臭剤、染料等と共に使用されてよい。
The detergent may be a fuel that dissolves in the preparation of a hydrocarbon fuel and contains the detergent, or the detergent may be used as it is or at the time of refueling a fuel tank of a vehicle or the like, or a mixture of dialkylbenzene or trialkylbenzene. Aromatic naphtha solvent (Shellsol A, S
It is also possible to add and dilute by mixing with a hydrocarbon solvent such as "hellsol AB)". The detergent may be used in combination with various additives that improve fuel performance,
When the fuel is light oil, a cetane number improver, demulsifier, rust preventive, stabilizer, antioxidant, flammability promoter, lubricity improver, low temperature fluidity improver, metal deactivator, deodorant Foam,
It may be used with deodorants, dyes and the like.

【0018】[0018]

【作用】本発明の炭化水素燃料用の清浄剤は、沈着物を
構成する炭素質物質を結合させている有機酸を、高分子
量界面活性剤の官能基の塩基性を高めることによって少
ない低添加量でも有効に中和をし、沈着物の除去し、ま
た極性を持つ官能基と無極性の炭化水素基より構成され
ているので、沈着物又はノズル表面の金属層と相互作用
し、炭化水素基は燃料に溶解し、沈着物を除去したり、
沈着物の原因化合物のノズル表面の金属層への吸着を妨
害し、さらに、親水性の官能基の近傍に炭化水素基の立
体障害を形成させることによって、水分子との相互作用
を弱めて水との親和性を抑制したので、少量の抗乳化剤
の使用のみで充分な性能が得られ、従来から用いられて
いる清浄剤に比べて著しく清浄作用を向上させることで
き、清浄剤およびその他の添加剤の添加量を低減するこ
とが可能となった。
The detergent for hydrocarbon fuels of the present invention has a small addition of an organic acid having a carbonaceous substance constituting a deposit bound thereto by increasing the basicity of the functional group of the high molecular weight surfactant. Effectively neutralizes even the amount, removes deposits, and because it is composed of polar functional groups and non-polar hydrocarbon groups, it interacts with deposits or the metal layer on the nozzle surface The base dissolves in the fuel to remove deposits,
It interferes with the adsorption of the causative compound of deposits to the metal layer on the nozzle surface, and also causes the steric hindrance of the hydrocarbon group in the vicinity of the hydrophilic functional group to weaken the interaction with water molecules. Since it has suppressed the affinity with, it is possible to obtain sufficient performance by using a small amount of demulsifier, and it is possible to significantly improve the cleaning action compared with the conventional detergents. It has become possible to reduce the amount of agent added.

【0019】[0019]

【実施例】以下に本発明の実施例を示し本発明をさらに
詳細に説明する。 (化合物の合成例) 合成例1 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、N
−(2−アミノエチル)ピペラジン40.8gを1時間
かけて滴下した。次に同温度で3mmHgまで減圧し、
生成水を除去しながら2時間反応させて下記構造式の化
合物を得た。生成物の同定は、赤外分光光度法によって
行った。すなわち、原料アルケニル酸無水物は、赤外ス
ペクトルの1790cm-1、1870cm-1に強い吸収
を示すが、アミンと反応し、イミドを形成の結果、17
90cm-1、1870cm-1の吸収は消失し、代わりに
イミドの吸収が1710cm-1、1780cm-1に表れ
た。また、イミド形成時、等モルの水が脱水するので、
生成した水を回収することによって反応を確認すること
ができる。この化合物の分析性状は、窒素2.9重量
%、全塩基価(過塩素酸法)36であり、下記化合物の
理論値と一致することによって、生成物の確認を行っ
た。また、動粘度(100℃)811cStであった。
EXAMPLES The present invention will be described in more detail below by showing Examples of the present invention. (Synthesis Example of Compound) Synthesis Example 1 A 2-liter four-necked flask equipped with a mechanical stirrer, a cooler, a thermometer, and a dropping funnel was placed in an average molecular weight of 900
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added and the temperature was raised to 165 ° C. with stirring, and N
40.8 g of-(2-aminoethyl) piperazine was added dropwise over 1 hour. Next, reduce the pressure to 3 mmHg at the same temperature,
The reaction was carried out for 2 hours while removing the produced water to obtain a compound having the following structural formula. The product was identified by infrared spectrophotometry. That is, raw alkenyl anhydride, 1790 cm -1 of the infrared spectrum shows a strong absorption at 1870cm -1, reacted with an amine, as a result of forming an imide, 17
90cm -1, absorption of 1870cm -1 disappeared and instead the absorption of imide appeared 1710 cm -1, the 1780 cm -1. In addition, since the equimolar water is dehydrated during imide formation,
The reaction can be confirmed by collecting the produced water. The analytical properties of this compound were 2.9% by weight of nitrogen and total base number (perchloric acid method) 36, and the product was confirmed by agreement with the theoretical values of the following compounds. The kinematic viscosity (100 ° C.) was 811 cSt.

【0020】[0020]

【化4】 [Chemical 4]

【0021】合成例2 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン32.6gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水を除去
しながら1時間反応後、70℃に冷却し常圧に戻した
後、n−ブチルアルデヒド22.8gを滴下し30分撹
拌後、100℃2時間撹拌後、120℃で3mmHgま
で減圧し、生成水を除去しながら2時間反応させ下記構
造式の化合物を得た。原料アルデヒドの赤外スペクトル
の1725cm-1、2740cm-1、2855cm-1
の強い吸収が、アミンとの反応によって環を形成の結
果、これらのスペクトルが消失することによって反応の
完了を確認した。この化合物の分析性状は、窒素2.4
重量%、全塩基価(過塩素酸法)50であり、下記化合
物の理論値と一致することによって、生成物の確認を行
った。また、動粘度(100℃)1343cStであっ
た。
Synthesis Example 2 Average molecular weight of 900 in a 2-liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel.
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 32.6 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and after reacting for 1 hour while removing generated water, the temperature was cooled to 70 ° C. and returned to normal pressure, 22.8 g of n-butyraldehyde was added dropwise, and after stirring for 30 minutes, 100 ° C. After stirring for 2 hours, the pressure was reduced to 3 mmHg at 120 ° C., and the reaction was performed for 2 hours while removing generated water to obtain a compound having the following structural formula. The infrared spectrum of the starting aldehyde 1725cm -1, 2740cm -1, strong absorption at 2855cm -1 is the reaction results in a ring by the amine and was completed by these spectra are lost. The analytical properties of this compound are:
The product was confirmed by having a weight% and a total base number (perchloric acid method) of 50, which were in agreement with the theoretical values of the following compounds. The kinematic viscosity (100 ° C.) was 1343 cSt.

【0022】[0022]

【化5】 [Chemical 5]

【0023】合成例3 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、テ
トラエチレンペンタミン59.7gを1時間かけて滴下
した。次に同温度で3mmHgまで減圧し、生成水を除
去しながら1時間反応後、70℃に冷却し常圧に戻した
後、n−ブチルアルデヒド22.8gを滴下し30分撹
拌後、100℃2時間撹拌後、120℃で3mmHgま
で減圧し、生成水を除去しながら2時間反応させ下記構
造式の化合物を得た。合成例2と同様に赤外分光測定で
反応の完了を確認した。
Synthesis Example 3 In a 2 liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel, an average molecular weight of 900
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 59.7 g of tetraethylenepentamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and after reacting for 1 hour while removing generated water, the temperature was cooled to 70 ° C. and returned to normal pressure, 22.8 g of n-butyraldehyde was added dropwise, and after stirring for 30 minutes, 100 ° C. After stirring for 2 hours, the pressure was reduced to 3 mmHg at 120 ° C., and the reaction was performed for 2 hours while removing generated water to obtain a compound having the following structural formula. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2.

【0024】この化合物の分析性状は、窒素4.4重量
%、全塩基価(過塩素酸法)120であり、下記化合物
の理論値と一致することによって、生成物の確認を行っ
た。また、動粘度(100℃)1317cStであっ
た。
The analytical properties of this compound were 4.4% by weight nitrogen and 120 in total base number (perchloric acid method), and the product was confirmed by agreement with the theoretical values of the following compounds. The kinematic viscosity (100 ° C.) was 1317 cSt.

【0025】[0025]

【化6】 [Chemical 6]

【0026】合成例4 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン26.1gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水を除去
しながら1時間反応後、40℃に冷却し常圧に戻した
後、n−プロピオンアルデヒド14.8gを滴下し30
分撹拌後、さらに100℃2時間撹拌後、120℃で3
mmHgまで減圧し、生成水を除去しながら1時間反応
後、下記構造式の化合物を得た。合成例2と同様に赤外
分光測定で反応の完了を確認した。この化合物の分析性
状は、窒素2.4重量%、全塩基価(過塩素酸法)50
であり、下記化合物の理論値と一致することによって、
生成物の確認を行った。また、動粘度(100℃)14
93cStであった。
Synthesis Example 4 Average molecular weight of 900 in a 2-liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel.
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 26.1 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, the reaction was carried out for 1 hour while removing generated water, the temperature was returned to normal pressure by cooling to 40 ° C., and 14.8 g of n-propionaldehyde was added dropwise 30
After stirring for a minute, and then at 100 ° C for 2 hours, then at 120 ° C for 3
After reducing the pressure to mmHg and reacting for 1 hour while removing the produced water, a compound having the following structural formula was obtained. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2. The analytical properties of this compound are as follows: nitrogen 2.4% by weight, total base number (perchloric acid method) 50
And by agreeing with the theoretical value of the following compound,
The product was confirmed. The kinematic viscosity (100 ° C) 14
It was 93 cSt.

【0027】[0027]

【化7】 [Chemical 7]

【0028】合成例5 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン26.1gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水を除去
しながら1時間反応後、50℃に冷却し常圧に戻した
後、イソブチルアルデヒド18.4gを滴下し30分撹
拌後、100℃2時間撹拌後、120℃で3mmHgま
で減圧し、生成水を除去しながら1時間反応後、下記構
造式の化合物を得た。合成例2と同様に赤外分光測定で
反応の完了を確認した。この化合物の分析性状は、窒素
2.3重量%、全塩基価(過塩素酸法)50であり、下
記化合物の理論値と一致することによって、生成物の確
認を行った。また、動粘度(100℃)1490cSt
であった。
Synthesis Example 5 Average molecular weight of 900 in a 2-liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel.
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 26.1 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, the reaction was carried out for 1 hour while removing the produced water, the temperature was cooled to 50 ° C. and the pressure was returned to normal pressure, 18.4 g of isobutyraldehyde was added dropwise, and after stirring for 30 minutes, 100 ° C. for 2 hours. After stirring, the pressure was reduced to 3 mmHg at 120 ° C., and the reaction was carried out for 1 hour while removing the produced water to obtain a compound having the following structural formula. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2. The analytical properties of this compound were 2.3% by weight nitrogen and total base number (perchloric acid method) of 50, and the product was confirmed by agreement with the theoretical values of the following compounds. Also, kinematic viscosity (100 ° C.) 1490 cSt
Met.

【0029】[0029]

【化8】 Embedded image

【0030】合成例6 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン26.1gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水をパー
ジさせながら1時間反応後、70℃に冷却し常圧に戻し
た後、2−エチルヘキシルアルデヒド32.4gを滴下
し30分撹拌後、さらに100℃2時間撹拌後、120
℃で3mmHgまで減圧し、生成水を除去しながら1時
間反応後、下記構造式の化合物を得た。合成例2と同様
に赤外分光測定で反応の完了を確認した。この化合物の
分析性状は、窒素2.3重量%、全塩基価(過塩素酸
法)50であり、下記化合物の理論値と一致することに
よって、生成物の確認を行った。また、動粘度(100
℃)865cStであった。
Synthesis Example 6 Average molecular weight of 900 in a 2-liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel.
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 26.1 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and after reacting for 1 hour while purging generated water, the temperature was cooled to 70 ° C. and returned to normal pressure, 32.4 g of 2-ethylhexylaldehyde was added dropwise, and the mixture was stirred for 30 minutes and further 100 minutes. After stirring at ℃ for 2 hours, 120
The pressure was reduced to 3 mmHg at ℃, and after reacting for 1 hour while removing the produced water, a compound of the following structural formula was obtained. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2. The analytical properties of this compound were 2.3% by weight nitrogen and total base number (perchloric acid method) of 50, and the product was confirmed by agreement with the theoretical values of the following compounds. The kinematic viscosity (100
C.) 865 cSt.

【0031】[0031]

【化9】 [Chemical 9]

【0032】合成例7 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン26.1gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水を除去
しながら1時間反応後、70℃に冷却し常圧に戻した
後、2−フェニルプロピオンアルデヒド34.0gを滴
下し30分撹拌後、100℃2時間撹拌後、120℃で
3mmHgまで減圧し、生成水を除去しながら1時間反
応後、下記構造式の化合物を得た。合成例2と同様に赤
外分光測定で反応の完了を確認した。この化合物の分析
性状は、窒素2.3重量%、全塩基価(過塩素酸法)5
0であり、下記化合物の理論値と一致することによっ
て、生成物の確認を行った。また、動粘度(100℃)
1358cStであった。
Synthesis Example 7 In a 2 liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel, an average molecular weight of 900
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 26.1 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and after reacting for 1 hour while removing generated water, the temperature was returned to 70 ° C. and returned to normal pressure, 34.0 g of 2-phenylpropionaldehyde was added dropwise, and after stirring for 30 minutes, 100 After stirring at 2 ° C. for 2 hours, the pressure was reduced to 3 mmHg at 120 ° C., and after reacting for 1 hour while removing generated water, a compound having the following structural formula was obtained. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2. The analytical properties of this compound are: nitrogen 2.3% by weight, total base number (perchloric acid method) 5
It was 0, and the product was confirmed by agreement with the theoretical value of the following compound. Also, kinematic viscosity (100 ° C)
It was 1358 cSt.

【0033】[0033]

【化10】 [Chemical 10]

【0034】合成例8 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら165℃に昇温し、ジ
エチレントリアミン26.1gを1時間かけて滴下し
た。次に同温度で3mmHgまで減圧し、生成水を除去
しながら1時間反応後、70℃に冷却し常圧に戻した
後、3−ペンタノン21.8gを滴下し30分撹拌後、
さらに100℃2時間撹拌後、120℃で3mmHgま
で減圧し、生成水を除去しながら1時間反応後、下記構
造式の化合物を得た。合成例2と同様に赤外分光測定で
反応の完了を確認した。この化合物の分析性状は、窒素
2.4重量%、全塩基価(過塩素酸法)50であり、下
記化合物の理論値と一致することによって、生成物の確
認を行った。また、動粘度(100℃)1536cSt
であった。
Synthesis Example 8 Average molecular weight of 900 in a 2-liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel.
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, the temperature was raised to 165 ° C. with stirring, and 26.1 g of diethylenetriamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and after reacting for 1 hour while removing generated water, the mixture was cooled to 70 ° C. and returned to normal pressure, 21.8 g of 3-pentanone was added dropwise, and after stirring for 30 minutes,
After further stirring at 100 ° C. for 2 hours, the pressure was reduced to 3 mmHg at 120 ° C., and the reaction was carried out for 1 hour while removing generated water to obtain a compound having the following structural formula. The completion of the reaction was confirmed by infrared spectroscopy as in Synthesis Example 2. The analytical properties of this compound were 2.4% by weight of nitrogen and total base number (perchloric acid method) of 50, and the product was confirmed by agreement with the theoretical values of the following compounds. Also, kinematic viscosity (100 ° C.) 1536 cSt
Met.

【0035】[0035]

【化11】 [Chemical 11]

【0036】合成例9 機械的撹拌機、冷却器、温度計、及び滴下漏斗を取り付
けた2リットルの4つ口フラスコに、平均分子量900
のポリイソブテニル基を有するアルケニルコハク酸無水
物400gを入れ、撹拌しながら100℃に昇温し、2
−アミノメチルピペリジン35.6gを1時間かけて滴
下した。次に同温度で1時間攪拌後、165℃に昇温
後、3mmHgまで減圧し、生成水を除去しながら2時
間反応し、下記構造式の化合物を得た。先の合成例と同
様に赤外分光測定で反応の完了を確認した。この化合物
の分析性状は、窒素2.0重量%、全塩基価(過塩素酸
法)39であり、下記化合物の理論値と一致することに
よって、生成物の確認を行った。また、動粘度(100
℃)790cStであった。
Synthesis Example 9 In a 2 liter four-necked flask equipped with a mechanical stirrer, condenser, thermometer, and dropping funnel, an average molecular weight of 900
400 g of alkenyl succinic anhydride having a polyisobutenyl group was added, and the temperature was raised to 100 ° C. with stirring, and 2
-35.6 g of aminomethylpiperidine was added dropwise over 1 hour. Next, after stirring at the same temperature for 1 hour, the temperature was raised to 165 ° C., the pressure was reduced to 3 mmHg, and the reaction was performed for 2 hours while removing generated water to obtain a compound having the following structural formula. The completion of the reaction was confirmed by infrared spectroscopy as in the previous synthesis example. The analytical properties of this compound were 2.0% by weight of nitrogen and total base number (perchloric acid method) 39, and the product was confirmed by agreement with the theoretical values of the following compounds. The kinematic viscosity (100
C.) 790 cSt.

【0037】[0037]

【化12】 [Chemical 12]

【0038】比較合成例1 機械的撹拌機、冷却器、温度 計、及び滴下漏斗を取り付けた2リットルの4つ口フラ
スコに、平均分子量900のポリイソブテニル基を有す
るアルケニルコハク酸無水物400gを入れ、撹拌しな
がら165℃に昇温し、ジエチレントリアミン32.6
gを1時間かけて滴下した。次に同温度で3mmHgま
で減圧し、生成水を除去しながら2時間反応後、下記構
造式の化合物を得た。赤外分光測定で反応の完了を確認
した。この化合物の分析性状は、窒素2.6重量%、全
塩基価(過塩素酸法)50であり、下記化合物の理論値
と一致することによって、生成物の確認を行った。ま
た、動粘度(100℃)1343cStであった。
Comparative Synthesis Example 1 400 g of an alkenylsuccinic anhydride having a polyisobutenyl group having an average molecular weight of 900 was placed in a 2-liter four-necked flask equipped with a mechanical stirrer, a condenser, a thermometer, and a dropping funnel. The temperature was raised to 165 ° C. with stirring, and diethylenetriamine 32.6 was added.
g was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, the reaction was carried out for 2 hours while removing the produced water, and a compound having the following structural formula was obtained. Completion of the reaction was confirmed by infrared spectroscopy. The analytical properties of this compound were 2.6% by weight nitrogen and a total base number (perchloric acid method) of 50, and the product was confirmed by matching the theoretical values of the following compounds. The kinematic viscosity (100 ° C.) was 1343 cSt.

【0039】[0039]

【化13】 [Chemical 13]

【0040】比較合成例2 機械的撹拌機、冷却器、温度計、及び滴下漏斗を2リッ
トルの4つ口フラスコに平均分子量900のポリイソブ
テニル基を有するアルケニルコハク酸無水物400gを
入れ、撹拌しながら165℃に昇温し、テトラエチレン
ペンタミン59.7gを1時間かけて滴下した。次に同
温度で3mmHgまで減圧し、生成水を除去しながら1
時間反応後、下記構造式の化合物を得た。赤外分光測定
で反応の完了を確認した。この化合物の分析性状は、窒
素4.5重量%、全塩基価(過塩素酸法)120であ
り、下記化合物の理論値と一致することによって、生成
物の確認を行った。また、動粘度(100℃)2233
cStであった。
Comparative Synthesis Example 2 400 g of alkenyl succinic anhydride having a polyisobutenyl group having an average molecular weight of 900 was placed in a 2-liter four-necked flask equipped with a mechanical stirrer, a condenser, a thermometer, and a dropping funnel, and stirred. The temperature was raised to 165 ° C., and 59.7 g of tetraethylenepentamine was added dropwise over 1 hour. Next, the pressure was reduced to 3 mmHg at the same temperature, and while removing the generated water, 1
After the reaction for time, a compound having the following structural formula was obtained. Completion of the reaction was confirmed by infrared spectroscopy. The analytical properties of this compound were nitrogen 4.5% by weight and total base number (perchloric acid method) 120, and the product was confirmed by matching the theoretical values of the following compounds. Also, kinematic viscosity (100 ° C) 2233
It was cSt.

【0041】[0041]

【化14】 Embedded image

【0042】比較合成例3 機械的撹拌機、冷却器、温度計、及び滴下漏斗を2リッ
トルの4つ口フラスコに平均分子量900のポリイソブ
テニル基を有するアルケニルコハク酸無水物400gを
入れ、撹拌しながら100℃に昇温し、エチレンジアミ
ン19.0gを1時間かけて滴下した。次に同温度で1
時間攪拌し、165℃に昇温後、3mmHgまで減圧
し、生成水を除去しながら2時間反応後、下記構造式の
化合物を得た。赤外分光測定で反応の完了を確認した。
この化合物の分析性状は、窒素2.0重量%、全塩基価
(過塩素酸法)40であり、下記化合物の理論値と一致
することによって、生成物の確認を行った。また、動粘
度(100℃)1595cStであった。
Comparative Synthesis Example 3 400 g of alkenyl succinic anhydride having a polyisobutenyl group having an average molecular weight of 900 was placed in a 2-liter four-necked flask equipped with a mechanical stirrer, a condenser, a thermometer, and a dropping funnel, and stirred. The temperature was raised to 100 ° C., and 19.0 g of ethylenediamine was added dropwise over 1 hour. Then 1 at the same temperature
After stirring for 1 hour, the temperature was raised to 165 ° C., the pressure was reduced to 3 mmHg, and the reaction was carried out for 2 hours while removing the produced water to obtain the compound of the following structural formula. Completion of the reaction was confirmed by infrared spectroscopy.
The analytical properties of this compound were 2.0% by weight of nitrogen and total base number (perchloric acid method) of 40, and the product was confirmed by matching the theoretical values of the following compounds. The kinematic viscosity (100 ° C.) was 1595 cSt.

【0043】[0043]

【化15】 [Chemical 15]

【0044】実施例1 本発明の化合物および比較化合物の合成例で得られた化
合物を、取り扱いを容易にするために、60℃で50重
量部の芳香族ナフサ溶剤(ShellsolA)と混合
し、均一になるまで撹拌した。その後、軽油中に600
重量ppm溶解し、その軽油を燃料としてスロットルノ
ズルを具備するディーゼルエンジンを2400rpm、
トルク12.5kg・mで18時間運転した。運転終了
後、各スロットルノズルの汚れ具合を針弁を0.05m
mから0.50mmまで引き上げた時の噴孔流量ml/
分を0.5kg/cm2 の空気を用いて測定し、図2
で、測定結果を説明するように、縦軸に針弁の引き上げ
距離、横軸に噴孔流量をプロットし、0.05mmから
0.50mmまでのグラフ面積を試験開始前のノズルの
グラフ面積を100%として計算した。つまり、試験後
のノズルの汚れが試験前と同様ならば、100%、完全
に汚れて詰まった場合は0%である。結果を表1に示
す。
Example 1 The compounds obtained in the synthesis examples of the compound of the present invention and the comparative compound were mixed with 50 parts by weight of an aromatic naphtha solvent (Shellsol A) at 60 ° C. for easy handling, and homogenized. It was stirred until. Then 600 in light oil
2400 rpm for a diesel engine equipped with a throttle nozzle that dissolves by weight ppm and uses the light oil as fuel.
It was operated for 18 hours at a torque of 12.5 kg · m. After the operation is completed, check the degree of contamination of each throttle nozzle with a needle valve of 0.05 m.
injection hole flow rate ml /
Minutes were measured using 0.5 kg / cm 2 of air,
In order to explain the measurement results, plot the needle valve pull-up distance on the vertical axis and the nozzle hole flow rate on the horizontal axis, and plot the graph area from 0.05 mm to 0.50 mm to the graph area of the nozzle before starting the test. Calculated as 100%. That is, if the stain on the nozzle after the test is similar to that before the test, it is 100%, and if it is completely soiled and clogged, it is 0%. The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】比較合成例1、2に比較して合成例1〜8
は明らかにノズルの清浄性能がすぐれており、試験開始
前とほとんど同様の清浄度を保っていた。また、実施例
9は、有効塩基性窒素が分子中に1個のみのため、清浄
性能は合成例1〜8より低いが、同様に有効塩基性窒素
を分子中に1個有する比較合成例3より優れた清浄性能
を示した。
Comparative Synthesis Examples 1 to 8 as compared with Comparative Synthesis Examples 1 and 2
Clearly had excellent nozzle cleaning performance, and maintained almost the same cleanliness as before the start of the test. In addition, since Example 9 has only one effective basic nitrogen in the molecule, the cleaning performance is lower than that of Synthesis Examples 1 to 8, but similarly, Comparative Synthesis Example 3 having one effective basic nitrogen in the molecule. It showed better cleaning performance.

【0047】実施例2 清浄剤の添加量を変えた点を除き実施例1と同様に清浄
作用を調べ、その結果表2に示す。
Example 2 The cleaning action was examined in the same manner as in Example 1 except that the amount of detergent added was changed, and the results are shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】各添加量で比較合成例2に対し合成例1及
び3の清浄性能は優れており、特に合成例1の清浄剤は
150ppm以下でもすぐれた清浄性能を示していた。
At each addition amount, the cleaning performance of Synthesis Examples 1 and 3 was superior to that of Comparative Synthesis Example 2, and in particular, the cleaning agent of Synthesis Example 1 showed excellent cleaning performance even at 150 ppm or less.

【0050】実施例3(水分離性能1) 燃料の水分離性能はJIS K2276に規定する水溶
解度試験方法に準じ、より定量的に性能比較するため、
試験後の水相、乳化相、軽油相の体積をmlで比較し
た。100mlの目盛り入り共栓メスシリンダーに試験
軽油80ml、蒸留水20mlを入れ、手で2分間強く
上下に振りまぜ5分静置後及び1日後の水分離状態を観
察した。清浄剤添加量はいずれも600ppmとした。
得られた結果を表3に示す。
Example 3 (Water Separation Performance 1) The water separation performance of fuel complies with the water solubility test method defined in JIS K2276, and the performance is quantitatively compared.
The volumes of the aqueous phase, the emulsified phase and the light oil phase after the test were compared in ml. 80 ml of test light oil and 20 ml of distilled water were put into a 100 ml graduated ground-stop graduated cylinder, and the mixture was shaken by hand for 2 minutes and then shaken up and down for 5 minutes. After standing for 5 minutes and after 1 day, the state of water separation was observed. The amount of detergent added was 600 ppm in all cases.
Table 3 shows the obtained results.

【0051】[0051]

【表3】 [Table 3]

【0052】合成例2、4〜8は合成例1および比較合
成例1、2に比較して水相体積量が多く水分離性能がす
ぐれている。特に合成例7が最もすぐれた水分離性能を
示した。
Synthetic Examples 2, 4 to 8 have a large volume of aqueous phase and excellent water separation performance as compared with Synthetic Example 1 and Comparative Synthetic Examples 1 and 2. In particular, Synthesis Example 7 showed the best water separation performance.

【0053】実施例4(水分離性能2) 上記実験例2と同様の試験方法で抗乳化剤による改善効
果を比較した。
Example 4 (Water separation performance 2) The improvement effect of the demulsifier was compared by the same test method as in Experimental Example 2 above.

【0054】清浄剤添加量はすべて600ppmとし、
実施例3と同様に水相、乳化相、軽油相のそれぞれの体
積をmlで示した。
The amount of detergent added was all 600 ppm,
As in Example 3, the respective volumes of the aqueous phase, the emulsified phase and the light oil phase are shown in ml.

【0055】[0055]

【表4】 [Table 4]

【0056】合成例2及び5は比較合成例1及び2に比
較して抗乳化剤の改善効果が高く、それぞれ添加量1〜
5ppmでも充分な水分離性能を示した。
Synthetic Examples 2 and 5 have a higher effect of improving the demulsifier as compared with Comparative Synthetic Examples 1 and 2, and the addition amount of each is 1 to 1.
Even at 5 ppm, sufficient water separation performance was exhibited.

【0057】[0057]

【発明の効果】高分子量界面活性剤からなる炭化水素燃
料の清浄剤の官能基の塩基性を高めることによって少な
い添加量で十分に沈着物の形成の原因となる有機酸の中
和をすることによって、沈着物を除去するとともに、さ
らに、親水性の官能基の近傍に炭化水素基の立体障害を
形成させることによって、水分子との相互作用を弱めて
水との親和性を抑制したので、少量の抗乳化剤の使用の
みで充分な水分離性能が得られ、抗乳化剤の大量使用に
よる問題も生じない炭化水素燃料用の清浄剤が得られ
た。
EFFECTS OF THE INVENTION By enhancing the basicity of the functional group of a detergent for hydrocarbon fuel comprising a high molecular weight surfactant, the organic acid that causes the formation of deposits can be sufficiently neutralized with a small addition amount. By removing the deposit by further, by further forming a steric hindrance of the hydrocarbon group in the vicinity of the hydrophilic functional group, since the interaction with water molecules was weakened and the affinity with water was suppressed, Sufficient water separation performance was obtained by using only a small amount of demulsifier, and a detergent for hydrocarbon fuel was obtained which did not cause the problem due to the large amount of demulsifier used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 スロットルノズルの噴孔部を示す図である。FIG. 1 is a view showing a nozzle hole portion of a throttle nozzle.

【図2】 測定結果を説明する図である。FIG. 2 is a diagram illustrating a measurement result.

【符号の説明】[Explanation of symbols]

1…針弁、2…貫通孔 1 ... Needle valve, 2 ... Through hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表される親油基と炭
化水素基を置換基として含んでも良い塩基性含窒素環基
を含有することを特徴とする炭化水素燃料用の清浄剤。
一般式(1) R−Ab−(Ch2hNH)k(Cn2nm−Y (ただし、Rは炭素数35〜720の炭化水素基からな
る親油基、bは0または1、Aはイミド、アミド、イソ
シアノ、エステル、エーテルの各基から選ばれる連結
基、hおよびnは1〜5の整数、kおよびmは0〜6の
整数、Yは塩基性含窒素環基を示す。)
1. A detergent for a hydrocarbon fuel comprising a lipophilic group represented by the following general formula (1) and a basic nitrogen-containing cyclic group which may contain a hydrocarbon group as a substituent. .
Formula (1) R-A b - (C h H 2h NH) k (C n H 2n) m -Y ( wherein, R is a lipophilic group consisting of a hydrocarbon group having 35 to 720 carbon atoms, b is 0 Or 1, A is a linking group selected from imide, amide, isocyano, ester, and ether groups, h and n are integers from 1 to 5, k and m are integers from 0 to 6, and Y is a basic nitrogen-containing ring. Indicates a group.)
【請求項2】 塩基性含窒素環基が、下記式a)〜c)
で示される置換基である請求項1記載の清浄剤。 【化1】 (ただし、R1 は水素または、炭素数1〜40のフェニ
ル基で置換されてもよいアルキル基、R2は炭素数1〜
40のフェニル基で置換されてもよいアルキル基、Pは
0〜10の整数を示し、Bは炭素数1〜10のアルキレ
ン基、Qは0又は1を示す。)
2. The basic nitrogen-containing cyclic group has the following formulas a) to c).
The detergent according to claim 1, which is a substituent represented by: Embedded image (However, R 1 is hydrogen or an alkyl group which may be substituted with a phenyl group having 1 to 40 carbon atoms, and R 2 is 1 to 1 carbon atoms.
40 is an alkyl group which may be substituted with a phenyl group, P is an integer of 0 to 10, B is an alkylene group having 1 to 10 carbon atoms, and Q is 0 or 1. )
【請求項3】 請求項1もしくは請求項2記載の清浄剤
を含有することを特徴とする炭化水素燃料組成物。
3. A hydrocarbon fuel composition comprising the detergent according to claim 1 or 2.
【請求項4】 請求項1もしくは請求項2記載の清浄剤
を添加した燃料油を使用することを特徴とするディーゼ
ルエンジンのノズルへの沈着物の形成を減少する方法。
4. A method for reducing the formation of deposits on the nozzles of diesel engines, characterized in that a fuel oil containing the detergent according to claim 1 or 2 is used.
JP20348094A 1994-08-29 1994-08-29 Cleaner for hydrocarbon fuel Pending JPH0867885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20348094A JPH0867885A (en) 1994-08-29 1994-08-29 Cleaner for hydrocarbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20348094A JPH0867885A (en) 1994-08-29 1994-08-29 Cleaner for hydrocarbon fuel

Publications (1)

Publication Number Publication Date
JPH0867885A true JPH0867885A (en) 1996-03-12

Family

ID=16474850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20348094A Pending JPH0867885A (en) 1994-08-29 1994-08-29 Cleaner for hydrocarbon fuel

Country Status (1)

Country Link
JP (1) JPH0867885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057901A (en) * 2009-09-11 2011-03-24 Esc Hokuriku:Kk Combustion promoter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057901A (en) * 2009-09-11 2011-03-24 Esc Hokuriku:Kk Combustion promoter

Similar Documents

Publication Publication Date Title
US4160648A (en) Fuel compositions containing deposit control additives
JP4452712B2 (en) Fuel composition
PT617056E (en) ADDITIVES FOR FUELS PROCESS FOR THEIR PREPARATION AS WELL AS FUELS FOR EXPLOSIVE ENGINES CONTAINING ADDITIVES
CA2238000A1 (en) Detergent additive compositions for diesel fuels
JPH06502888A (en) Fuel additive composition containing polyisobutenyl succinimide
CA2751226A1 (en) Gasoline deposit control additive compositions
JPS6220590A (en) Maleic anhydride/polyether/polyamide reaction product and composition for car fuel containing the same
US5492641A (en) β-aminonitriles and N-alkyl-1,3-propylenediamines and their use as fuel additives and lubricant additives
CA2406762C (en) Fuel additive packets for gasoline fuels having improved viscosity properties and good ivd performance
JP5015378B2 (en) Polyalkene alcohol-polyalkoxylate and its use in fuels and lubricants
EP0034968B1 (en) N-substituted succinimides, their preparation and their use as additives for fuels
BRPI0616132A2 (en) fuel composition, method of operation of an internal combustion engine, and use of a fuel composition
US4527996A (en) Deposit control additives - hydroxy polyether polyamines
US4242101A (en) Fuels for gasoline engines
US5348560A (en) Carbamates, their preparation and fuels and lubricants containing the carbamates
JPH0867885A (en) Cleaner for hydrocarbon fuel
JPH07179869A (en) Fuel oil additive composition and fuel oil composition
JP2854973B2 (en) Fuel additive composition
WO1985001956A1 (en) Deposit control additives - hydroxy polyether polyamines
JPH07118214A (en) Fuel oil composition containing alkylphenylpoly(oxyalkylene)polyamine acid ester compound
US6053955A (en) Polyether amino acid ester compounds, preparation method and use thereof
US5951723A (en) Method to remedy engine intake valve sticking
JP3802244B2 (en) Fuel oil detergent and fuel oil composition
JP3936770B2 (en) Fuel oil additive
JPH05504985A (en) Gasoline fuel for internal combustion engines