JPH0867581A - Jig or tool for semiconductor and method for producing the same - Google Patents

Jig or tool for semiconductor and method for producing the same

Info

Publication number
JPH0867581A
JPH0867581A JP22864894A JP22864894A JPH0867581A JP H0867581 A JPH0867581 A JP H0867581A JP 22864894 A JP22864894 A JP 22864894A JP 22864894 A JP22864894 A JP 22864894A JP H0867581 A JPH0867581 A JP H0867581A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
semiconductor
particle size
wafer boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22864894A
Other languages
Japanese (ja)
Inventor
Kazuhiro Minagawa
和弘 皆川
Tadahisa Arahori
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22864894A priority Critical patent/JPH0867581A/en
Publication of JPH0867581A publication Critical patent/JPH0867581A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE: To obtain a jig or tool for semiconductors, having a high purity, little in staining from environments, enabling to easily remove impurities with an acid, etc., and free from the staining of semiconductor elements, etc., in the thermal treatment processes of the semiconductors, etc., by specifying the diameters of voids existing on the surface. CONSTITUTION: Silicon carbide powder having particle diameters of 0.5-10μm, an average particle diameter of 1.5-6μm, and a metal impurity concentration of <=1ppm is mixed with 0-20wt.% of carbon powder having particle diameters of 0.1-4μm, and with a binder, molded, calcined at 500-1000 deg.C, and subsequently sintered at 1600-2000 deg.C for 30min to 20hr in an inert gas atmosphere or under vacuum. The obtained porous silicon carbide molded product is thermally treated in an atmosphere comprising HCl gas or Cl gas, and the thus purified product is impregnated with molten highly pure silicon (>=10) at 1450-1700 deg.C to obtain the sintered product comprising 60-90wt.5 of the silicon carbide and 10-40wt.% of silicon. E.g. silicon wafers are longitudinally arranged to obtain a wafer boat 11 comprising columnar members 11a, 11b, 11c and plate-like members 11d, 11e and having <=10μm diameter voids on the surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体用治工具及びその
製造方法に関し、より詳細にはウエハボートやプロセス
チューブ等、半導体の熱処理やその他の用途に用いられ
る半導体用治工具に及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor jig and tool and a method for manufacturing the same, and more particularly to a semiconductor jig and tool used for heat treatment of semiconductors such as wafer boats and process tubes and other uses, and a method for manufacturing the same. Regarding

【0002】[0002]

【従来の技術】近年、半導体産業の発達に伴い、シリコ
ンウエハ等の半導体基板上に種々の素子等を形成する
際、様々な半導体製造プロセスが採用されている。
2. Description of the Related Art In recent years, with the development of the semiconductor industry, various semiconductor manufacturing processes have been adopted when forming various elements and the like on a semiconductor substrate such as a silicon wafer.

【0003】これらの半導体プロセスにおいては、熱酸
化処理等、種々の熱処理工程が採用されているが、この
種の熱処理を行う際に用いられる容器や半導体基板を保
持するウエハボート等の半導体用治工具が高純度でない
場合には、これら半導体用治工具に起因した半導体基板
の汚染が発生し、この汚染が半導体素子の誤動作の原因
になる等の問題がある。
In these semiconductor processes, various heat treatment steps such as thermal oxidation treatment are adopted. However, semiconductor treatments such as a container used when performing this kind of heat treatment and a wafer boat for holding a semiconductor substrate are used. If the tool is not of high purity, there is a problem that the semiconductor substrate is contaminated due to these semiconductor jigs and tools, and this contamination causes malfunction of the semiconductor element.

【0004】特に、近年の半導体の高集積化・微細化に
ともない、パーティクルや金属不純物等のマイクロコン
タミネーションが半導体製品の歩留や信頼性に大きな影
響を与えるようになってきている。このため、例えば超
LSIの製造工程におけるシリコンウエハの清浄化の要
求が一段と厳しくなってきている。しかし、シリコンウ
エハの洗浄技術に関しては注目が集まっているが(例え
ばSEMIテクノロジーシンポジウム93講演予稿集 S
emiconductor Equipment and Materials Inter-nationa
l 1993年 12月 pp450−453)、前述し
たシリコンウエハを熱処理等する際に用いられる高純度
耐熱材料からなる半導体用治工具については、シリコン
ウエハに対するコンタミネーションの影響が大きいにも
関わらず未だに大きな関心が持たれていない。
In particular, as semiconductors have been highly integrated and miniaturized in recent years, microcontamination such as particles and metal impurities has come to greatly affect the yield and reliability of semiconductor products. For this reason, for example, the demand for cleaning a silicon wafer in a VLSI manufacturing process has become more severe. However, although attention has been paid to the cleaning technology for silicon wafers (for example, SEMI Technology Symposium 93
emiconductor Equipment and Materials Inter-nationa
l December 1993 pp450-453), semiconductor jigs and tools made of high-purity heat-resistant materials used for heat treatment of silicon wafers are still large despite the large influence of contamination on the silicon wafers. Not interested.

【0005】[0005]

【発明が解決しようとする課題】従来から半導体の熱処
理に用いられてきた高純度石英ガラス製の半導体用治工
具は、フッ酸を含む洗浄液に対して均一に溶解し、また
その表面にはボイド等が殆ど存在せず非常に滑らかであ
るため、何らかの原因で一旦その表面が汚染されても、
フッ酸等を用いた洗浄により比較的容易に汚染物質等の
洗浄、除去を行うことができるという利点がある。しか
し、この石英ガラス製の半導体用治工具はシリコンウエ
ハ等を高温で処理する際には、その耐熱性などの点で問
題があった。
A high-purity silica glass jig for semiconductors, which has been conventionally used for heat treatment of semiconductors, is uniformly dissolved in a cleaning solution containing hydrofluoric acid and has voids on its surface. Since there is almost no such thing as it is very smooth, even if the surface is contaminated for some reason,
Cleaning with hydrofluoric acid or the like has an advantage that contaminants and the like can be relatively easily cleaned and removed. However, this jig / tool for semiconductors made of quartz glass has a problem in heat resistance when processing a silicon wafer or the like at a high temperature.

【0006】一方、炭化珪素質材料は石英ガラスよりも
高耐熱性、高強度であるため、その耐熱性については殆
ど問題がないが、材料自体の純度の点で石英ガラス並の
高純度な材料を得ることが難しいという問題があった。
このような炭化珪素質材料の純度に関する問題点を改善
するため、炭化珪素質材料の表面に気相法によって緻密
な炭化珪素膜又は酸化珪素膜を形成し、炭化珪素の表面
に存在するボイドを埋めるとともに、不純物の拡散を抑
える方法が提案されている(特開昭57−58771号
公報、特開昭64−61376号公報、特開昭64−1
4914号公報)。
On the other hand, since the silicon carbide material has higher heat resistance and higher strength than quartz glass, there is almost no problem with respect to its heat resistance, but the material itself is as pure as quartz glass in terms of purity. There was a problem that it was difficult to get.
In order to improve such a problem relating to the purity of the silicon carbide based material, a dense silicon carbide film or a silicon oxide film is formed on the surface of the silicon carbide based material by a vapor phase method to remove voids existing on the surface of the silicon carbide. A method of filling and suppressing diffusion of impurities has been proposed (JP-A-57-58771, JP-A-64-61376, and JP-A-64-1).
4914).

【0007】しかし、前記した表面に炭化珪素膜等が形
成された炭化珪素質材料は、その表面の炭化珪素膜ある
いは酸化珪素膜にピンホールが発生し易く、また膜の密
着強度が低いために機械的あるいは熱的な衝撃により表
面に形成された膜に亀裂が生じる等の問題があった。ま
た前記炭化珪素質材料は、一旦製造された炭化珪素質材
料の表面に、再度気相法により炭化珪素等の膜を形成す
るため、製造コストが高くついていた。
However, the above-mentioned silicon carbide material having a silicon carbide film formed on its surface is apt to cause pinholes in the silicon carbide film or silicon oxide film on the surface thereof, and has a low adhesion strength to the film. There is a problem that a film formed on the surface is cracked by a mechanical or thermal impact. Further, the silicon carbide-based material has a high manufacturing cost because a film of silicon carbide or the like is formed again on the surface of the silicon carbide-based material once manufactured by the vapor phase method.

【0008】ところが最近では、技術進歩により炭化珪
素粉末等の原料を高純度化する技術が進み、このような
高純度の原料を用いることにより石英ガラス並に高純度
の炭化珪素質材料が開発され、その用途展開が進んでい
る。しかし、通常の炭化珪素質材料は多孔質の炭化珪素
成形体に金属シリコンを浸透させることにより複合材料
を製造するため、その内部には金属シリコンが完全に浸
透しない部分(ボイド)が無数に存在する。そして、例
えば前記炭化珪素質材料からなるウエハボートにスリッ
ト加工処理を施すと、前記ボイドがウエハボートの表面
に露出し、例えば加工処理工程で用いられる冷却水中の
不純物、環境からの不純物やパーティクル等が、この露
出したボイド内に入り込むことになる。
However, recently, due to technological progress, a technique for purifying raw materials such as silicon carbide powder has advanced, and by using such a high-purity raw material, a high-purity silicon carbide material as high as silica glass has been developed. , Its application is progressing. However, since ordinary silicon carbide materials produce composite materials by permeating metallic silicon into a porous silicon carbide molded body, there are innumerable parts (voids) in which metallic silicon does not completely permeate. To do. Then, for example, when the wafer boat made of the silicon carbide material is subjected to slit processing, the voids are exposed on the surface of the wafer boat, for example, impurities in cooling water used in the processing step, impurities and particles from the environment, etc. However, they will get into this exposed void.

【0009】このような炭化珪素質材料表面のボイド、
特にその大きさが数十μmに及ぶ大きなボイドの内部に
付着した不純物やパーティクル等は、酸洗浄によっても
その除去は容易ではなく、不純物等の除去処理工程の後
の乾燥工程も複雑化するという課題があった。また、前
記炭化珪素質材料からなる半導体用治工具を用いてシリ
コンウエハ等のベーキングを行い、その表面に酸化膜を
形成する工程では、前記不純物等が酸化膜に取り込まれ
てシリコンウエハを汚染する原因となるという課題もあ
った。
A void on the surface of such a silicon carbide material,
Especially, it is not easy to remove impurities and particles attached to the inside of a large void with a size of several tens of μm even by acid cleaning, and the drying process after the removal process of impurities is also complicated. There were challenges. Further, in the step of baking a silicon wafer or the like by using a semiconductor jig or tool made of the silicon carbide material and forming an oxide film on the surface thereof, the impurities or the like are taken into the oxide film to contaminate the silicon wafer. There was also a problem of being a cause.

【0010】本発明はこのような課題に鑑みなされたも
のであり、高純度であり、かつその表面に大きなボイド
が存在しないために環境からの汚染が少なく、また酸等
により容易に不純物等の除去ができ、半導体素子等の熱
処理工程等において該半導体素子等を汚染する虞れのな
い半導体用治工具を提供することを目的としている。
The present invention has been made in view of the above problems, has a high purity, and since there are no large voids on the surface thereof, it is less polluted from the environment, and is easily contaminated by impurities such as acid. It is an object of the present invention to provide a semiconductor jig which can be removed and which is unlikely to contaminate the semiconductor element or the like in a heat treatment step of the semiconductor element or the like.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る半導体用治工具は、炭化珪素及び金属シ
リコンからなる炭化珪素質材料で形成され、ガス不透過
性を有する半導体用治工具において、表面に存在するボ
イドの径が10μm以下であることを特徴としている。
In order to achieve the above object, a semiconductor jig and tool according to the present invention is made of a silicon carbide material composed of silicon carbide and metallic silicon, and has a gas impermeable property. The feature of the tool is that the diameter of the void existing on the surface is 10 μm or less.

【0012】また、本発明に係る半導体用治工具の製造
方法は、上記半導体用治工具の製造方法であって、粒径
が0.5〜10μmでかつ平均粒径が1.5〜6μmの
炭化珪素粉末80〜100重量%、及び粒径が0.1〜
4μmでかつ平均粒径が0.5〜2μmの炭素粉末0〜
20重量%からなる混合物を成形し、その後焼成して得
られた密度が1.8g/cm3 以上で、気孔径が10μ
m以下の炭化珪素系成形体に金属シリコンを含浸させる
ことを特徴としている。
A method for manufacturing a semiconductor jig / tool according to the present invention is the method for manufacturing a semiconductor jig / tool, wherein the particle diameter is 0.5 to 10 μm and the average particle diameter is 1.5 to 6 μm. Silicon carbide powder 80 to 100% by weight, and particle size 0.1 to
Carbon powder having a particle size of 4 μm and an average particle size of 0.5 to 2 μm
A mixture of 20% by weight was molded and then fired to obtain a density of 1.8 g / cm 3 or more and a pore diameter of 10 μm.
It is characterized in that a silicon carbide-based molded body having a size of m or less is impregnated with metallic silicon.

【0013】まず、本発明に係る半導体用治工具の製造
方法を詳細に説明する。
First, a method of manufacturing a jig for a semiconductor according to the present invention will be described in detail.

【0014】原料として用いられる炭化珪素粉末は、α
型、又はβ型のいずれであってもよく、またそれらの混
合物であってもよい。前記炭化珪素粉末の粒子径につい
ては、製造された半導体用治工具の表面にその径が10
μm以上のボイドを形成させないようにするため、その
粒径が10μmを超える粗大粒子の存在は好ましくな
く、また焼成時における異常粒成長を防止するため、粒
径が0.5μm未満の微細粒子の存在も好ましくない。
従って、その粒径が0.5〜10μmの粒子より構成さ
れ、かつ平均粒径が1.5〜6μmの炭化珪素粉末が好
ましい。また、半導体用治工具は高純度を要求される製
品であるため、前記炭化珪素粉末は、その金属不純物濃
度が1ppm以下の高純度のものを用いるのが望まし
い。
The silicon carbide powder used as a raw material is α
Type, β type, or a mixture thereof. Regarding the particle diameter of the silicon carbide powder, the diameter is 10 on the surface of the manufactured semiconductor jig / tool.
In order to prevent the formation of voids having a size of μm or more, the presence of coarse particles having a particle size of more than 10 μm is not preferable, and in order to prevent abnormal particle growth during firing, fine particles having a particle size of less than 0.5 μm are used. Existence is also unfavorable.
Therefore, a silicon carbide powder having a particle size of 0.5 to 10 μm and an average particle size of 1.5 to 6 μm is preferable. Further, since the jig for semiconductors is a product requiring high purity, it is desirable to use, as the silicon carbide powder, a high purity metal carbide having a metal impurity concentration of 1 ppm or less.

【0015】前記炭化珪素粉末には炭素粉末を配合して
もよい。この炭素粉末の炭素源としては、例えば黒鉛、
カーボンブラック等が挙げられる。前記炭化珪素粉末に
対する前記炭素粉末の配合量は0〜20重量%程度が好
ましい。前記炭化珪素粉末に前記炭素粉末を配合するこ
とにより、これら混合粉末の焼成により製造される多孔
質炭化珪素系成形体にSiを含浸させると、前記多孔質
炭化珪素系成形体の内部に存在する炭素とSiが反応し
て炭化珪素が形成され、炭化珪素質材料の機械的特性や
耐熱性が向上する。以下、多孔質炭化珪素系成形体にS
iを含浸させ、含浸した溶融Siの一部と炭素とを反応
させる工程を反応焼結工程という。
Carbon powder may be blended with the silicon carbide powder. Examples of the carbon source of the carbon powder include graphite,
Examples thereof include carbon black. The blending amount of the carbon powder with respect to the silicon carbide powder is preferably about 0 to 20% by weight. When the silicon carbide powder is blended with the carbon powder to impregnate Si into the porous silicon carbide-based compact produced by firing the mixed powder, it is present inside the porous silicon carbide-based compact. Carbon reacts with Si to form silicon carbide, which improves the mechanical properties and heat resistance of the silicon carbide material. Hereinafter, S is added to the porous silicon carbide-based compact.
The step of impregnating i and reacting a part of the impregnated molten Si with carbon is called a reaction sintering step.

【0016】前記炭素粉末の粒径については、反応焼結
工程において急激な体積膨張を生じさせないため粒径が
4μmを超える粗大粒子の存在は好ましくなく、また成
形時の成形性を低下させる粒径が0.1μm以下の微細
粒子の存在も好ましくない。従って、粒径が0.1〜4
μmの粒子より構成され、平均粒径が0.5〜2μmの
炭素粉末が好ましい。また、半導体用治具等は高純度を
要求されるため、炭素粉末についても金属不純物濃度が
1ppm以下の高純度のものを用いる必要がある。
Regarding the particle size of the carbon powder, the presence of coarse particles having a particle size of more than 4 μm is not preferable because it does not cause a rapid volume expansion in the reaction sintering step, and the particle size that reduces the formability at the time of molding is preferable. The presence of fine particles having a particle size of 0.1 μm or less is also not preferable. Therefore, the particle size is 0.1-4
Carbon powder composed of particles having a diameter of 0.5 μm and having an average particle diameter of 0.5 to 2 μm is preferable. Further, since a semiconductor jig or the like is required to have a high purity, it is necessary to use a carbon powder having a high purity with a metal impurity concentration of 1 ppm or less.

【0017】次に、前記炭化珪素粉末、あるいは炭化珪
素粉末と炭素粉末との混合物を用いて成形体を作製する
が、その際バインダーとして用いられる公知の樹脂が配
合される。これらの樹脂としては、例えばフェノール樹
脂、アクリル樹脂等が挙げられる。
Next, the above-mentioned silicon carbide powder or a mixture of silicon carbide powder and carbon powder is used to prepare a molded body, in which case a known resin used as a binder is blended. Examples of these resins include phenol resins and acrylic resins.

【0018】次に、この樹脂配合物を所定の形状に成形
するが、この成形工程は公知の金型プレスを用いた圧縮
成形、鋳込形成、CIP(Cold Isostatic Pressing )
等の方法で行えばよい。前記方法により形成されたもの
のかさ密度が低いと、焼成後も内部の空隙率が増加し、
気孔径も大きくなるため、できる限り高密度に成形する
必要があり、次に説明する焼成、純化処理後の成形体の
密度が1.8g/cm3 以上になるように成形するのが
好ましい。
Next, this resin composition is molded into a predetermined shape. This molding step includes compression molding using a known die press, cast molding, and CIP (Cold Isostatic Pressing).
Etc. may be used. If the bulk density of the one formed by the above method is low, the internal porosity increases even after firing,
Since the pore diameter also becomes large, it is necessary to mold the molded body as densely as possible, and it is preferable to mold the molded body after the firing and purification treatment described below to have a density of 1.8 g / cm 3 or more.

【0019】次に、このようにして形成された成形体を
仮焼することにより成形体に脱脂処理を施す。脱脂処理
の温度や時間は、成形体の寸法や、成形体中のバインダ
ーの組成等によって異なるが、通常500〜1000℃
で30分間〜20時間程度が好ましい。この脱脂工程に
おける昇温速度は、成形体の寸法や肉厚によって適宜調
整を行う。
Next, the molded body thus formed is calcined to degrease the molded body. The temperature and time of the degreasing treatment vary depending on the size of the molded product, the composition of the binder in the molded product, etc., but are usually 500 to 1000 ° C.
It is preferably about 30 minutes to 20 hours. The temperature rising rate in this degreasing step is appropriately adjusted depending on the size and thickness of the molded body.

【0020】次に、この成形体の焼成を行うが、この焼
成は炭化珪素粒子間の結合を強化して多孔質炭化珪素系
成形体の強度を増加させ、さらに炭化珪素中の酸素分を
除去して溶融シリコンとのぬれ性を改善するのが目的で
ある。
Next, the compact is fired. This firing strengthens the bond between the silicon carbide particles to increase the strength of the porous silicon carbide-based compact, and further removes the oxygen content in the silicon carbide. The purpose is to improve the wettability with molten silicon.

【0021】焼成温度は、1600〜2000℃が好ま
しい。焼成時には、以下の化1式〜化3式に示した化学
反応が進行すると考えられる。
The firing temperature is preferably 1600 to 2000 ° C. It is considered that the chemical reactions shown in the following chemical formulas 1 to 3 proceed during firing.

【0022】[0022]

【化1】SiO2 (s)+3C(s) → SiC
(s)+2CO(g)
[Chemical formula 1] SiO 2 (s) + 3C (s) → SiC
(S) + 2CO (g)

【0023】[0023]

【化2】 SiO2 (s)→ SiO(g)+(1/2)O2 (g)Embedded image SiO 2 (s) → SiO (g) + (1/2) O 2 (g)

【0024】[0024]

【化3】SiC(s) → Si(g)+C(s) 上記化1式の反応は、1600℃以上の温度で進行する
ものであるが、添加した炭素あるいはバインダーが分解
して生成する炭素によって、炭化珪素粒子の表面に存在
する二酸化珪素が還元され炭化珪素になる。従って、1
600℃付近の温度における処理では、表面拡散による
物質移動が炭化珪素粒子の表面から炭化珪素粒子間のネ
ックへ起こり、粒子間の結合面積が増加し、気孔の形状
が球形に近づく。さらに、1780℃以上の温度ではS
iOの蒸気圧がかなり高くなるので前記表面拡散ととも
に上記化2式に示した蒸気相による物質移動が盛んにな
り、炭化珪素粒子の表面の二酸化珪素の還元がより活発
化する。
Embedded image SiC (s) → Si (g) + C (s) The reaction of the above chemical formula 1 proceeds at a temperature of 1600 ° C. or higher. Thereby, silicon dioxide existing on the surface of the silicon carbide particles is reduced to silicon carbide. Therefore, 1
In the treatment at a temperature near 600 ° C., mass transfer due to surface diffusion occurs from the surface of the silicon carbide particles to the neck between the silicon carbide particles, the bonding area between the particles increases, and the shape of the pores approaches a spherical shape. Furthermore, at temperatures above 1780 ° C, S
Since the vapor pressure of iO increases considerably, mass transfer due to the vapor phase shown in the above Chemical Formula 2 becomes active along with the surface diffusion, and the reduction of silicon dioxide on the surface of the silicon carbide particles becomes more active.

【0025】焼成温度が1600℃未満であると表面拡
散や化1式に示した化学反応が進行しないため前記した
効果が得られず、他方焼成温度が2000℃を超えると
化3式の反応が顕著になり、炭化珪素の分解・揮発が活
発になるため、前記成形体中の粒径が1μm以下の微粒
子が分解し、成形体中に大きな空隙が形成されてしま
う。このようなことから、前記成形体の焼成温度は蒸気
相による物質移動が生じる1780〜2000℃の範囲
がより好ましい。
If the firing temperature is lower than 1600 ° C., the above effects cannot be obtained because the surface diffusion or the chemical reaction shown in the chemical formula 1 does not proceed. On the other hand, if the firing temperature exceeds 2000 ° C., the reaction of the chemical formula 3 occurs. Since the decomposition and volatilization of silicon carbide become active, the fine particles having a particle size of 1 μm or less in the molded body are decomposed and large voids are formed in the molded body. Therefore, the firing temperature of the molded body is more preferably in the range of 1780 to 2000 ° C. where mass transfer due to the vapor phase occurs.

【0026】前記成形体の焼成は、Ar等の不活性ガス
雰囲気あるいは減圧下で行うが、上記化1式〜化2式の
化学反応を促進させるためには減圧下で行うのがより好
ましい。また加熱時間は、前記成形体の寸法や組成、焼
成温度等によって異なるが、30分間〜20時間程度が
好ましい。さらに、昇温速度も成形体の寸法、肉厚によ
って適宜調整を行う。このような焼成により、前記成形
体中の炭化珪素粒子表面の二酸化珪素が除去され、炭化
珪素粒子間の結合面積が増大し、多孔質炭化珪素系成形
体の強度は増大する。
Firing of the molded body is carried out under an atmosphere of an inert gas such as Ar or under reduced pressure, but it is more preferably carried out under reduced pressure in order to promote the chemical reaction of the above chemical formulas 1 and 2. The heating time varies depending on the size and composition of the molded body, the firing temperature, etc., but is preferably about 30 minutes to 20 hours. Further, the temperature rising rate is also appropriately adjusted according to the size and thickness of the molded body. By such firing, silicon dioxide on the surface of the silicon carbide particles in the molded body is removed, the bonding area between the silicon carbide particles is increased, and the strength of the porous silicon carbide-based molded body is increased.

【0027】次に、前記成形体の焼成により製造された
多孔質炭化珪素系成形体に純化処理を施すが、この純化
処理は、例えばHClやCl2 ガス雰囲気中で熱処理を
施す、公知の方法を採用することができる。このとき多
孔質炭化珪素系成形体に粒径が0.2μm以下の微細な
炭化珪素粒子が存在すると、該粒子がHClガス等と反
応し、空隙を生じさせたり、後の反応焼結工程で異常粒
成長の原因となるが、前述したような条件で多孔質炭化
珪素系成形体の製造を行えば、このような微細な炭化珪
素粒子は形成されない。
Next, the porous silicon carbide type molded body produced by firing the molded body is subjected to a purification treatment. For this purification treatment, for example, a heat treatment is performed in an atmosphere of HCl or Cl 2 gas, which is a known method. Can be adopted. At this time, if fine silicon carbide particles having a particle size of 0.2 μm or less are present in the porous silicon carbide-based compact, the particles react with HCl gas or the like to generate voids, or in a subsequent reaction sintering step. Although it causes abnormal grain growth, such fine silicon carbide particles are not formed when the porous silicon carbide-based compact is manufactured under the conditions described above.

【0028】次に、純化処理が施された多孔質炭化珪素
系成形体に、溶融シリコンを含浸させ、該溶融シリコン
の一部と炭素とを反応させる反応焼結工程を行い、炭化
珪素系焼結体の製造を完了する。この反応焼結工程にお
いては、半導体用の高純度シリコン(10N以上)を1
450〜1700℃に加熱して融解し、前記多孔質炭化
珪素系成形体に含浸させればよい。高純度シリコンの溶
融温度が1450℃未満では溶融シリコンの粘性が高く
なりすぎるため前記多孔質炭化珪素系成形体への含浸が
困難となり、他方高純度シリコンの溶融温度が1700
℃を超えると逆に粘性が低下しすぎるため、表面張力が
低下し、毛管現象による含浸性が低下する。多孔質炭化
珪素系成形体に、溶融シリコンを含浸させる際の高純度
シリコンの溶融温度のより好ましい範囲は1500〜1
600℃である。
Then, a purified silicon carbide-based compact is impregnated with molten silicon, and a reaction-sintering step of reacting a part of the molten silicon with carbon is performed to carry out a silicon carbide-based firing. Complete the production of the union. In this reaction sintering step, high-purity silicon (10N or more) for semiconductor is
The porous silicon carbide-based compact may be impregnated by heating at 450 to 1700 ° C. to melt it. If the melting temperature of the high-purity silicon is less than 1450 ° C., the viscosity of the molten silicon becomes too high, so that it becomes difficult to impregnate the porous silicon carbide-based compact with the melting temperature of 1700.
On the other hand, if the temperature exceeds ℃, the viscosity is lowered too much, so that the surface tension is lowered and the impregnating property due to the capillary phenomenon is lowered. A more preferable range of the melting temperature of high-purity silicon when impregnating the porous silicon carbide-based compact with molten silicon is 1500 to 1
It is 600 ° C.

【0029】このような方法により、炭化珪素を60〜
90重量%、シリコンを10〜40重量%含有し、その
密度が2.9〜3.1g/cm3 の炭化珪素質焼結体が
製造される。
By the above method, the silicon carbide of 60 to
A silicon carbide sintered body containing 90% by weight and 10 to 40% by weight of silicon and having a density of 2.9 to 3.1 g / cm 3 is manufactured.

【0030】このようにして製造された炭化珪素質焼結
体に切削加工等を施すことにより、表面に存在するボイ
ドの径が10μm以下の半導体用治工具の製造が完了す
る。この半導体用治工具は、前記切削加工を行った場合
においても、新しく形成された面にも10μmを超える
ボイドは存在せず、その金属不純物濃度も1ppm以下
であり、1350℃程度以下の温度で半導体等に熱処理
を施す際に使用する半導体用治工具として好適なものと
なる。
By subjecting the silicon carbide-based sintered body produced in this manner to a cutting process or the like, the production of a semiconductor jig / tool having a void diameter present on the surface of 10 μm or less is completed. This semiconductor jig / tool does not have voids exceeding 10 μm on the newly formed surface even when the cutting process is performed, the metal impurity concentration is 1 ppm or less, and the temperature is about 1350 ° C. or less. It is suitable as a semiconductor tool for use in heat treatment of semiconductors and the like.

【0031】[0031]

【作用】前記半導体用治工具の表面に存在するボイドの
径が10μmを超えると、前記ボイドの深さは5μm以
上になることが多く、パーティクル等の不純物が容易に
入り込む。このようなパーティクルはウエットプロセス
によっても除去は容易でなく、ボイド内部に深く入り込
んだパーティクルについてはメガソニックの適用や低温
粒子吹きつけ(ドライアイス、氷等)等の方法によって
も完全に取り除くのは難しく、このようなパーティクル
による汚染を回避するのが困難になる。また、プロセス
チューブ、マザーボート等の大型部材では、前記メガソ
ニック等の方法を適用することも困難であり、パーティ
クル汚染の防止が難しい。さらに、研削加工時の冷却水
や酸洗浄時の酸性溶液に含まれる金属不純物等は、これ
らボイド中に容易に浸透し、水洗や乾燥工程によっても
完全に除去することが難しい。
When the diameter of the voids existing on the surface of the jig for a semiconductor exceeds 10 μm, the depth of the void is often 5 μm or more, and impurities such as particles easily enter. It is not easy to remove such particles by the wet process, and for particles that have penetrated deep inside the void, it is not possible to remove them completely by applying megasonics or spraying low-temperature particles (dry ice, ice, etc.). It is difficult and it is difficult to avoid such contamination by particles. Further, it is difficult to apply the method such as the megasonic method to large-sized members such as process tubes and mother boats, and it is difficult to prevent particle contamination. Furthermore, cooling water during grinding and metal impurities contained in an acidic solution during acid cleaning easily penetrate into these voids, and it is difficult to completely remove them even by a water cleaning or drying process.

【0032】上記構成の半導体用治工具によれば、炭化
珪素及び金属シリコンからなる炭化珪素質材料で形成さ
れ、ガス不透過性を有する半導体用治工具において、表
面に存在するボイドの径が10μm以下であるので、環
境からの汚染が少なく、また酸等により容易に不純物等
の除去がなされ、半導体素子等の熱処理等において該半
導体素子等を汚染することがない。
According to the semiconductor jig / tool having the above structure, the diameter of the void existing on the surface is 10 μm in the semiconductor jig / tool which is made of a silicon carbide material composed of silicon carbide and metallic silicon and has gas impermeability. Since it is as follows, pollution from the environment is small, and impurities and the like are easily removed by acid or the like, so that the semiconductor element or the like is not contaminated during heat treatment or the like.

【0033】また本発明に係る半導体用治工具の製造方
法によれば、粒径が0.5〜10μmでかつ平均粒径が
1.5〜6μmの炭化珪素粉末80〜100重量%、及
び粒径が0.1〜4μmでかつ平均粒径が0.5〜2μ
mの炭素粉末0〜20重量%からなる混合物を成形し、
その後焼成して得られた密度が1.8g/cm3 以上
で、気孔径が10μm以下の炭化珪素系成形体に金属シ
リコンを含浸させるので、上記した表面に存在するボイ
ドの径が10μm以下である半導体用治工具が製造さ
れ、この半導体用治工具は、環境からの汚染が少なく、
また酸等により容易に不純物等の除去がなされるので、
半導体素子等の熱処理等において該半導体素子等を汚染
することがない。
Further, according to the method for manufacturing a semiconductor tool according to the present invention, 80 to 100% by weight of silicon carbide powder having a particle size of 0.5 to 10 μm and an average particle size of 1.5 to 6 μm, and particles The diameter is 0.1 to 4 μm and the average particle diameter is 0.5 to 2 μ.
m to form a mixture of 0 to 20% by weight of carbon powder,
Since the silicon carbide-based compact having a density of 1.8 g / cm 3 or more and a pore diameter of 10 μm or less obtained by firing is impregnated with metallic silicon, the void diameter present on the above-mentioned surface is 10 μm or less. A certain semiconductor jig / tool was manufactured, and this semiconductor jig / tool has less environmental pollution,
In addition, since impurities etc. can be easily removed with acid etc.,
It does not contaminate the semiconductor element or the like during heat treatment or the like.

【0034】[0034]

【実施例及び比較例】以下、本発明に係る半導体用治工
具及びその製造方法の実施例及び比較例を図面に基づい
て説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of semiconductor jigs and manufacturing methods according to the present invention will be described below with reference to the drawings.

【0035】[実施例1]粒径が0.5〜8μmの範囲
内にあり、かつ平均粒径が2.3μmのβ型炭化珪素粉
(金属不純物濃度:0.2ppm)80重量部に、バイ
ンダとしてフェノール樹脂(金属不純物濃度:0.1p
pm)10重量部と溶剤メタノール(金属不純物濃度:
ND)を10重量部を加えて混練し、乾燥、造粒した
後、金型プレスを用いて成形圧が500kg/cm2
条件で板状体(110mm×35mm×8mm)を2枚
及び円柱状体(10mmφ×150mm)を3本作製し
た。この3本の円柱状体の両端部に2枚の板状体を接合
することによりウエハボート形状の成形体を作製した。
Example 1 To 80 parts by weight of β-type silicon carbide powder (metal impurity concentration: 0.2 ppm) having a particle size in the range of 0.5 to 8 μm and an average particle size of 2.3 μm, Phenolic resin as binder (Metal impurity concentration: 0.1 p
pm) 10 parts by weight and solvent methanol (metal impurity concentration:
10 parts by weight of ND) are added, kneaded, dried and granulated, and then two plate-like bodies (110 mm × 35 mm × 8 mm) and circles are formed using a die press under a molding pressure of 500 kg / cm 2. Three columnar bodies (10 mmφ × 150 mm) were produced. A wafer boat-shaped molded body was produced by joining two plate-shaped bodies to both ends of the three cylindrical bodies.

【0036】次に、前記成形体にAr雰囲気中、100
0℃で1時間の脱脂処理を施し、さらにAr雰囲気中、
1800℃で3時間の焼成を行い、多孔質炭化珪素系成
形体を製造した。この後、前記多孔質炭化珪素系成形体
にHClガス雰囲気中、1200℃で2時間の純化処理
を施した。
Next, the molded body was subjected to 100 atmosphere in Ar atmosphere.
After degreasing treatment at 0 ° C for 1 hour, further in Ar atmosphere,
Firing was performed at 1800 ° C. for 3 hours to produce a porous silicon carbide-based compact. Then, the porous silicon carbide-based compact was subjected to a purification treatment at 1200 ° C. for 2 hours in an HCl gas atmosphere.

【0037】この純化処理を施した多孔質炭化珪素系成
形体に、1500℃で溶融シリコン(10N以上)を含
浸させたところ、その内部までシリコンの浸透した緻密
な焼結体が得られた。
When the purified silicon carbide-based compact was impregnated with molten silicon (10 N or more) at 1500 ° C., a dense sintered body was obtained in which silicon was penetrated into the compact.

【0038】この焼結体にウエハーの設置に必要なスリ
ットを加工を施した後、弗硝酸(HF:HNO3 :H2
O=1:1:12)水溶液で洗浄し、ウエハボートの製
造を完了した。このウエハボートは、炭化珪素を63重
量%、シリコンを37重量%含み、その密度は2.97
であった。
This sintered body was processed with slits necessary for installing a wafer, and was then treated with hydrofluoric nitric acid (HF: HNO 3 : H 2
O = 1: 1: 12) The wafer boat was completed by cleaning with an aqueous solution. This wafer boat contains 63% by weight of silicon carbide and 37% by weight of silicon and has a density of 2.97.
Met.

【0039】図1は、前記方法により得られたウエハボ
ートを模式的に示した斜視図であり、図2は前記ウエハ
ボートの円柱状部材の一部を模式的に示した拡大断面図
である。
FIG. 1 is a perspective view schematically showing a wafer boat obtained by the above method, and FIG. 2 is an enlarged sectional view schematically showing a part of a columnar member of the wafer boat. .

【0040】ウエハボート11は、シリコンウエハ12
を縦に並べるために図2に示したようなスリット13が
多数形成された3本の円柱状部材11a、11b、11
c及びそれを固定するための2枚の板状部材11d、1
1eから構成されており、シリコンウエハ12に熱処理
等を施す際には、このスリット13にシリコンウエハ1
2を多数並べた状態で熱処理を施す。
The wafer boat 11 is a silicon wafer 12
2 are arranged vertically, three columnar members 11a, 11b, 11 having a large number of slits 13 as shown in FIG. 2 are formed.
c and two plate-like members 11d for fixing the same, 1
1e, and when the silicon wafer 12 is subjected to heat treatment, etc.
Heat treatment is performed in a state where a large number of 2 are arranged.

【0041】図3は実施例1に係るウエハボートのスリ
ット加工処理が施された面の結晶構造を示した走査型電
子顕微鏡(SEM)写真である。
FIG. 3 is a scanning electron microscope (SEM) photograph showing the crystal structure of the surface of the wafer boat according to Example 1 which was subjected to the slit processing.

【0042】図3より明らかなように、スリット加工処
理が施された面には、数μm程度のボイドしか観察され
ず、10μmを超えるようなボイドの存在しない緻密な
構造となっている。これは、前記成形体の焼成処理によ
り製造された前記多孔質炭化珪素系成形体の気孔が小さ
く、しかも開気孔であったため、Siを含浸させること
により殆どの開気孔内にSiが充填され、ボイドのない
構造のウエハボートが製造されたためと考えられる。
As is clear from FIG. 3, only a void of several μm is observed on the surface subjected to the slit processing, and the surface has a dense structure with no void exceeding 10 μm. This is because the pores of the porous silicon carbide-based compact produced by the firing treatment of the compact were small and were open pores, so most of the open pores were filled with Si by impregnating Si, This is probably because the wafer boat having a void-free structure was manufactured.

【0043】焼成、純化処理を行った後の多孔質炭化珪
素系成形体の密度、その気孔径、ウエハボートのスリッ
ト加工部分の表面に存在するボイドの径及び作製したウ
エハボートで4インチウエハを熱処理(1200℃、2
時間)した際のシリコンウエハのライフタイム値を表1
に示す。
The density of the porous silicon carbide-based compact after firing and purification, its pore diameter, the diameter of the voids existing on the surface of the slit portion of the wafer boat, and the wafer boat produced were used to prepare a 4-inch wafer. Heat treatment (1200 ℃, 2
Table 1 shows the lifetime values of the silicon wafer when
Shown in

【0044】なお、ライフタイムの測定は、測定器機と
してレオ技研製のLTA−303Aを用い、20Aの電
流を流すことにより生じた、その波長が940nmのレ
ーザー光をシリコンウエハの所定の場所(61箇所)に
照射し、マイクロ波の反射強度を測定する方法により行
った。そして、シリコンウエハの各場所より得られた反
射強度からシリコンウエハの抵抗値を求めてライフタイ
ムを計算し、その平均値をライフタイム値とした。
The lifetime was measured using LTA-303A manufactured by Leo Giken as a measuring instrument, and a laser beam having a wavelength of 940 nm generated by passing a current of 20 A was used at a predetermined position (61) on the silicon wafer. Location) and the microwave reflection intensity is measured. Then, the resistance value of the silicon wafer was obtained from the reflection intensity obtained from each position of the silicon wafer, the lifetime was calculated, and the average value was used as the lifetime value.

【0045】[実施例2]その粒径が1〜10μmの範
囲内にあり、かつ平均粒径が6μmのβ型炭化珪素粉末
を使用した以外は、実施例1と同一の条件でウエハボー
トを作製した。多孔質炭化珪素系成形体の密度、その気
孔径、ウエハボートの表面ボイドの径及び熱処理後のシ
リコンウエハのライフタイム値を、実施例1と同様に表
1に示す。なお、前記方法により得られたウエハボート
は、炭化珪素を62重量%、シリコンを38重量%含
み、その密度は2.95であった。
Example 2 A wafer boat was prepared under the same conditions as in Example 1 except that β-type silicon carbide powder having a particle size in the range of 1 to 10 μm and an average particle size of 6 μm was used. It was made. Table 1 shows the density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment, as in Example 1. The wafer boat obtained by the above method contained 62% by weight of silicon carbide and 38% by weight of silicon and had a density of 2.95.

【0046】[実施例3]その粒径が0.5〜8μmの
範囲内にあり、かつ平均粒径2.3μmのβ型炭化珪素
粉末95重量%及びその粒径が0.5〜3μmの範囲内
にあり、かつ平均粒径が2μmの炭素粉末(金属不純物
濃度:0.1ppm)5重量%からなる混合粉末を使用
した以外は実施例1と同一の条件でウエハボートを作製
した。多孔質炭化珪素系成形体の密度、その気孔径、ウ
エハボートの表面ボイドの径及び熱処理後のシリコンウ
エハのライフタイム値を、実施例1と同様に表1に示
す。
Example 3 95% by weight of β-type silicon carbide powder having a particle size of 0.5 to 8 μm and an average particle size of 2.3 μm and a particle size of 0.5 to 3 μm. A wafer boat was produced under the same conditions as in Example 1 except that a mixed powder consisting of 5% by weight of carbon powder (metal impurity concentration: 0.1 ppm) having an average particle size of 2 μm was used. Table 1 shows the density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment, as in Example 1.

【0047】なお、前記方法により得られたウエハボー
トは、炭化珪素を66重量%、シリコンを34重量%含
み、その密度は3.02であった。
The wafer boat obtained by the above method contained 66% by weight of silicon carbide and 34% by weight of silicon and had a density of 3.02.

【0048】[比較例1]その粒径が0.1〜50μm
の範囲内にあり、かつ平均粒径が15μmのβ型炭化珪
素粉末を使用した以外は、実施例1と同一の条件でウエ
ハボートを作製した。多孔質炭化珪素系成形体の密度、
その気孔径、ウエハボートの表面ボイドの径及び熱処理
後のシリコンウエハのライフタイム値を、実施例1と同
様に表1に示す。
[Comparative Example 1] The particle size is 0.1 to 50 μm.
A wafer boat was produced under the same conditions as in Example 1 except that β-type silicon carbide powder having an average particle size of 15 μm was used. The density of the porous silicon carbide-based compact,
The pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment are shown in Table 1 as in Example 1.

【0049】なお、前記方法により得られたウエハボー
トは、炭化珪素を60重量%、シリコンを40重量%含
み、その密度は2.90であった。
The wafer boat obtained by the above method contained 60% by weight of silicon carbide and 40% by weight of silicon and had a density of 2.90.

【0050】[比較例2]比較例1に係るウエハボート
を弗硝酸(HF:HNO3 :H2 O=1:5:12)水
溶液で洗浄した後、ウエハーの熱処理を行った。ライフ
タイム値を表1に示す。
Comparative Example 2 The wafer boat according to Comparative Example 1 was washed with an aqueous solution of hydrofluoric nitric acid (HF: HNO 3 : H 2 O = 1: 5: 12), and then the wafer was heat-treated. The lifetime values are shown in Table 1.

【0051】なお、前記方法により得られたウエハボー
トは、炭化珪素を60重量%、シリコンを40重量%含
み、その密度は2.90であった。
The wafer boat obtained by the above method contained 60% by weight of silicon carbide and 40% by weight of silicon and had a density of 2.90.

【0052】[比較例3]その粒径が0.1〜6μmの
範囲内にあり、かつ平均粒径が1μmのβ型炭化珪素粉
末を使用した以外は、実施例1と同一の条件でウエハボ
ートを作製した。多孔質炭化珪素系成形体の密度、その
気孔径、ウエハボートの表面ボイドの径及び熱処理後の
シリコンウエハのライフタイム値を、実施例1と同様に
表1に示す。
Comparative Example 3 A wafer was prepared under the same conditions as in Example 1 except that β-type silicon carbide powder having a particle size in the range of 0.1 to 6 μm and an average particle size of 1 μm was used. A boat was made. Table 1 shows the density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment, as in Example 1.

【0053】なお、前記方法により得られたウエハボー
トは、炭化珪素を58重量%、シリコンを42重量%含
み、その密度は2.89であった。
The wafer boat obtained by the above method contained 58% by weight of silicon carbide and 42% by weight of silicon, and had a density of 2.89.

【0054】[比較例4]その粒径が1〜20μmの範
囲内にあり、かつ平均粒径が4.1μmのβ型炭化珪素
粉末を使用した以外は、実施例1と同一の条件でウエハ
ボートを作製した。多孔質炭化珪素系成形体の密度、そ
の気孔径、ウエハボートの表面ボイドの径及び熱処理後
のシリコンウエハのライフタイム値を、実施例1と同様
に表1に示す。
Comparative Example 4 A wafer was prepared under the same conditions as in Example 1 except that β-type silicon carbide powder having a grain size of 1 to 20 μm and an average grain size of 4.1 μm was used. A boat was made. Table 1 shows the density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment, as in Example 1.

【0055】なお、前記方法により得られたウエハボー
トは、炭化珪素を61重量%、シリコンを39重量%含
み、その密度は2.94であった。
The wafer boat obtained by the above method contained 61% by weight of silicon carbide and 39% by weight of silicon, and its density was 2.94.

【0056】図4は比較例4に係るウエハボートのスリ
ット加工処理が施された面の結晶構造を示したSEM写
真である。
FIG. 4 is an SEM photograph showing the crystal structure of the surface of the wafer boat according to Comparative Example 4 which was subjected to the slit processing.

【0057】図4より明らかなように、スリット加工処
理が施された面には、数十μmの大きなボイドが観察さ
れる。これは、前記成形体の焼成処理により製造された
前記多孔質炭化珪素系成形体内部の気孔が不均一でしか
も大きな閉気孔が形成されたため、Siを含浸させても
この大きな閉気孔内にSiが充填されず、この大きな閉
気孔がとり残されたためと考えられる。
As is clear from FIG. 4, large voids of several tens of μm are observed on the surface subjected to the slit processing. This is because the pores inside the porous silicon carbide-based compact produced by the firing treatment of the compact were non-uniform and large closed pores were formed. It is thought that this is because the large closed pores were left unfilled.

【0058】[比較例5]焼成温度を2200℃とした
以外は、実施例1と同一の条件でウエハボートを作製し
た。多孔質炭化珪素系成形体の密度、その気孔径、ウエ
ハボートの表面ボイドの径及び熱処理後のシリコンウエ
ハのライフタイム値を、実施例1と同様に表1に示す。
[Comparative Example 5] A wafer boat was produced under the same conditions as in Example 1 except that the baking temperature was set to 2200 ° C. Table 1 shows the density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface void of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment, as in Example 1.

【0059】なお、前記方法により得られたウエハボー
トは、炭化珪素を62重量%、シリコンを38重量%含
み、その密度は2.94であった。
The wafer boat obtained by the above method contained 62% by weight of silicon carbide and 38% by weight of silicon and had a density of 2.94.

【0060】[比較例6]金型プレスでの成形圧を10
0kg/cm2 とした以外は、実施例1と同一の条件で
ウエハボートを作製した。多孔質炭化珪素系成形体の密
度、その気孔径、ウエハボートの表面ボイドの径及び熱
処理後のシリコンウエハのライフタイム値を、実施例1
と同様に表1に示す。
[Comparative Example 6] Molding pressure with a die press was 10
A wafer boat was manufactured under the same conditions as in Example 1 except that the pressure was 0 kg / cm 2 . The density of the porous silicon carbide-based compact, its pore diameter, the diameter of the surface voids of the wafer boat, and the lifetime value of the silicon wafer after the heat treatment were measured as in Example 1.
As shown in Table 1,

【0061】なお、前記方法により得られたウエハボー
トは、炭化珪素を56重量%、シリコンを44重量%含
み、その密度は2.85であった。
The wafer boat obtained by the above method contained 56% by weight of silicon carbide and 44% by weight of silicon and had a density of 2.85.

【0062】[比較例7]その粒径が1〜10μmの範
囲内にあり、かつ平均粒径が6μmの炭素粉末を使用し
た以外は、実施例3と同一の条件でウエハボートを作製
しようとしたが、焼成時に割れが発生し、ウエハボート
を作製できなかった。
[Comparative Example 7] A wafer boat was prepared under the same conditions as in Example 3 except that carbon powder having a particle diameter in the range of 1 to 10 µm and an average particle diameter of 6 µm was used. However, the wafer boat could not be manufactured because cracking occurred during firing.

【0063】[0063]

【表1】 [Table 1]

【0064】以上説明したように実施例に係る半導体用
治工具及びその製造方法にあっては、粒径が0.5〜1
0μmでかつ平均粒径が1.5〜6μmの炭化珪素粉末
80〜100重量%、及び粒径が0.1〜4μmでかつ
平均粒径が0.5〜2μmの炭素粉末0〜20重量%か
らなる混合物を成形し、その後焼成して得られた密度が
1.8g/cm3 以上で、気孔径が10μm以下の炭化
珪素系成形体に金属シリコンを含浸させてウエハボート
を製造するので、この方法により表面に存在するボイド
の径が10μm以下であるウエハボートを製造すること
ができ、このウエハボートは環境からの汚染が少なく、
また酸等により容易に不純物等を除去することができ、
半導体素子等の熱処理工程等において該半導体素子等の
汚染を防止することができる。
As described above, in the semiconductor jig and tool according to the embodiment and the method for manufacturing the same, the grain size is 0.5 to 1
80 to 100% by weight of silicon carbide powder having an average particle size of 0 to 6 μm and 1.5 to 6 μm, and 0 to 20% by weight of carbon powder having a particle size of 0.1 to 4 μm and an average particle size of 0.5 to 2 μm A mixture of the above-mentioned is molded and then fired to obtain a wafer boat by impregnating a silicon carbide-based compact having a density of 1.8 g / cm 3 or more and a pore diameter of 10 μm or less with metallic silicon. By this method, it is possible to manufacture a wafer boat in which the diameter of voids existing on the surface is 10 μm or less, and the wafer boat is less polluted from the environment,
In addition, it is possible to easily remove impurities and the like with an acid,
Contamination of the semiconductor element or the like can be prevented in the heat treatment process of the semiconductor element or the like.

【0065】[0065]

【発明の効果】以上詳述したように本発明に係る半導体
用治工具にあっては、炭化珪素及び金属シリコンからな
る炭化珪素質材料で形成され、ガス不透過性を有する半
導体用治工具において、表面に存在するボイドの径が1
0μm以下であるので、環境からの汚染が少なく、また
酸等により容易に不純物等を除去することができ、半導
体素子等の熱処理工程等において該半導体素子等の汚染
を防止することができる。
As described in detail above, the semiconductor jig / tool according to the present invention is a semiconductor jig / tool formed of a silicon carbide material composed of silicon carbide and metallic silicon and having gas impermeability. , The diameter of the void existing on the surface is 1
Since the thickness is 0 μm or less, contamination from the environment is small, impurities and the like can be easily removed by acid, etc., and contamination of the semiconductor element or the like can be prevented in a heat treatment process of the semiconductor element or the like.

【0066】また本発明に係る半導体用治工具の製造方
法によれば、粒径が0.5〜10μmでかつ平均粒径が
1.5〜6μmの炭化珪素粉末80〜100重量%、及
び粒径が0.1〜4μmでかつ平均粒径が0.5〜2μ
mの炭素粉末0〜20重量%からなる混合物を成形し、
その後焼成して得られた密度が1.8g/cm3 以上
で、気孔径が10μm以下の炭化珪素系成形体に金属シ
リコンを含浸させるので、この方法により上記した表面
に存在するボイドの径が10μm以下である半導体用治
工具を製造することができ、この半導体用治工具は、環
境からの汚染が少なく、また酸等により容易に不純物等
を除去することができるので、半導体素子等の熱処理工
程等において該半導体素子等の汚染を防止することがで
きる。
Further, according to the method for manufacturing a semiconductor tool according to the present invention, 80 to 100% by weight of silicon carbide powder having a particle size of 0.5 to 10 μm and an average particle size of 1.5 to 6 μm, and particles The diameter is 0.1 to 4 μm and the average particle diameter is 0.5 to 2 μ.
m to form a mixture of 0 to 20% by weight of carbon powder,
After that, the silicon carbide-based compact having a density of 1.8 g / cm 3 or more and a pore diameter of 10 μm or less obtained by firing is impregnated with metallic silicon. Therefore, by this method, the diameter of the voids present on the surface is It is possible to manufacture a semiconductor jig / tool having a size of 10 μm or less. Since this semiconductor jig / tool has little pollution from the environment and impurities and the like can be easily removed by an acid or the like, heat treatment of a semiconductor element or the like is possible. Contamination of the semiconductor element or the like can be prevented in the process or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るウエハボートを模式的に
示した斜視図である。
FIG. 1 is a perspective view schematically showing a wafer boat according to an embodiment of the present invention.

【図2】実施例に係るウエハボートの円柱状部材の一部
を模式的に示した拡大断面図である。
FIG. 2 is an enlarged cross-sectional view schematically showing a part of a cylindrical member of the wafer boat according to the example.

【図3】実施例1に係るウエハボートのスリット加工処
理が施された面の結晶構造を示したSEM写真である。
FIG. 3 is an SEM photograph showing a crystal structure of a surface of the wafer boat subjected to the slit processing of Example 1.

【図4】比較例4に係るウエハボートのスリット加工処
理が施された面の結晶構造を示したSEM写真である。
FIG. 4 is an SEM photograph showing a crystal structure of a surface of a wafer boat according to Comparative Example 4 which has been subjected to slit processing.

【符号の説明】[Explanation of symbols]

11 ウエハボート 11 wafer boat

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素及び金属シリコンからなる炭化
珪素質材料で形成され、ガス不透過性を有する半導体用
治工具において、表面に存在するボイドの径が10μm
以下であることを特徴とする半導体用治工具。
1. A semiconductor jig and tool having gas impermeability, which is formed of a silicon carbide material composed of silicon carbide and metallic silicon, has a void diameter of 10 μm existing on its surface.
The following are semiconductor jigs and tools.
【請求項2】粒径が0.5〜10μmでかつ平均粒径が
1.5〜6μmの炭化珪素粉末80〜100重量%、及
び粒径が0.1〜4μmでかつ平均粒径が0.5〜2μ
mの炭素粉末0〜20重量%からなる混合物を成形し、
その後焼成して得られた密度が1.8g/cm3 以上
で、気孔径が10μm以下の炭化珪素系成形体に金属シ
リコンを含浸させることを特徴とする請求項1記載の半
導体用治工具の製造方法。
2. 80 to 100% by weight of silicon carbide powder having a particle size of 0.5 to 10 μm and an average particle size of 1.5 to 6 μm, and a particle size of 0.1 to 4 μm and an average particle size of 0. 0.5-2μ
m to form a mixture of 0 to 20% by weight of carbon powder,
2. A semiconductor jig according to claim 1, wherein the silicon carbide-based compact having a density of 1.8 g / cm 3 or more and a pore diameter of 10 μm or less obtained by firing is impregnated with metallic silicon. Production method.
JP22864894A 1994-08-30 1994-08-30 Jig or tool for semiconductor and method for producing the same Pending JPH0867581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22864894A JPH0867581A (en) 1994-08-30 1994-08-30 Jig or tool for semiconductor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22864894A JPH0867581A (en) 1994-08-30 1994-08-30 Jig or tool for semiconductor and method for producing the same

Publications (1)

Publication Number Publication Date
JPH0867581A true JPH0867581A (en) 1996-03-12

Family

ID=16879633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22864894A Pending JPH0867581A (en) 1994-08-30 1994-08-30 Jig or tool for semiconductor and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0867581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441823B1 (en) * 2000-10-31 2004-07-27 니뽄 가이시 가부시키가이샤 SiC-BASED JIG FOR HEAT TREATMENT
JP2007250759A (en) * 2006-03-15 2007-09-27 Fujitsu Ltd Method and unit for semiconductor wafer storage
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441823B1 (en) * 2000-10-31 2004-07-27 니뽄 가이시 가부시키가이샤 SiC-BASED JIG FOR HEAT TREATMENT
JP2007250759A (en) * 2006-03-15 2007-09-27 Fujitsu Ltd Method and unit for semiconductor wafer storage
JP4567622B2 (en) * 2006-03-15 2010-10-20 富士通セミコンダクター株式会社 Semiconductor wafer storage method
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Similar Documents

Publication Publication Date Title
US6013236A (en) Wafer
US6001756A (en) Process for making a silicon carbide sintered body
KR100196732B1 (en) Heat treating apparatuses for semiconductors and high purity silicon carbide parts for the apparatus and a method of making thereof
US6419757B2 (en) Method for cleaning sintered silicon carbide in wet condition
TWI297002B (en)
US6187704B1 (en) Process for making heater member
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
EP1691398B1 (en) Ceramic heater unit
JPH0532458A (en) Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
JPH1171181A (en) Member for semiconductor production unit
JPH0867581A (en) Jig or tool for semiconductor and method for producing the same
JPH09275078A (en) Silicon wafer retaining jig
TWI228290B (en) Method for forming semiconductor processing components
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
US6881262B1 (en) Methods for forming high purity components and components formed thereby
JP2000169246A (en) Silicon carbide sintered compact
EP0885859B1 (en) Member for semiconductor equipment
JP4491080B2 (en) Method for producing sintered silicon carbide
JP2000119079A (en) Si-sic-made material for heat treatment of semiconductor and its production
JP3642446B2 (en) Semiconductor wafer processing tool
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JPH0583517B2 (en)
JPH10194876A (en) Production of jig for semiconductor
JPH0878376A (en) Method of cleaning semiconductor treating jigs