JPH0866986A - Manufacture of laminate - Google Patents

Manufacture of laminate

Info

Publication number
JPH0866986A
JPH0866986A JP6205042A JP20504294A JPH0866986A JP H0866986 A JPH0866986 A JP H0866986A JP 6205042 A JP6205042 A JP 6205042A JP 20504294 A JP20504294 A JP 20504294A JP H0866986 A JPH0866986 A JP H0866986A
Authority
JP
Japan
Prior art keywords
primer
layer
steel
thickness
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6205042A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takematsu
敏行 竹松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6205042A priority Critical patent/JPH0866986A/en
Publication of JPH0866986A publication Critical patent/JPH0866986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a laminate of superior resistance to corrosion and resistance to hot water without generating rust on a steel surface for a long period of time even when used under severe conditions such as temperature difference between the inner side of hot water and the inner face of outer face. CONSTITUTION: A hot rolled steel sheet is heated up to the surface temperature of 150 deg.C-550 deg.C to form an oxide film of 10μthickness, and then 60wt.% isopropanol solution of di-1 propoxy.bis(acetylacetonate) titanium is applied by using a brush and drying by wind, and then heated to form a a primer sintered layer of 15μm thickness. Vinyl trimethoxysilane of 1wt.% and di-t-butyl peroxide of 0.01 wt.% to straight chain-shaped low-density polyurethane of 100wt.% is added to the surface and kneaded at 190 deg.C, and modified silane graft polyethylene is extruded and fusion bonded to form a silane graft straight chain-shaped low-density polyethylene coated layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層体の製造方法に関
し、詳しくは、耐蝕性、耐熱水性に優れた、鉄鋼/シラ
ングラフトポリオレフィン積層体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a laminate, and more particularly to a method for producing a steel / silane-grafted polyolefin laminate excellent in corrosion resistance and hot water resistance.

【0002】[0002]

【従来の技術】金属板の耐蝕性を改善するため、従来よ
り金属板の表面に合成樹脂層を形成した積層体が知られ
ており、このような積層体は、屋根材や壁材、自動車用
部材、樹脂被覆金属管等に使用されている。例えば特開
平5−169585号公報には、熱水と冷水に繰り返し
浸漬されるような過酷な条件下においても耐蝕性、耐熱
水性に優れた積層体を提供するべく、金属体面に有機チ
タネートを焼結したプライマー層に合成樹脂層(シラン
グラフトポリオレフィン層)を形成した積層体が提案さ
れている。
2. Description of the Related Art In order to improve the corrosion resistance of a metal plate, a laminate having a synthetic resin layer formed on the surface of the metal plate has been conventionally known. Such a laminate is a roof material, a wall material, an automobile. It is used for materials, resin-coated metal pipes, etc. For example, in Japanese Unexamined Patent Publication No. 5-169585, an organic titanate is baked on the surface of a metal body in order to provide a laminate excellent in corrosion resistance and hot water resistance even under severe conditions such as repeated immersion in hot water and cold water. A laminate in which a synthetic resin layer (silane-grafted polyolefin layer) is formed on the bonded primer layer has been proposed.

【0003】しかし、上記公報記載の積層体において
も、熱水中や内外面で温度差があるような過酷な環境下
では、耐蝕性、耐熱水性が十分であるとは言えないもの
であった。即ち、上記過酷な環境下において使用する
と、水が合成樹脂中を拡散・浸透しプライマー層との界
面にまで達し、更に有機チタネートプライマー層中に次
第に水が拡散・浸透しやがては金属との界面に達し金属
を錆びさせ、これにより合成樹脂層は金属体との接着強
度が低下し金属体層から剥離する場合があった。
However, even the laminated body described in the above publication cannot be said to have sufficient corrosion resistance and hot water resistance in a harsh environment where there is a temperature difference between hot water and the inner and outer surfaces. . That is, when used in the above harsh environment, water diffuses and permeates in the synthetic resin to reach the interface with the primer layer, and further water gradually diffuses and permeates into the organic titanate primer layer, and eventually the interface with the metal. In some cases, the metal was rusted, and the adhesive strength of the synthetic resin layer to the metal body was reduced, resulting in peeling from the metal body layer.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
従来技術の問題点に鑑みてなされたものであって、高温
の熱水中や内外面で温度差があるような過酷な環境にお
いても、耐蝕性、耐熱水性に優れ、長期に渡って合成樹
脂層が金属体表面から剥離することのない積層体の製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and is intended for use in hot water of high temperature or in a severe environment where there is a temperature difference between the inner and outer surfaces. Another object of the present invention is to provide a method for producing a laminate, which is excellent in corrosion resistance and hot water resistance and in which the synthetic resin layer does not peel off from the surface of the metal body for a long period of time.

【0005】[0005]

【問題を解決するための手段】本発明者は、所謂“スケ
ール”と称される鉄の酸化皮膜付きの鋼板に有機チタネ
ートプライマーを塗布しても、プライマーが鉄鋼基材か
ら剥離しやすいことを見出だした。また、鉄鋼に対し表
面温度が150℃以上550℃以下となる如く加熱処理
を施すと耐久性に寄与し得る酸化被膜が形成されるとの
知見を得て、かかる知見を基に本発明を完成させた。
[Means for Solving the Problems] The present inventor has found that even when an organic titanate primer is applied to a so-called "scale" steel sheet with an iron oxide film, the primer is likely to be peeled off from the steel substrate. I found it. In addition, the present invention was completed based on the finding that an oxide film that can contribute to durability is formed when heat treatment is performed on steel such that the surface temperature is 150 ° C. or higher and 550 ° C. or lower. Let

【0006】本発明の積層体の製造方法は、上述の説明
において金属体として鉄鋼を用い合成樹脂としてシラン
グラフトポリオレフィンを用いるもので、鉄鋼に対し、
表面温度が150℃〜550℃となる如く加熱処理した
後、その表面に有機チタネートのプライマー焼結層を設
け、更ににその表面にシラングラフトポリオレフィン被
覆層を形成することを特徴とし、このことにより上記目
的が達成される。
The method for producing a laminate of the present invention uses steel as the metal body and silane-grafted polyolefin as the synthetic resin in the above description.
It is characterized in that after heat treatment so that the surface temperature is 150 ° C. to 550 ° C., a primer sintered layer of organic titanate is provided on the surface, and a silane-grafted polyolefin coating layer is further formed on the surface. The above object is achieved.

【0007】本発明において使用される鉄鋼の種類は、
特に限定されることなく、熱延鋼板、冷延鋼板、配管用
炭素鋼鋼管等、通常の鋼板、鋼管が広く用いられ、形状
も板状、管状のものに限らず棒状、その他の形状であっ
ても良い。通常、市販されている鋼板や鋼管の表面には
スケールが形成されている(特に熱延鋼板、配管用炭素
鋼鋼管等)場合が多いので、鉄鋼表面を加熱する前に、
場合によってはサンドブラスト処理を含め、ケイ酸ソー
ダなどによる脱脂処理及び塩酸、硝酸、硫酸などによる
酸処理によりスケールを除去しておくのが好ましい。
The types of steel used in the present invention are:
Without being particularly limited, ordinary steel plates and steel pipes such as hot rolled steel plates, cold rolled steel plates, carbon steel pipes for piping, etc. are widely used, and the shapes are not limited to plate-like or tubular ones, but rod-shaped and other shapes. May be. Usually, a scale is formed on the surface of commercially available steel plates and steel pipes (especially hot rolled steel plates, carbon steel pipes for piping, etc.), so before heating the steel surface,
In some cases, it is preferable to remove the scale by degreasing treatment with sodium silicate or the like and acid treatment with hydrochloric acid, nitric acid, sulfuric acid or the like, including sand blasting treatment.

【0008】その後、鉄鋼の表面温度が150℃以上、
550℃以下、好ましくは300℃以上、500℃以下
となる如く鉄鋼を加熱する。これは、加熱処理によって
鉄鋼表面に鉄の酸化皮膜(従来のスケールとは異なる構
成と考えられる。)を形成させることにより、積層体を
蒸気雰囲気中や熱水中などの過酷な条件下で用いた場合
に酸化皮膜表面にまで水が到達しても鉄鋼を錆びにくく
するものである。加熱処理時の表面温度が150℃未満
では、本発明において十分な効果を発揮する酸化皮膜が
得られない。また、550℃を超えると酸化皮膜の脆化
により表層が鉄鋼基材から剥離し、或いは鉄鋼中に含ま
れる炭素成分が表面に集積し、酸化皮膜表面に更に形成
するプライマー焼結層との接着性を低下せしめる。
Thereafter, the surface temperature of the steel is 150 ° C. or higher,
The steel is heated to 550 ° C or lower, preferably 300 ° C or higher and 500 ° C or lower. This is because when heat treatment forms an iron oxide film on the surface of steel (it is considered that the structure is different from that of conventional scales), the laminate can be used under severe conditions such as in a steam atmosphere or in hot water. In such a case, even if water reaches the surface of the oxide film, the steel will not easily rust. If the surface temperature during the heat treatment is less than 150 ° C., an oxide film that exerts a sufficient effect in the present invention cannot be obtained. Further, when the temperature exceeds 550 ° C., the surface layer peels off from the steel base material due to the embrittlement of the oxide film, or the carbon component contained in the steel accumulates on the surface and adheres to the primer sintered layer that is further formed on the oxide film surface. Reduce sex.

【0009】また、上述の加熱処理により形成された酸
化被膜の厚みは5〜50μm程度が好ましい。これは、
5μm未満でも、50μmを越えた場合でも本発明にお
ける接着耐久性に対する十分な効果が得られにくいから
である。本発明における有機チタネートプライマーと
は、分子中に無機物と結合し得る有機基(例えばイソプ
ロピル基のような加水分解基)と、有機物に親和性を有
する有機基(例えばステアロイル基、N−アミノエチル
−アミノエチル基、ドデシルベンゼンスルホニル基のよ
うな有機基)とを有する有機チタネート化合物を意味
し、市販品としては例えば、味の素社製「プレンアク
ト」や日本曹達社製の「チタコート」が挙げられる。
The thickness of the oxide film formed by the above heat treatment is preferably about 5 to 50 μm. this is,
This is because it is difficult to obtain a sufficient effect on the adhesion durability in the present invention even if it is less than 5 μm or exceeds 50 μm. The organic titanate primer in the present invention means an organic group capable of binding to an inorganic substance in the molecule (for example, a hydrolyzing group such as isopropyl group) and an organic group having an affinity for the organic substance (for example, stearoyl group, N-aminoethyl- An organic titanate compound having an aminoethyl group and an organic group such as dodecylbenzenesulfonyl group), and examples of commercially available products include “Planeact” manufactured by Ajinomoto Co., Inc. and “Citacoat” manufactured by Nippon Soda Co., Ltd.

【0010】このような有機チタネートプライマーの代
表的な例としては、イソプロピル(N−アミノエチル−
アミノエチル)チタネート、エチルトリ(N−アミノエ
チル−アミノエチル)チタネート、ジイソプロピルジ
(N−アミノエチル−アミノエチル)チタネート、ブチ
ルトリ(N−アミノエチル−アミノエチル)チタネー
ト、ジブチルジ(N−アミノエチル−アミノエチル)チ
タネート、テトラ−n−ブトキシチタン、テトラ(2−
エチルヘキシルオキシ)チタン、テトラ−i−プロポキ
シチタン等がある。
A typical example of such an organic titanate primer is isopropyl (N-aminoethyl-
Aminoethyl) titanate, ethyl tri (N-aminoethyl-aminoethyl) titanate, diisopropyldi (N-aminoethyl-aminoethyl) titanate, butyl tri (N-aminoethyl-aminoethyl) titanate, dibutyldi (N-aminoethyl-amino) Ethyl) titanate, tetra-n-butoxy titanium, tetra (2-
Examples include ethylhexyloxy) titanium and tetra-i-propoxy titanium.

【0011】中でも上記加水分解基と有機物に親和する
有機基とが2個ずつTi原子に結合したものが好まし
く、ジ−i−プロポキシ・ビス(アセチルアセトナト)
チタン、ジ−n−ブトキシ・ビス(トリエタノールアミ
ナト)チタンがこの点で特に好ましい。
Above all, it is preferable that two of the above-mentioned hydrolyzable groups and two organic groups having an affinity for organic substances are bonded to a Ti atom, and di-i-propoxy bis (acetylacetonato) is preferable.
Titanium and di-n-butoxy bis (triethanolaminato) titanium are particularly preferred in this respect.

【0012】これらの有機チタネートを主にアルコール
系の溶剤で希釈してロール、ブラシ、刷毛、コーティン
グロッド、スプレー等の通常の塗布手段で上記鉄鋼表面
に塗布する。塗布は上記加熱処理を行った後、鉄鋼の表
面温度が100℃以下になってから行うのが好ましい。
100℃より高い温度で塗布を行うと有機チタネートを
薄めるのに使用している溶剤が急激に揮発し、均一な有
機チタネート層が得られにくくなるためであり、又、危
険で作業環境上においても好ましくないからである。
These organic titanates are mainly diluted with an alcoholic solvent and applied onto the surface of the above steel by a usual application means such as a roll, brush, brush, coating rod, and spray. The coating is preferably performed after the surface temperature of the steel reaches 100 ° C. or lower after the above heat treatment.
This is because if the coating is carried out at a temperature higher than 100 ° C, the solvent used to dilute the organic titanate will volatilize rapidly, and it will be difficult to obtain a uniform organic titanate layer. This is because it is not preferable.

【0013】さらに、塗膜をバーナー加熱、熱風吹き付
け、誘導加熱などにより200〜450℃好ましくは2
30〜420℃の温度で焼結することによりプライマー
焼結層を形成する。プライマー焼結層の厚みは、通常、
0.01〜100μm、好ましくは5〜50μmとす
る。0.01μm未満であれば水分拡散の抑制効果が十
分に得られず、100μmを超過すれば積層体に曲げな
どの加工を行ったときに割れや亀裂を生じやすくなり、
本発明における効果が十分に得られなくなる恐れがある
からである。。
Further, the coating film is heated at 200 to 450 ° C., preferably 2 by burner heating, hot air blowing, induction heating or the like.
A primer sintered layer is formed by sintering at a temperature of 30 to 420 ° C. The thickness of the primer sintered layer is usually
The thickness is 0.01 to 100 μm, preferably 5 to 50 μm. If it is less than 0.01 μm, a sufficient effect of suppressing water diffusion cannot be obtained, and if it exceeds 100 μm, cracks or cracks are likely to occur when the laminate is processed such as bending,
This is because the effects of the present invention may not be sufficiently obtained. .

【0014】本発明においてはプライマー焼結層の表面
にシラングラフトポリオレフィン被覆層を形成する。そ
の理由は、有機チタネート焼結層との良好な接着性を有
し高温熱水に浸漬した状態においても長期接着耐久性に
優れているためでもある。シラングラフトポリオレフィ
ンは、例えばポリオレフィンにシランカップリング剤と
有機過酸化物とを混合し加熱溶融して、ポリオレフィン
をグラフト変性することによって得られる。ポリオレフ
ィンには高密度ポリエチレン、中密度ポリエチレン、低
密度ポリエチレン、線状低密度ポリエチレン等のポリエ
チレン、ポリプロピレン、ポリブテン等公知のものが使
用され、ポリエチレン、中でも線状低密度ポリエチレン
が好ましく使用される。
In the present invention, a silane-grafted polyolefin coating layer is formed on the surface of the primer sintered layer. The reason is that it has good adhesiveness with the organic titanate sintered layer and has excellent long-term adhesion durability even in the state of being immersed in high temperature hot water. The silane-grafted polyolefin is obtained by, for example, mixing a silane coupling agent and an organic peroxide with polyolefin, heating and melting the mixture, and graft-modifying the polyolefin. As the polyolefin, known materials such as high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene and the like, polypropylene, polybutene and the like are used, and polyethylene, and particularly linear low density polyethylene is preferably used.

【0015】シランカップリング剤としては分子中に加
水分解可能なアルコキシ基(メトキシ基、エトキシ基、
βメトキシエトキシ基等)やクロル基等を持ち、かつ同
じ分子中にビニル基、アクリル基、メタクリル基等のよ
うなポリオレフィン中に発生した遊離ラジカル部位と反
応する二重結合部位をもつ化合物が例示される。
As the silane coupling agent, a hydrolyzable alkoxy group (methoxy group, ethoxy group,
An example is a compound that has a β-methoxyethoxy group, etc.), a chloro group, etc., and has a double bond site that reacts with the free radical site generated in the polyolefin such as vinyl group, acryl group, methacryl group, etc. in the same molecule. To be done.

【0016】分子中に加水分解分解可能な官能基を有す
るのは、有機チタネート焼結層との結合、すなわち接着
に必要であり、二重結合部位をもつのはポリオレフィン
が有機過酸化物と共に加熱反応により生成したラジカル
部位と容易に反応しグラフト反応を起こさせるためであ
る。かかるシランカップリング剤の例としては、ビニル
トリメトキシシラン、ビニルトリエトキシシラン、ビニ
ルトリアセトキシシラン、γ−メタクリロキシプロピル
トリメトキシシラン等があげられる。
Having a hydrolyzable functional group in the molecule is necessary for bonding, that is, adhesion with the organic titanate sintered layer, and having a double bond site is the fact that the polyolefin is heated together with the organic peroxide. This is because it easily reacts with the radical site generated by the reaction to cause a graft reaction. Examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, γ-methacryloxypropyltrimethoxysilane, and the like.

【0017】また、有機過酸化物の好適な例としてはジ
メチルパーオキサイド、ジ−t−ブチルパーオキサイ
ド、ジクミルパーオキサイド、ジプロピオニルパーオキ
サイド、ベンゾイルパーオキサイド、t−ブチルヒドロ
パーオキサイド、クメンヒドロパーオキサイド等があ
る。
Preferred examples of organic peroxides include dimethyl peroxide, di-t-butyl peroxide, dicumyl peroxide, dipropionyl peroxide, benzoyl peroxide, t-butyl hydroperoxide and cumene hydro. There are peroxides and the like.

【0018】本発明におけるシラングラフトポリオレフ
ィン被覆層の厚みは特に制限はないが、積層体に曲げ加
工を施した場合に亀裂等が生じないようにするため5m
m以下にすることが望ましい。また、シラングラフトポ
リオレフィン層には本発明の効果を損なわない範囲で酸
化防止剤、紫外線吸収剤、着色剤等を転化してもよい。
The thickness of the silane-grafted polyolefin coating layer in the present invention is not particularly limited, but it is 5 m in order to prevent cracks from occurring when the laminate is bent.
It is desirable to be m or less. Further, an antioxidant, an ultraviolet absorber, a colorant and the like may be converted into the silane-grafted polyolefin layer within a range that does not impair the effects of the present invention.

【0019】プライマー焼結層が形成された鉄鋼表面
に、シラングラフトポリオレフィン被覆層を形成する方
法としては、押出機を使って加熱溶融されたシラングラ
フトポリオレフィンを被覆する方法、粉体状シラングラ
フトポリオレフィンの流動層中に加熱した鉄鋼を浸漬し
て樹脂を付着・溶融する方法、シラングラフトポリオレ
フィンのシートを接着剤を介して或いは介せずに加熱圧
着する方法などが挙げられる。
The method for forming the silane-grafted polyolefin coating layer on the surface of the steel on which the primer sintered layer has been formed includes a method of coating the silane-grafted polyolefin heated and melted using an extruder, and a powdery silane-grafted polyolefin. Examples of the method include a method in which heated steel is immersed in the fluidized bed to adhere and melt a resin, and a method in which a silane-grafted polyolefin sheet is heat-pressed with or without an adhesive.

【0020】[0020]

【作用】例えば熱延鋼板は、800℃から1000℃も
の高温で加熱し熱間圧延して製造されるものであり、各
種鋼板の多くは製造工程上の熱履歴により表面に“スケ
ール”と呼ばれる酸化被膜が形成されるているが、この
“スケール”は酸化被膜としては脆いものであり、鉄鋼
の耐蝕性を高め得るものではない。かかるスケールの詳
細な組成は不明であるが、Fe2 O3 、Fe3 O4 、及
びFeOが所定比で結合し又は混合した構成と考えられ
ている。本発明においては、鉄鋼に対し、表面温度が1
50℃〜550℃となる如く加熱処理することにより、
詳細は不明であるが、従来のスケールとは異なる構成の
酸化皮膜が形成されているものと推定される。
For example, hot-rolled steel sheets are produced by heating at a high temperature of 800 ° C. to 1000 ° C. and hot rolling, and most of various steel sheets are called “scale” on the surface due to the heat history in the manufacturing process. An oxide film is formed, but this "scale" is a brittle oxide film and cannot enhance the corrosion resistance of steel. Although the detailed composition of such a scale is unknown, it is considered that Fe2 O3, Fe3 O4, and FeO are combined or mixed in a predetermined ratio. In the present invention, the surface temperature of steel is 1
By heat treatment so that the temperature becomes 50 ° C to 550 ° C,
Although details are unknown, it is presumed that an oxide film having a structure different from that of the conventional scale is formed.

【0021】そして、加熱処理した後に有機チタネート
プライマー焼結層を設けるので、新規な構成の酸化皮膜
に強固に結合したプライマー焼結層が形成されることと
なり、更にその表面に強固に接着・形成したシラングラ
フトポリオレフィン被覆層により耐蝕性の高い積層体が
完成されるのである。即ち、過酷な環境下で経時によ
り、撥水性が強いシラングラフトポリオレフィン層に水
が侵入・透過し、更に、樹脂と酸化皮膜の双方に強固に
結合したプライマー焼結層に侵入・透過したとしても上
記新規な酸化皮膜が鉄鋼表面への到達を阻止・遅延せし
めるので、錆が極めて生じにくいのである。
Since the organic titanate primer sintered layer is provided after the heat treatment, the primer sintered layer firmly bonded to the oxide film having a new structure is formed, and further firmly adhered and formed on the surface thereof. The above-mentioned silane-grafted polyolefin coating layer completes a laminate having high corrosion resistance. That is, even if water penetrates and permeates the silane-grafted polyolefin layer having strong water repellency with time in a harsh environment, and further penetrates and permeates into the primer sintered layer that is firmly bonded to both the resin and the oxide film. Since the novel oxide film prevents or delays the arrival at the steel surface, rust is extremely unlikely to occur.

【0022】[0022]

【実施例】以下の実施例、比較例において、酸化被膜の
膜厚測定は、板断面に対しEPMA(Electron Probe of
Micro Analysis)による濃度のマッピングアナライザ−
によってマッピング(各場所における酸素濃度分布を異
なった色で表すもの)を行い、厚み方向の分布を調べた
上で測定した。又、積層体中の焼結プライマー層とシラ
ングラフトポリエチレン間の剥離接着強度は、JIS
K6854「接着剤の剥離接着強さ試験方法」に準拠し
て(但し、幅10mmの「T型剥離試験片」にて実
施。)測定した。
[Examples] In the following examples and comparative examples, the thickness of the oxide film was measured by using an EPMA (Electron Probe of
Micro Analysis) concentration mapping analyzer
Mapping was performed by using a different color to represent the oxygen concentration distribution at each location, and the distribution in the thickness direction was examined before measurement. Also, the peel adhesion strength between the sintered primer layer and the silane-grafted polyethylene in the laminate is determined by JIS
The measurement was carried out in accordance with K6854 "Peeling Adhesive Strength Testing Method of Adhesive" (however, carried out with "T-type peeling test piece" having a width of 10 mm).

【0023】(実施例1)熱延鋼板(SPHC)を60
℃のリン酸ソーダ系脱脂剤(日本パーカライジング製、
P−3,5%水溶液)に1分間浸漬(脱脂処理)し、水
洗ののち25℃10%硝酸に1分間浸漬(エッチング)
し、水洗した後400℃に設定したオーブンにいれて1
0分間加熱処理を行った。熱電対による測定結果では、
鋼板の表面温度は395℃であった。この表面に形成さ
れた酸化被膜の膜厚は10μmであった。
(Example 1) 60 hot-rolled steel sheets (SPHC)
℃ sodium phosphate degreaser (manufactured by Nippon Parkerizing,
Immerse in P-3,5% aqueous solution for 1 minute (degreasing treatment), wash with water, then soak in 25% 10% nitric acid for 1 minute (etching)
Then, rinse it with water and put it in an oven set to 400 ° C. 1
Heat treatment was performed for 0 minutes. In the measurement result by the thermocouple,
The surface temperature of the steel sheet was 395 ° C. The thickness of the oxide film formed on this surface was 10 μm.

【0024】鋼板の表面温度が25℃に低下してから、
片面にジ−i−プロポキシ・ビス(アセチルアセトナ
ト)チタンの60wt%イソプロパノール溶液を刷毛で
塗布、風乾した後、再びオーブンにいれて10分加熱処
理を行い395℃とした。これにより得られたプライマ
ー焼結層の厚さは15μmであった。さらにこのプライ
マー焼結層の表面に、直鎖状低密度ポリエチレン100
重量部に対しビニルトリメトキシシラン1重量部、ジ−
t−ブチルパーオキシド0.01重量部を添加して19
0℃で、混練し、変性したシラングラフトポリエチレン
を押出し融着させて厚さ2mmのシラングラフト直鎖状
低密度ポリエチレン(G−LLDPE)被覆層を形成し
目的とする積層体を得た。
After the surface temperature of the steel plate has dropped to 25 ° C.,
A 60 wt% isopropanol solution of di-i-propoxy bis (acetylacetonato) titanium was applied to one surface with a brush, air-dried, and then placed in an oven again for 10 minutes for heat treatment to 395 ° C. The thickness of the primer sintered layer thus obtained was 15 μm. Furthermore, linear low-density polyethylene 100 is formed on the surface of the primer sintered layer.
1 part by weight of vinyltrimethoxysilane, di-
Add 19 parts by weight of t-butyl peroxide to obtain 19
The modified silane-grafted polyethylene was kneaded at 0 ° C., and the modified silane-grafted polyethylene was extruded and fused to form a silane-grafted linear low-density polyethylene (G-LLDPE) coating layer having a thickness of 2 mm to obtain a target laminate.

【0025】この積層体の、プライマー焼結層とシラン
グラフトポリエチレン被覆層間の剥離接着強度は、36.0
kgf/2cm であった。次いで、この積層体を85℃の熱水
に5分間浸漬し、その後20℃の冷水に5分間浸漬する
操作を20000サイクル繰り返す加熱−冷却テストを
行った。テスト終了後、各層の剥離とその他異常発生の
有無を観察した結果、各層間の剥離、浮き、膨れ、錆に
よる変色等の異常は認められなかった。冷熱繰り返し後
の接着強度は、31.8kgf/2cm であった。
The peel adhesion strength between the primer sintered layer and the silane-grafted polyethylene coating layer of this laminate was 36.0.
It was kgf / 2cm. Then, a heating-cooling test was performed in which the laminate was immersed in hot water at 85 ° C. for 5 minutes and then immersed in cold water at 20 ° C. for 5 minutes to repeat 20000 cycles. After completion of the test, as a result of observing peeling of each layer and occurrence of other abnormalities, no abnormality such as peeling between the layers, floating, swelling, discoloration due to rust, etc. was observed. The adhesive strength after repeated cold heat was 31.8 kgf / 2 cm 2.

【0026】(実施例2)鋼板を300℃に設定したオ
ーブンにいれて10分間加熱処理を行いその表面温度を
297℃とした以外は全て実施例1と同様にして厚さ1
5μmのプライマー焼結層と厚さ2mmのG−LLDP
E被覆層が形成された積層体を得た。尚、加熱処理後に
形成された酸化被膜の膜厚は10μmであった。
(Example 2) A steel sheet having a thickness of 1 was prepared in the same manner as in Example 1 except that the steel sheet was placed in an oven set at 300 ° C and heat-treated for 10 minutes to change the surface temperature to 297 ° C.
Sintered 5 μm primer layer and 2 mm thick G-LLDP
A laminate having the E coating layer was obtained. The film thickness of the oxide film formed after the heat treatment was 10 μm.

【0027】実施例1と同様にして測定したプライマー
焼結層とG−LLDP被覆層間の剥離接着強度は、35.7
kgf/2cm であった。実施例1と同様の冷熱繰り返しテス
トの結果は、各層間の剥離、浮き、膨れ、錆による変色
等の異常は認められず、冷熱繰り返し後の接着強度は、
29.8kgf/2cm であった。
The peel adhesion strength between the primer sintered layer and the G-LLDP coating layer measured in the same manner as in Example 1 was 35.7.
It was kgf / 2cm. As a result of the same cold-heat repeated test as in Example 1, no abnormality such as peeling between each layer, floating, swelling, discoloration due to rust, etc. was observed, and the adhesive strength after repeated heat-cooling was:
It was 29.8 kgf / 2 cm.

【0028】(実施例3)鋼板を200℃に設定したオ
ーブンにいれて10分間加熱処理を行いその表面温度を
198℃とした以外は全て実施例1と同様にして厚さ1
5μmのプライマー焼結層と厚さ2mmのG−LLDP
E被覆層が形成された積層体を得た。尚、加熱により表
面に形成された酸化被膜の膜厚は8μmであった。実施
例1と同様にして測定したプライマー焼結層とG−LL
DP被覆層間の剥離接着強度は、35.0kgf/2cm であっ
た。実施例1と同様の冷熱繰り返しテストの結果は、各
層間の剥離、浮き、膨れ、錆による変色等の異常は認め
られず、冷熱繰り返し後の接着強度は、27.9kgf/2cm で
あった。
(Embodiment 3) A steel sheet having a thickness of 1 was prepared in the same manner as in Embodiment 1 except that the steel sheet was placed in an oven set to 200 ° C. and heat-treated for 10 minutes to change the surface temperature to 198 ° C.
Sintered 5 μm primer layer and 2 mm thick G-LLDP
A laminate having the E coating layer was obtained. The thickness of the oxide film formed on the surface by heating was 8 μm. Primer sintered layer and G-LL measured in the same manner as in Example 1
The peel adhesion strength between the DP coating layers was 35.0 kgf / 2 cm. As a result of the same repeated heat and cold test as in Example 1, no abnormalities such as peeling, floating, swelling and discoloration due to rust between the layers were observed, and the adhesive strength after repeated heat and cold was 27.9 kgf / 2 cm.

【0029】(実施例4)鋼板を500℃に設定したオ
ーブンにいれて10分間加熱処理を行いその表面温度を
479℃とした以外は全て実施例1と同様にして、厚さ
15μmのプライマー焼結層と厚さ2mmのG−LLD
PE被覆層が形成された積層体を得た。尚、加熱により
表面に形成された酸化被膜の膜厚は20μmであった。
実施例1と同様にして測定したプライマー焼結層とG−
LLDP被覆層間の剥離接着強度は、35.6kgf/2cm であ
った。実施例1と同様の冷熱繰り返しテストの結果は、
各層間の剥離、浮き、膨れ、錆による変色等の異常は認
められず、冷熱繰り返し後の接着強度は、30.9kgf/2cm
であった。
(Example 4) A primer burner having a thickness of 15 µm was prepared in the same manner as in Example 1 except that the steel sheet was placed in an oven set at 500 ° C and heat-treated for 10 minutes to change the surface temperature to 479 ° C. Layer and 2mm thick G-LLD
A laminate having a PE coating layer was obtained. The thickness of the oxide film formed on the surface by heating was 20 μm.
The primer sintered layer and G- which were measured in the same manner as in Example 1
The peel adhesion strength between the LLDP coating layers was 35.6 kgf / 2 cm 2. The result of the cold heat repetition test similar to that in Example 1 was as follows.
No abnormalities such as peeling between layers, floating, swelling, discoloration due to rust, etc. were observed, and the adhesive strength after repeated cooling and heating was 30.9 kgf / 2 cm.
Met.

【0030】( 実施例5)実施例1と同様にして鋼板表
面温度を395℃とし、厚さ10μmの酸化皮膜を得
た。次いで鋼板の片面にジ−i−プロポキシ・ビス(ア
セチルアセトナト)チタンの10wt%イソプロパノー
ル溶液を刷毛で塗布、風乾したのち再び400℃に設定
されたオーブンに入れてで4分間加熱処理を行った。こ
の塗布、風乾、加熱からなる工程を3回行って、厚さ1
0μmのプライマー焼結層を形成した。さらにこの表面
に、実施例1と同じG−LLDPEを同様に押出し融着
させて厚さ2mmのG−LLDPE被覆層が形成された
積層体を得た。実施例1と同様にして測定したプライマ
ー焼結層とG−LLDP被覆層間の剥離接着強度は、3
9.0kgf/2cm であった。実施例1と同様の冷熱繰り返し
テストの結果は、各層間の剥離、浮き、膨れ、錆による
変色等の異常は認められず、冷熱繰り返し後の接着強度
は、34.8kgf/2cm であった。
(Example 5) In the same manner as in Example 1, a steel plate surface temperature was set to 395 ° C and an oxide film having a thickness of 10 µm was obtained. Next, a 10 wt% isopropanol solution of di-i-propoxy bis (acetylacetonato) titanium was applied to one surface of the steel sheet with a brush, air-dried, and then again placed in an oven set at 400 ° C. and heat-treated for 4 minutes. . This process consisting of coating, air drying, and heating is performed 3 times to obtain a thickness of 1
A 0 μm primer sintered layer was formed. Further, the same G-LLDPE as in Example 1 was extruded and fused on this surface in the same manner to obtain a laminate having a G-LLDPE coating layer having a thickness of 2 mm. The peel adhesion strength between the primer sintered layer and the G-LLDP coating layer measured in the same manner as in Example 1 was 3
It was 9.0 kgf / 2 cm. As a result of the same repeated heat and cold test as in Example 1, no abnormalities such as peeling, floating, swelling, discoloration due to rust between the layers were observed, and the adhesive strength after repeated heat and cold was 34.8 kgf / 2 cm.

【0031】( 実施例6)一般構造用圧延鋼材(SS4
1)からなるソケット型管継手を実施例1と同様に脱
脂、エッチングした後、実施例1と同様に鋼板表面温度
を395℃とし、厚さ10μmの酸化皮膜を得た。この
後、実施例1と同様にしてプライマーを継手の内表面に
均一に塗布し、400℃で10分間加熱を行い、厚さ1
7μmのプライマー焼結層を設けた。この管継手を20
0℃に加熱し粉体塗装装置に接続し、その内表面に実施
例1と同じG−LLDPEを、噴射により積層した。こ
のとき、G−LLDPEの厚みは、2.0mmであっ
た。この継手に対し85℃の熱水を5分間通湯し、その
後20℃水を5分間通水する冷熱繰り返しテストを20
000サイクル行ったところ継手内面において金属体−
樹脂間の剥離、金属体層の錆等の異常は見られなかっ
た。また、この冷熱繰り返しテスト前後の接着強度を管
継手の一部を切り出しT型剥離試験にて実施したとこ
ろ、冷熱繰り返しテスト前は、30.7kgf/2cm 、テス
ト後は27.6kgf/2cm であった。
(Example 6) Rolled steel for general structure (SS4
After degreasing and etching the socket type pipe joint consisting of 1) in the same manner as in Example 1, the steel plate surface temperature was set to 395 ° C. in the same manner as in Example 1 to obtain an oxide film having a thickness of 10 μm. After that, the primer was uniformly applied to the inner surface of the joint in the same manner as in Example 1, and heating was performed at 400 ° C. for 10 minutes to give a thickness of 1
A 7 μm primer sintered layer was provided. This pipe fitting 20
It was heated to 0 ° C. and connected to a powder coating device, and the same G-LLDPE as in Example 1 was laminated on the inner surface by jetting. At this time, the thickness of G-LLDPE was 2.0 mm. A hot and cold repeated test was conducted by passing hot water at 85 ° C for 5 minutes to this joint and then passing water at 20 ° C for 5 minutes.
After 000 cycles, the metal body on the inner surface of the joint
No abnormalities such as peeling between resins and rust on the metal layer were observed. Also, the adhesive strength before and after this cold heat repeating test was cut out from a part of the pipe joint and carried out by a T-type peeling test. It was

【0032】(実施例7)鋼板の加熱条件を200℃で
30分間として表面温度を199℃とした以外は全て実
施例3と同様にして、厚さ2mmのG−LLDPE被覆
層が形成された積層体を得た。実施例1と同様にして測
定したプライマー焼結層とG−LLDP被覆層間の剥離
接着強度は、32.6kgf/2cm であった。実施例1と同様の
冷熱繰り返しテストの結果は、各層間の剥離、浮き、膨
れ、錆による変色等の異常は認められず、冷熱繰り返し
後の接着強度は、31.9kgf/2cm であった。
Example 7 A G-LLDPE coating layer having a thickness of 2 mm was formed in the same manner as in Example 3 except that the heating conditions of the steel sheet were 200 ° C. for 30 minutes and the surface temperature was 199 ° C. A laminated body was obtained. The peel adhesion strength between the primer sintered layer and the G-LLDP coating layer measured in the same manner as in Example 1 was 32.6 kgf / 2 cm 2. As a result of the same repeated heat and cold test as in Example 1, no abnormalities such as peeling, floating, swelling, and discoloration due to rust between the layers were observed, and the adhesive strength after repeated heat and cold was 31.9 kgf / 2 cm.

【0033】(実施例8)この例は本発明を管に応用し
たものである。外径114mm、長さ2.5mの配管用
炭素鋼鋼管(SGP)を実施例1と同様にして脱脂、エ
ッチングした後、400℃設定で10分間加熱し表面温
度を395℃とし、厚さ10μmの酸化皮膜を得た。こ
の後、実施例1と全く同じプライマー溶液を鋼管の内表
面に均一に塗布し、400℃で10分間加熱を行い、表
面温度395℃とした。プライマー焼結層の厚さは17
μmであった。この内表面に、実施例1と同じ方法で得
た実施例1と同じG−LLDPEを温度190℃、圧力
100kg/cm2 にて積層した。このとき、G−LLD
PE被覆層の厚さは、2.0mmであった。
(Embodiment 8) In this example, the present invention is applied to a tube. A carbon steel pipe for piping (SGP) having an outer diameter of 114 mm and a length of 2.5 m was degreased and etched in the same manner as in Example 1, and then heated at 400 ° C. for 10 minutes to a surface temperature of 395 ° C. and a thickness of 10 μm. An oxide film of was obtained. Thereafter, the same primer solution as in Example 1 was uniformly applied to the inner surface of the steel pipe and heated at 400 ° C. for 10 minutes to bring the surface temperature to 395 ° C. The thickness of the primer sintered layer is 17
was μm. On this inner surface, the same G-LLDPE as in Example 1 obtained by the same method as in Example 1 was laminated at a temperature of 190 ° C. and a pressure of 100 kg / cm 2 . At this time, G-LLD
The PE coating layer had a thickness of 2.0 mm.

【0034】この鋼管に対し85℃熱水を5分間通湯
し、その後20℃水を5分間通水する冷熱繰り返しテス
トを20000サイクル行ったが、鋼管内面において金
属体−樹脂間の剥離、金属体層の錆等の異常は見られな
かった。また、この冷熱繰り返しテスト前後の接着強度
測定のため鋼管を短冊状に切断しT型剥離試験にて測定
したところ、冷熱繰り返しテスト前は、35.3kgf/2
cm、テスト後は31.6kgf/2cmであった。
A hot / cold heat cycle test was conducted by passing hot water at 85 ° C. for 5 minutes and then passing water at 20 ° C. for 5 minutes to this steel pipe for 20000 cycles. No abnormality such as rust on the body layer was observed. In addition, the steel pipe was cut into strips to measure the adhesive strength before and after this cold heat repeated test and measured by the T-type peeling test. Before the cold heat repeated test, 35.3 kgf / 2
cm, and 31.6 kgf / 2 cm after the test.

【0035】(比較例1)鋼板に加熱処理を施さなかっ
た以外は、実施例1と全く同様にして、厚さ10μmの
プライマー焼結層と厚さ2mmのG−LLDPE被覆層
が形成された積層体を得た。実施例1と同様にして測定
したプライマー焼結層とG−LLDP被覆層間の剥離接
着強度は、37.3kgf/2cm であった。実施例1と同様の冷
熱繰り返しテスト後、各層間の剥離等の異常発生の有無
を観察したところ、プライマー層−シラングラフトポリ
エチレン層間で剥離による多数の膨れが見られた。ま
た、鋼板表面には黒錆と思われる変色があった。さらに
接着強度を測定したところ、12.6kgf/2cm であっ
た。
Comparative Example 1 A primer sintered layer having a thickness of 10 μm and a G-LLDPE coating layer having a thickness of 2 mm were formed in the same manner as in Example 1 except that the steel sheet was not heat-treated. A laminated body was obtained. The peel adhesion strength between the primer sintered layer and the G-LLDP coating layer measured in the same manner as in Example 1 was 37.3 kgf / 2 cm. After the same thermal cycling test as in Example 1, the presence or absence of abnormalities such as peeling between layers was observed, and a large number of swellings due to peeling were observed between the primer layer and the silane-grafted polyethylene layer. In addition, the surface of the steel sheet had a discoloration that appeared to be black rust. Further, when the adhesive strength was measured, it was 12.6 kgf / 2 cm 2.

【0036】(比較例2)プライマー焼結層を設けず、
実施例1と同じ方法で得たG−LLDPのシートを20
0℃で加熱積層した以外は、実施例1と同様にして、厚
さ10μmの酸化皮膜と厚さ2mmのG−LLDPE被
覆層が形成された積層体を得た。実施例1の方法に準拠
して測定した鉄鋼とG−LLDP被覆層間の剥離接着強
度は、33.3kgf/2cm であった。実施例1と同様の冷熱繰
り返しテスト後、各層間の剥離等の異常発生の有無を観
察したところ、鋼板−シラングラフトポリエチレン層間
で多数の膨れが見られた。また、鋼板表面には黒錆と思
われる変色があった。さらに接着強度を測定したとこ
ろ、14.6kgf/2cm であった。
(Comparative Example 2) A primer sintered layer was not provided,
20 sheets of G-LLDP obtained by the same method as in Example 1 were used.
A laminate in which an oxide film having a thickness of 10 μm and a G-LLDPE coating layer having a thickness of 2 mm were formed in the same manner as in Example 1 except that the layers were heated and laminated at 0 ° C. The peel adhesion strength between the steel and the G-LLDP coating layer measured according to the method of Example 1 was 33.3 kgf / 2 cm 2. After the same thermal cycling test as in Example 1, the presence or absence of abnormalities such as peeling between layers was observed, and a large number of blisters were observed between the steel plate-silane graft polyethylene layer. In addition, the surface of the steel sheet had a discoloration that appeared to be black rust. Further, when the adhesive strength was measured, it was 14.6 kgf / 2 cm 2.

【0037】(比較例3)前処理としての鋼板への加熱
条件を100℃で60分とし厚さ2μmの酸化皮膜を形
成した以外は、実施例1と全く同様にして、厚さ10μ
mのプライマー焼結層と厚さ2mmのG−LLDPE被
覆層が形成された積層体を得た。実施例1と同様にして
測定したプライマー焼結層とG−LLDP被覆層間の剥
離接着強度は、33.5kgf/2cm であった。実施例1と同様
の冷熱繰り返しテスト後、各層間の剥離等の異常発生の
有無を観察したところ、プライマー層−シラングラフト
ポリエチレン層間で多数の膨れが見られた。また、鋼板
表面には黒錆と思われる変色があった。さらに接着強度
を測定したところ、15.6kgf/2cm であった。
(Comparative Example 3) A thickness of 10 μm was obtained in exactly the same manner as in Example 1 except that the heating condition for the steel sheet as pretreatment was 100 ° C. for 60 minutes to form an oxide film having a thickness of 2 μm.
Thus, a laminated body in which a primer sintered layer of m and a G-LLDPE coating layer having a thickness of 2 mm were formed was obtained. The peel adhesion strength between the primer sintered layer and the G-LLDP coating layer measured in the same manner as in Example 1 was 33.5 kgf / 2 cm 2. After the same thermal cycling test as in Example 1, the presence or absence of abnormalities such as peeling between layers was observed, and a large number of blisters were observed between the primer layer and the silane-grafted polyethylene layer. In addition, the surface of the steel sheet had a discoloration that appeared to be black rust. Further, the adhesive strength was measured and found to be 15.6 kgf / 2 cm.

【0038】(比較例4)前処理としての鋼板への加熱
条件を600℃で10分とし、表面温度を575℃とし
て厚さ2μmの酸化皮膜を形成した以外は、実施例1と
全く同様にして、厚さ10μmのプライマー焼結層と厚
さ2mmのG−LLDPE被覆層が一応形成された積層
体を得た。実施例1と同様にしてプライマー焼結層とG
−LLDP被覆層間の剥離接着強度を測定しようとした
が、酸化皮膜が脆化していてプライマー焼結層が剥離し
易い状態であり、測定不能であった。
(Comparative Example 4) The same procedure as in Example 1 was carried out except that the heating condition for the steel sheet as the pretreatment was 600 ° C. for 10 minutes, the surface temperature was 575 ° C., and an oxide film having a thickness of 2 μm was formed. As a result, a laminated body in which a primer sintered layer having a thickness of 10 μm and a G-LLDPE coating layer having a thickness of 2 mm were once formed was obtained. In the same manner as in Example 1, the primer sintered layer and G
-An attempt was made to measure the peeling adhesive strength between the LLDP coating layers, but the oxide film was brittle and the primer sintered layer was easily peeled off.

【0039】[0039]

【発明の効果】本発明の積層体の製造方法は、鉄鋼に対
し、表面温度が150℃〜550℃となる如く加熱処理
をするものであるので、鉄鋼表面に新規な構成の酸化皮
膜を存在せしめ、更にその後有機チタネートプライマー
焼結層を設け、シラングラフトポリオレフィン被覆層を
形成するので、本発明によれば、熱水中や内外面で温度
差があるような場合や熱水−冷水の繰り返し等と言った
過酷な条件下においても、長期に渡って鉄鋼表面の錆の
発生が無い耐蝕性、耐熱水性に優れた積層体を提供する
ことが可能である。
According to the method for producing a laminate of the present invention, the steel is heat-treated so that the surface temperature is 150 ° C to 550 ° C. Therefore, an oxide film having a novel structure is present on the surface of the steel. Since the organic titanate primer sintered layer is further provided and the silane-grafted polyolefin coating layer is formed, according to the present invention, when there is a temperature difference between hot water and the inner and outer surfaces, or when hot water-cold water is repeatedly used. It is possible to provide a laminate excellent in corrosion resistance and hot water resistance that does not cause rust on the steel surface for a long period of time even under such severe conditions as described above.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鋼に対し、表面温度が150℃〜550
℃となる如く加熱処理した後、その表面に有機チタネー
トのプライマー焼結層を設け、更ににその表面にシラン
グラフトポリオレフィン被覆層を形成することを特徴と
する積層体の製造方法。
1. The surface temperature of steel is 150 ° C. to 550.
A method for producing a laminate, which comprises heat-treating at a temperature of 0 ° C., providing an organic titanate primer sintered layer on the surface thereof, and further forming a silane-grafted polyolefin coating layer on the surface thereof.
JP6205042A 1994-08-30 1994-08-30 Manufacture of laminate Pending JPH0866986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6205042A JPH0866986A (en) 1994-08-30 1994-08-30 Manufacture of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6205042A JPH0866986A (en) 1994-08-30 1994-08-30 Manufacture of laminate

Publications (1)

Publication Number Publication Date
JPH0866986A true JPH0866986A (en) 1996-03-12

Family

ID=16500492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6205042A Pending JPH0866986A (en) 1994-08-30 1994-08-30 Manufacture of laminate

Country Status (1)

Country Link
JP (1) JPH0866986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016047A3 (en) * 2001-08-17 2003-05-01 3M Innovative Properties Co Glazing prelaminates, glazing laminates, and methods of making same
JP2006283307A (en) * 2005-03-31 2006-10-19 Lonseal Corp Metal drain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016047A3 (en) * 2001-08-17 2003-05-01 3M Innovative Properties Co Glazing prelaminates, glazing laminates, and methods of making same
JP2006283307A (en) * 2005-03-31 2006-10-19 Lonseal Corp Metal drain

Similar Documents

Publication Publication Date Title
JPH0866986A (en) Manufacture of laminate
JP3873680B2 (en) Method for producing anti-corrosion coated steel
JP4132687B2 (en) Heat-resistant pre-coated steel plate with excellent workability and spot weldability
JP3546271B2 (en) Manufacturing method of anticorrosion coated steel
JPH05269919A (en) Metal laminate
JP3112756B2 (en) Composite pipe
JPS6112516B2 (en)
JPH07232402A (en) Laminate and manufacture thereof
JP4207632B2 (en) Polyolefin coated steel
JP3257870B2 (en) Manufacturing method of laminate
JPS6372377A (en) Preparation of steel material coated with polyolefin resin powder by fusion bonding
JPH0780991A (en) Manufacture of laminates
JP3480197B2 (en) Polypropylene-coated steel pipe excellent in thermal oxidation deterioration resistance and weather resistance and method for producing the same
JPH07237280A (en) Laminate and its production
JP4617575B2 (en) Method for producing anti-corrosion coated steel
JPH05293931A (en) Production of laminate
JP3591122B2 (en) Polypropylene-coated steel pipe with excellent resistance to heat oxidation deterioration, low-temperature embrittlement resistance and water-resistant secondary adhesion
JP3163908B2 (en) Polyolefin resin coated steel
JPH1058597A (en) Polypropylene-coated steel pipe with good thermal oxidation deterioration resistance and weatherability, and manufacture thereof
JPH06316030A (en) Production of laminate
JPH08224831A (en) Composite tube
JPH07290634A (en) Production of inner surface resin coated metal pipe
JPH05329982A (en) Laminate
JPH05169585A (en) Laminate
JPH06166140A (en) Laminate and production thereof