JPH0866759A - Spray deposition method - Google Patents

Spray deposition method

Info

Publication number
JPH0866759A
JPH0866759A JP20391294A JP20391294A JPH0866759A JP H0866759 A JPH0866759 A JP H0866759A JP 20391294 A JP20391294 A JP 20391294A JP 20391294 A JP20391294 A JP 20391294A JP H0866759 A JPH0866759 A JP H0866759A
Authority
JP
Japan
Prior art keywords
outer peripheral
preform
deposition method
atomizer
spray deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20391294A
Other languages
Japanese (ja)
Inventor
Takahisa Takano
恭寿 高野
Yoshio Nanba
吉雄 難波
Masaru Saito
勝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20391294A priority Critical patent/JPH0866759A/en
Publication of JPH0866759A publication Critical patent/JPH0866759A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To reduce the thickness of a hole layer by turning an atomizer to move the jet flow of a high-pressure gas back and forth between the central part and outer peripheral part of a preform and stopping the forward and backward movement for a specific period in the inner and outer peripheral parts in one period of the forward and backward movement. CONSTITUTION: The jet flow 6 of the high-pressure gas ejected by the atomizer 5 is blown to molten metal 2 flowing down perpendicularly to atomize this molten metal. The atomized metallic particles are deposited on a moving base plate 9, by which the preform 11 is obtd. The atomizer 5 is rotated to move the jet flow of the high-pressure gas back and forth between the central part and outer peripheral part of the perform 11 and is stopped for the 1/18 to 1/3 period in the inner and outer peripheral parts in one period of the forward and backward movement. As a result, the shape control of the upper surface of the preform 11 is executed and the thickness of the hole layer in the outer peripheral part or the outer edge part is reduced, by which the yield of the defectless part of the castable preform is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オスプレイ法もしくは
スプレーキャスティング法として知られている噴霧堆積
法に関し、特には円柱状に形成される予備成形体の空孔
層を低減する噴霧堆積法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spray deposition method known as an Osprey method or a spray casting method, and more particularly to a spray deposition method for reducing the pore layer of a cylindrical preform. Is.

【0002】[0002]

【従来の技術】噴霧堆積法は均一な微細組織を得ること
ができ、しかも従来の粉末冶金法に比べて成形工程が簡
略化できるので、生産性の大幅な向上を期待できる方法
として注目されている。この噴霧堆積法の例としては、
特公昭54− 29985号、特開昭62−156206号などが挙げら
れる。
2. Description of the Related Art The spray deposition method can obtain a uniform fine structure and can simplify the molding process as compared with the conventional powder metallurgy method. Therefore, it has attracted attention as a method which can be expected to greatly improve the productivity. There is. An example of this spray deposition method is:
JP-B-54-29985, JP-A-62-156206 and the like can be mentioned.

【0003】図5は、噴霧堆積法を用いて塊状予備成形
体を製造するための装置例を示す説明図である。タンデ
ィッシュ1には金属溶湯2が入れられており、この金属
溶湯2はタンディッシュノズル3を介して非酸化性雰囲
気のチャンバー4内を自然流下させられる。上記タンデ
ィッシュ1の下方にはガスアトマイザー5が配設され、
このガスアトマイザー5から噴出される高圧の不活性ガ
スがジェット流6となって金属溶湯流7に吹付けられ、
これを噴霧化する。噴霧化された金属粒子は下方のコレ
クター8にセットした基板9上に半凝固状態で堆積し徐
々に凝固する。上記コレクター8はステッピングモータ
10等を駆動源として上下動および回転可能であり、金属
粒子の堆積量に応じて上記コレクター8を徐々に降下さ
せれば、タンディッシュノズル3と堆積最頂面の間の距
離を一定に保つことができ、堆積高さの高められた塊状
の予備成形体11を得ることができる。
FIG. 5 is an explanatory view showing an example of an apparatus for producing a block preform by using the spray deposition method. A metal melt 2 is put in the tundish 1, and the metal melt 2 is allowed to flow down naturally in a chamber 4 in a non-oxidizing atmosphere via a tundish nozzle 3. A gas atomizer 5 is arranged below the tundish 1,
The high-pressure inert gas ejected from the gas atomizer 5 becomes a jet stream 6 and is sprayed on the molten metal stream 7.
This is atomized. The atomized metal particles are deposited in a semi-solidified state on the substrate 9 set on the lower collector 8 and gradually solidified. The collector 8 is a stepping motor
It can be moved up and down and rotated using 10 etc. as a drive source, and if the collector 8 is gradually lowered according to the amount of metal particles deposited, the distance between the tundish nozzle 3 and the topmost surface of the deposition is kept constant. Thus, it is possible to obtain a lump-shaped preform 11 having an increased deposition height.

【0004】上記噴霧堆積法により製造された材料は、
インゴット法で作られた材料に比べ、偏析が少ない、
必要とされない元素(酸素等)の汚染が少ない、急
冷凝固のため溶質元素の固溶限が拡大するので合金元素
の種類と量を増大できる、等の特徴を有する。
The material produced by the above spray deposition method is
Less segregation than materials made by ingot method,
It has the features that there is little contamination of unnecessary elements (oxygen etc.) and that the type and amount of alloying elements can be increased because the solid solution limit of solute elements is expanded due to rapid solidification.

【0005】[0005]

【発明が解決しようとする課題】一方、本発明者等は、
これまで上述の噴霧堆積法を改良し、ガスアトマイザー
5を例えば特開昭62−156206号公報の FIG1に示される
図6に示すカム機構を採用して回動させ、ガスアトマイ
ザー5から噴出される高圧の不活性ガスジェット流6を
予備成形体11の中心部と外周部との間で往復移動させ、
上記特徴を有する円柱状の予備成形体の製造を試みてき
た。
On the other hand, the present inventors have
Up to now, the above-mentioned spray deposition method has been improved so that the gas atomizer 5 is rotated by employing, for example, the cam mechanism shown in FIG. 6 shown in FIG. 1 of JP-A-62-156206, and ejected from the gas atomizer 5. The high pressure inert gas jet stream 6 is reciprocated between the central portion and the outer peripheral portion of the preform 11,
Attempts have been made to produce a cylindrical preform having the above characteristics.

【0006】ところが、上記方法により得られた円柱状
予備成形体は、球形の粒子が製作時の噴霧ガス、放射等
により冷却された予備成形体の外周面に付着し、粒子の
3重点が空孔となる厚さ10mm程度の空孔層を有する。こ
の空孔層が有ると、後工程の鍛造等の加工の際に割れの
原因となるため旋削除去せねばならず、歩留り低下の原
因となる。このため、この空孔層を減じ、外周部空孔層
を除去した予備成形体の重量を溶解重量で割った値であ
る予備成形体の健全歩留りを向上することが課題となっ
ていた。
However, in the cylindrical preform obtained by the above method, spherical particles adhere to the outer peripheral surface of the preform cooled by spray gas, radiation, etc. during production, and the three points of particles are vacant. It has a hole layer with a thickness of about 10 mm that becomes holes. The presence of this vacancy layer causes cracking during processing such as forging in a later step, and therefore must be removed by turning, which causes a reduction in yield. Therefore, there has been a problem to reduce the void layer and improve the sound yield of the preform, which is a value obtained by dividing the weight of the preform from which the outer peripheral void layer is removed by the melt weight.

【0007】本発明は、上記の問題点に鑑みてなされた
ものであり、その目的とするところは、予備成形体の空
孔層の厚さを低減し、以て鍛造可能な健全部歩留りを向
上せしめた噴霧堆積法を提供せんとするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the thickness of the pore layer of the preform so that the yield of sound parts that can be forged is improved. It is intended to provide an improved spray deposition method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る噴霧堆積法は、垂直に流下する金属溶
湯にアトマイザーより噴出する高圧ガスのジェット流を
吹付けてこれを噴霧化し、この噴霧化された金属粒子を
移動する基板上に堆積させて予備成形体を得る噴霧堆積
法において、アトマイザーを回動させて高圧ガスのジェ
ット流を予備成形体の中心部と外周部との間で往復移動
させ、その往復移動1周期の内、外周部で 1/18〜 1/
3 周期停止させるものである。
In order to achieve the above object, in the spray deposition method according to the present invention, a jet stream of high-pressure gas ejected from an atomizer is sprayed onto a vertically molten metal melt to atomize it. In the spray deposition method in which the atomized metal particles are deposited on a moving substrate to obtain a preform, the atomizer is rotated to generate a jet stream of high-pressure gas between the central portion and the outer peripheral portion of the preform. Reciprocating between 1 and 18-1 /
It stops for three cycles.

【0009】[0009]

【作用】本発明者等は、上述の課題を知見した後その解
決策を種々検討し、外周部空孔層の厚さを減じるには、
単位時間当たりに堆積面に流入する熱量を増加させる方
法を取ればよいと考えた。そして、具体的手法として、
アトマイズガスを低圧にし、生成する粒子径を増加さ
せ、スプレイコーン自体の持つ熱量を増加させる手法、
コレクターの回転および降下速度を減速し、単位時間当
たりの堆積量を増加させる手法、移動パターンを変更し
予備成形体のアトマイズガスによる冷却が著しい個所の
み局部的に熱量を増加させる手法、等を考えた。しかし
ながら、スプレイコーン自体の熱量増加とコレクターの
回転および降下速度の手法は、予備成形体全体の温度が
増加し所望の急冷度が得られず、機械的特性が低下する
と言った問題が考えられる。一方、移動パターンを変更
する手法は、現状の移動パターンでも急冷度が得られて
おり、したがって、予備成形体の外周面のみの熱量を増
加可能な移動パターンに変更することで急冷凝固の特徴
を満たしつつ外周部空孔層の厚さを低減させることがで
きると考えられ、この移動パターンの開発により本発明
を完成させたものである。
In order to reduce the thickness of the outer peripheral hole layer, the inventors of the present invention have studied the above-mentioned problems and found various solutions to the problems.
It was thought that a method of increasing the amount of heat flowing into the deposition surface per unit time should be taken. And as a concrete method,
A method of reducing the atomizing gas pressure to increase the generated particle size and increasing the heat amount of the spray cone itself,
Consider a method to reduce the collector rotation and descent speed to increase the amount of deposition per unit time, a method to change the movement pattern and locally increase the amount of heat only at the places where the preform is cooled by the atomizing gas, etc. It was However, the method of increasing the amount of heat of the spray cone itself and the method of rotating and lowering the collector may cause a problem that the temperature of the entire preform increases and the desired degree of quenching cannot be obtained, resulting in deterioration of mechanical properties. On the other hand, in the method of changing the movement pattern, the degree of quenching is obtained even with the current movement pattern. Therefore, the characteristic of the rapid solidification is changed by changing the movement pattern that can increase the amount of heat of only the outer peripheral surface of the preform. It is considered that the thickness of the outer peripheral hole layer can be reduced while satisfying the condition, and the present invention has been completed by developing this movement pattern.

【0010】本発明では、アトマイザーを回動させて高
圧ガスのジェット流を予備成形体の中心部と外周部との
間で往復移動させ、その往復移動1周期の内、外周部で
1/18〜 1/3 周期停止させるので、所望の急冷度を得
つつ予備成形体外周部の熱量を増加させることができ、
堆積物外周部の空孔層を減少させ、鍛造可能な健全部歩
留りを向上させることができる。
According to the present invention, the atomizer is rotated to reciprocate the jet stream of the high-pressure gas between the central portion and the outer peripheral portion of the preform, and the outer peripheral portion is included in one reciprocating movement cycle.
Since it is stopped for 1/18 to 1/3 cycle, it is possible to increase the heat quantity of the outer peripheral portion of the preform while obtaining the desired degree of quenching.
It is possible to reduce the vacancy layer in the outer peripheral portion of the deposit and improve the yield of the forgeable sound portion.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明に係る噴霧堆積法と比較例の噴霧
堆積法で使用した移動パターンの比較図であって、本実
施例では、図5および図6に示す装置を用い、これらの
移動パターンを描くカム機構を採用してガスアトマイザ
ー5を回動させ、下記に示す実施条件で直径約 200mmの
予備成形体を製作した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a comparison diagram of movement patterns used in a spray deposition method according to the present invention and a spray deposition method of a comparative example. In the present embodiment, these movement patterns are used by using the apparatus shown in FIGS. 5 and 6. The gas atomizer 5 was rotated by using a cam mechanism for drawing a preform having a diameter of about 200 mm under the following execution conditions.

【0012】実施条件 材 料 :高速度鋼(SKH56) 溶 解 温 度:1450 ℃ 溶 湯 重 量:100 kg アトマイズガス圧:9.9 気圧 基板回転速度:150 rpm 基 板 位 置:650 mmImplementation conditions Material: High speed steel (SKH56) Melting temperature: 1450 ° C Melt weight: 100 kg Atomizing gas pressure: 9.9 atm Substrate rotation speed: 150 rpm Base plate position: 650 mm

【0013】上記で製作された予備成形体を基に、本発
明法と比較法での外周部空孔層厚さに及ぼす外周部停止
角度の影響(ここで空孔層厚さは、堆積物の中央断面部
を5倍で撮影した写真から外周部の空孔層厚さを実測し
た値を製作された堆積物半径で割った値である。)、本
発明法と比較法での予備成形体上部半断面形状に及ぼす
外周部停止角度の影響、本発明法と比較法での鍛造可能
な健全部歩留りに及ぼす外周部停止角度の影響(ここで
健全部歩留りは、空孔層厚さおよび予備成形体上部切断
部を除いた重量を予備成形体の重量で割った値であ
る。)をそれぞれ調査した。これらの結果を図2乃至図
4に示す。
Based on the preformed body produced above, the influence of the outer peripheral stop angle on the outer peripheral hole layer thickness in the method of the present invention and the comparative method (wherein the hole layer thickness is the deposit Is a value obtained by dividing the actually measured value of the hole layer thickness of the outer peripheral portion from the photograph of the central cross-section taken at a magnification of 5 times), and the preforming by the method of the present invention and the comparative method. Effect of outer peripheral stop angle on body upper half cross-sectional shape, effect of outer peripheral stop angle on yieldable sound part yield in the method of the present invention and comparative method (where sound part yield is hole layer thickness and It is a value obtained by dividing the weight of the preformed body excluding the upper cut portion by the weight of the preformed body.). These results are shown in FIGS.

【0014】図1に示す本発明法と比較法の移動パター
ンは、横軸がカム軸の回転角、縦軸がカム従動体の加速
度を表し、カム軸の回転角の 0°から 360°までは予備
成形体の中心部から外周部までの往復移動1周期に相当
するものである。本発明法移動パターンは比較例の移動
パターンと異なり予備成形体の外周部すなわち図1に示
す外周部停止区間で移動の1周期の内 2/9 周期停止
(停止角度で80°)する場合の例である。
In the movement patterns of the method of the present invention and the comparative method shown in FIG. 1, the horizontal axis represents the rotation angle of the cam shaft and the vertical axis represents the acceleration of the cam follower, and the rotation angle of the cam shaft ranges from 0 ° to 360 °. Corresponds to one cycle of reciprocating movement from the central portion to the outer peripheral portion of the preform. The movement pattern of the method of the present invention is different from the movement pattern of the comparative example in the case where the preform is stopped at the outer peripheral portion, that is, the outer peripheral portion stop section shown in FIG. Here is an example.

【0015】図2に示す結果から明らかなように、予備
成形体の外周部停止角度が20°以下では外周部空孔層厚
さの変化はほとんど認められないが、外周部停止角度が
20°を超えて増加すると外周部空孔層厚さが減少し、外
周部停止角度が 100°を過ぎるとほぼ一定になることが
分かる。
As is clear from the results shown in FIG. 2, when the outer peripheral stop angle of the preform is 20 ° or less, the outer peripheral hole layer thickness hardly changes, but the outer peripheral stop angle is
It can be seen that the hole layer thickness at the outer periphery decreases as it increases beyond 20 °, and becomes almost constant when the stop angle at the outer periphery exceeds 100 °.

【0016】しかし、図3に示す結果から明らかなよう
に、外周部停止角度の増加にともない堆積物上部形状が
変化し、外周部停止角度が 0°(比較法の場合)では中
心部が盛り上がり、外周部停止角度が70°(本発明法の
場合)ではほぼ平らになり、外周部停止角度が 100°
(本発明法の場合)と大きくなると、外周部寄りに窪み
が生じるようになる。したがって、外周部停止角度が 0
°あるいは外周部停止角度が 100°を超えると、鍛造時
には、堆積物上部を平らに切断しなくてはならなくな
り、結局図4に示すように切断後の鍛造可能な堆積物の
健全部歩留りは外周部停止角度が60°から80°、すなわ
ち予備成形体の中心部から外周部の移動1周期の内 1/
6 から 2/9 周期の間で最大となる。また,図4から明
らかなように、健全部歩留り向上に効果が期待できる停
止角度は20°〜 120°の範囲内、すなわち予備成形体の
中心部から外周部の移動1周期の内 1/18〜 1/3 周期
である。
However, as is clear from the results shown in FIG. 3, the shape of the upper part of the deposit changes as the outer peripheral stop angle increases, and the central portion rises when the outer peripheral stop angle is 0 ° (in the case of the comparative method). When the outer peripheral stop angle is 70 ° (in the case of the method of the present invention), it becomes almost flat and the outer peripheral stop angle is 100 °.
When it becomes larger (in the case of the method of the present invention), a dent appears near the outer peripheral portion. Therefore, the outer peripheral stop angle is 0
° or the outer peripheral stop angle exceeds 100 °, the upper part of the deposit must be cut flat during forging, and as shown in Fig. 4, the yield of the forgeable sound part of the forged deposit after cutting is Peripheral stop angle is 60 ° to 80 °, that is, within 1 cycle of movement from the center of the preform to the outer periphery
Maximum between 6 and 2/9 cycles. Further, as is clear from FIG. 4, the stop angle that can be expected to be effective in improving the yield of sound parts is within the range of 20 ° to 120 °, that is, 1 / 18th of one cycle of movement from the central part to the outer peripheral part of the preform. ~ 1/3 cycle.

【0017】なお、上述の説明では、本発明を理解し易
くするため、図5に示す円柱状の予備成形体を噴霧堆積
法で製作する場合を例に説明したが、本発明は、この円
柱状予備成形体の噴霧堆積法に限定されるものではな
く、板、ロール等を噴霧堆積法で製作する場合にも適用
し得るもので、この場合にも外周部または外縁部のガス
冷却による空孔層の形成が低減できる。
In the above description, in order to facilitate understanding of the present invention, the case where the columnar preform shown in FIG. 5 is manufactured by the spray deposition method has been described as an example. The present invention is not limited to the spray deposition method of the columnar preform, but can be applied to the case of manufacturing a plate, a roll, etc. by the spray deposition method. The formation of the pore layer can be reduced.

【0018】[0018]

【発明の効果】以上説明したように、本発明に係る噴霧
堆積法によれば、予備成形体の上面の形状制御が行える
とともに、外周部または外縁部における空孔層の厚さを
低減し得、以て鍛造可能な予備成形体の健全部歩留りの
向上をはかることができる。
As described above, according to the spray deposition method of the present invention, the shape of the upper surface of the preform can be controlled and the thickness of the hole layer at the outer peripheral portion or the outer edge portion can be reduced. Thus, it is possible to improve the yield of sound parts of the forged preform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る噴霧堆積法と比較例の噴霧堆積法
で使用した移動パターンの比較図である。
FIG. 1 is a comparison diagram of movement patterns used in a spray deposition method according to the present invention and a spray deposition method of a comparative example.

【図2】本発明法と比較法での外周部空孔層厚さに及ぼ
す外周部停止角度の影響を示すグラフ図である。
FIG. 2 is a graph showing the influence of the outer peripheral stop angle on the outer peripheral hole layer thickness in the method of the present invention and the comparative method.

【図3】本発明法と比較法での予備成形体上部形状に及
ぼす外周部停止角度の影響を示す図であって、aは外周
部停止角度が 0°の場合、bは外周部停止角度が70°の
場合、cが外周部停止角度が 100°の場合のそれぞれ予
備成形体上部半断面図である。
FIG. 3 is a view showing the influence of the outer peripheral stop angle on the preform upper shape in the method of the present invention and the comparative method, where a is the outer peripheral stop angle of 0 °, and b is the outer peripheral stop angle. Is 70 °, and c is an upper half sectional view of the preform in the case where the outer peripheral stop angle is 100 °.

【図4】本発明法と比較法での鍛造可能な健全部歩留り
に及ぼす外周部停止角度の影響を示すグラフ図である。
FIG. 4 is a graph showing the influence of the outer peripheral portion stop angle on the yield of a sound part that can be forged by the method of the present invention and the comparative method.

【図5】噴霧堆積法に使用される装置の例を示す説明図
である。
FIG. 5 is an explanatory diagram showing an example of an apparatus used in the spray deposition method.

【図6】噴霧堆積法の装置に使用されるカム機構の例を
示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a cam mechanism used in a spray deposition method apparatus.

【符号の説明】[Explanation of symbols]

1:タンデッイシュ 2:金属溶湯 3:
タンディッシュノズル 4:チャンバー 5:ガスアトマイザー 6:
ジェット流 7:金属溶湯流 8:コレクター 9:
基板 10:ステッピングモータ 11:予備成形体
1: Tandeshisu 2: Molten metal 3:
Tundish nozzle 4: Chamber 5: Gas atomizer 6:
Jet flow 7: Molten metal flow 8: Collector 9:
Substrate 10: Stepping motor 11: Preform

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 垂直に流下する金属溶湯にアトマイザー
より噴出する高圧ガスのジェット流を吹付けてこれを噴
霧化し、この噴霧化された金属粒子を移動する基板上に
堆積させて予備成形体を得る噴霧堆積法において、アト
マイザーを回動させて高圧ガスのジェット流を予備成形
体の中心部と外周部との間で往復移動させ、その往復移
動1周期の内、外周部で 1/18〜 1/3 周期停止させる
ことを特徴とする噴霧堆積法。
1. A preform is prepared by spraying a jet stream of high-pressure gas ejected from an atomizer onto a vertically molten metal melt to atomize the same and depositing the atomized metal particles on a moving substrate. In the spray deposition method to be obtained, the atomizer is rotated to reciprocate the jet stream of the high-pressure gas between the central portion and the outer peripheral portion of the preform, and in the reciprocating movement cycle, 1/18 to A spray deposition method characterized by stopping for 1/3 cycle.
【請求項2】 請求項1記載の噴霧堆積法において、噴
霧化された金属粒子を回転する基板上に堆積させて円柱
状の予備成形体を得る噴霧堆積法。
2. The spray deposition method according to claim 1, wherein the atomized metal particles are deposited on a rotating substrate to obtain a cylindrical preform.
JP20391294A 1994-08-29 1994-08-29 Spray deposition method Withdrawn JPH0866759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391294A JPH0866759A (en) 1994-08-29 1994-08-29 Spray deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391294A JPH0866759A (en) 1994-08-29 1994-08-29 Spray deposition method

Publications (1)

Publication Number Publication Date
JPH0866759A true JPH0866759A (en) 1996-03-12

Family

ID=16481756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391294A Withdrawn JPH0866759A (en) 1994-08-29 1994-08-29 Spray deposition method

Country Status (1)

Country Link
JP (1) JPH0866759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047769A (en) * 2018-09-29 2018-12-21 北京航科精机科技有限公司 The method of metal parts increasing material precise forming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047769A (en) * 2018-09-29 2018-12-21 北京航科精机科技有限公司 The method of metal parts increasing material precise forming

Similar Documents

Publication Publication Date Title
EP0244454B1 (en) Production of metal spray deposits
US4830084A (en) Spray casting of articles
CA1069348A (en) Spray casting of gas atomized molten metal to produce high density ingots
US4938275A (en) Production of spray deposits
US3909921A (en) Method and apparatus for making shaped articles from sprayed molten metal or metal alloy
US4215084A (en) Method and apparatus for producing flake particles
US7144441B2 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
US5343926A (en) Metal spray forming using multiple nozzles
EP0198607B1 (en) Metal matrix composite manufacture
US5401539A (en) Production of metal spray deposits
US4971133A (en) Method to reduce porosity in a spray cast deposit
JPH05161956A (en) Atomized forming method
JPH0866759A (en) Spray deposition method
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPH0437122B2 (en)
JPH06623A (en) Atomized forming method
JPH07246452A (en) Atomizing forming method
JPH0866758A (en) Spray deposition method
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
JPH0441063A (en) Spray forming method
WO2024064870A1 (en) Method for manufacturing a beryllium-based article
KR20060070078A (en) Spray casting device of alloy billet
JPH06192705A (en) Production of rapidly solidified article
JPS63188920A (en) Manufacture of ferromagnetic sputtering target
CA1263062A (en) Production of spray deposits

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106