JPH0865835A - Insulating spacer - Google Patents

Insulating spacer

Info

Publication number
JPH0865835A
JPH0865835A JP6193464A JP19346494A JPH0865835A JP H0865835 A JPH0865835 A JP H0865835A JP 6193464 A JP6193464 A JP 6193464A JP 19346494 A JP19346494 A JP 19346494A JP H0865835 A JPH0865835 A JP H0865835A
Authority
JP
Japan
Prior art keywords
insulating layer
electrode
insulating
gas
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6193464A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲雄 吉田
Nobuo Masaki
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6193464A priority Critical patent/JPH0865835A/en
Publication of JPH0865835A publication Critical patent/JPH0865835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE: To make a gas insulated switchgear small in size by improving the withstand voltage characteristic of a conductor piercing part which divides a gas chamber of the insulated switchgear. CONSTITUTION: A truncated-cone-shaped tubular part is provided in projection on the outer periphery of an electrode 2 coaxially with this electrode on the opposite sides of an insulating layer 2 pierced by the electrode 2. The gradient of a slant of the insulating layer at this tubular part is made less than 60 deg. to the axis of the electrode 2. Withstand voltage values on the opposite sides of the insulating layer 2 are made equal for an overvoltage impressed on the surface of the electrode 2 and gas pipes 3A and 3B, while a discharge generated by the overvoltage applied between the surface of the electrode 2 and the gas pipes 3A and 3B is made not from the surface of the insulating layer 2, but through an insulating gas between the surface of the electrode 2 and the gas pipes 3A and 3B. Thereby a withstand voltage characteristic is improved and made stable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス絶縁開閉装置の内
部のガス室を気密に仕切る絶縁スペーサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating spacer for airtightly partitioning a gas chamber inside a gas insulating switchgear.

【0002】[0002]

【従来の技術】ガス絶縁開閉装置のガス室の隔壁を気密
に仕切る絶縁導体として、従来から絶縁スペーサが用い
られている。従来の三相用の絶縁スペーサの一例を示す
断面図を図6に示す。
2. Description of the Related Art Insulating spacers have been conventionally used as an insulated conductor for hermetically partitioning a partition wall of a gas chamber of a gas insulated switchgear. FIG. 6 is a sectional view showing an example of a conventional insulating spacer for three phases.

【0003】図6において、円筒状のガス室9A,9B
の境界に設けられた環状の絶縁スペーサには、絶縁層1
Dの内部に、図示しない平面図において正三角形に埋込
電極22が配置されている。また、外周側の中央部には、
電界緩和用として、環状の電極23が注型成形時に埋設さ
れており、この電極23は、リード線12Bで外部に引き出
されて接地されている。
In FIG. 6, cylindrical gas chambers 9A and 9B are provided.
The insulating layer 1 is attached to the annular insulating spacer provided at the boundary of
Embedded electrodes 22 are arranged inside D in a regular triangle in a plan view (not shown). Also, in the central part on the outer peripheral side,
A ring-shaped electrode 23 is embedded during casting for electric field relaxation, and this electrode 23 is pulled out to the outside by a lead wire 12B and grounded.

【0004】絶縁層1Dの外周側の両面は、この絶縁層
1Dに形成された環状の溝に挿入されたOリング7Cを
介して、円筒状の容器3A,3Bの接続部に溶接された
環状のフランジ4A,4Bの間に挿入された後ボルトで
挾持されることにより、ガス室9A,9B間の気密を維
持している。埋込電極22の両端には、導体5A,5Bが
それぞれ接続され、各ガス室9A,9Bに収納された図
示しない電気機器に接続されている。
Both sides on the outer peripheral side of the insulating layer 1D are annularly welded to the connecting portions of the cylindrical containers 3A and 3B via an O-ring 7C inserted in an annular groove formed in the insulating layer 1D. After being inserted between the flanges 4A and 4B, the airtightness is maintained between the gas chambers 9A and 9B by being held by bolts. Conductors 5A and 5B are connected to both ends of the embedded electrode 22, respectively, and are connected to electric equipment (not shown) housed in the gas chambers 9A and 9B.

【0005】絶縁層1Dは、エポキシ樹脂などの優れた
絶縁材料で注形成形により製作され、断面形状は特開平
2−119521号公報に開示されているように、片側のガス
室9A側に突き出て、断面が略凸字状となっている。つ
まり、片側のガス室9A側に突き出すことにより、斜面
部1d1,1d2の沿面距離を増やして、耐電圧特性の
向上が図られている。なお、絶縁層1Dの厚みは、Oリ
ング7Cが挿入されるフランジ部を除き、斜面部1d
1,1d2を含めて、ほぼ同一厚みとなっている。
The insulating layer 1D is formed by casting using an excellent insulating material such as epoxy resin, and its cross-sectional shape is projected to one gas chamber 9A side as disclosed in JP-A-2-119521. The cross section has a substantially convex shape. That is, by projecting to the gas chamber 9A side on one side, the creeping distance of the slope portions 1d1 and 1d2 is increased, and the withstand voltage characteristic is improved. The thickness of the insulating layer 1D is the same as that of the sloped portion 1d except for the flange portion into which the O-ring 7C is inserted.
Including 1 and 1d2, they have almost the same thickness.

【0006】[0006]

【発明が解決しようとする課題】ところで、このように
構成された絶縁スペーサにおいては、断面が凸状となる
絶縁層1Dに埋設された電極22に接続される導体5A,
5Bの表面の電界強度は、おおよそ導体5A,5Bの外
径とフランジ4A,4Bの内径により決まる。
By the way, in the insulating spacer thus constructed, the conductor 5A connected to the electrode 22 embedded in the insulating layer 1D having a convex cross section,
The electric field strength on the surface of 5B is determined approximately by the outer diameters of the conductors 5A and 5B and the inner diameters of the flanges 4A and 4B.

【0007】しかし、絶縁層1Dに埋設された電極22を
介して接続される導体5A,5Bは、ガス室9B側で
は、導体5Bとフランジ4Bとの間に斜面部1d2が介
在することになり、導体5Bのフランジ4B側の電界強
度が特に高くなる。これは、絶縁ガスの誘電率が約1に
対して、絶縁層1Dの誘電率が4〜5と高く、斜面部1
d2と導体5Bとの間隙が導体5Aと容器3Aの内面と
の間隙と比べて狭いためである。
However, in the conductors 5A and 5B connected via the electrode 22 embedded in the insulating layer 1D, the slope portion 1d2 is interposed between the conductor 5B and the flange 4B on the gas chamber 9B side. The electric field strength on the flange 4B side of the conductor 5B becomes particularly high. This is because the dielectric constant of the insulating layer 1D is as high as 4 to 5 while the dielectric constant of the insulating gas is about 1.
This is because the gap between d2 and the conductor 5B is narrower than the gap between the conductor 5A and the inner surface of the container 3A.

【0008】このため、フランジ4A,4Bの直径を大
きくして、導体5Bと斜面部1d2との間隙を広くした
り、また、斜面部1da,1d2の沿面距離を延ばすた
めに、ガス室9A側への突き出し高さを増やして、電界
強度の上昇を抑えている。すると、容器3A,3Bの外
径が大きくなり、幅も増やさなければならなくなるの
で、ガス絶縁開閉装置の外形が増える。
Therefore, in order to increase the diameter of the flanges 4A and 4B to widen the gap between the conductor 5B and the slope portion 1d2 and to extend the creepage distance of the slope portions 1da and 1d2, the gas chamber 9A side The protrusion height is increased to suppress the increase in electric field strength. Then, the outer diameters of the containers 3A and 3B become large, and the width must be increased, so that the outer shape of the gas insulated switchgear increases.

【0009】そこで、本発明の目的は、ガス絶縁開閉装
置のガス室の隔壁を貫通する導体の支持部に起因するガ
ス絶縁開閉装置の外形の増加を防ぎ耐電圧特性を上げる
ことのできる絶縁スペーサを得ることである。
Therefore, an object of the present invention is to prevent an increase in the outer shape of the gas-insulated switchgear caused by the supporting portion of the conductor penetrating the partition wall of the gas chamber of the gas-insulated switchgear and to improve the withstand voltage characteristic. Is to get.

【0010】[0010]

【課題を解決するための手段】本発明は、ガス室の端部
で外周側が挾持される円板状の絶縁層に電極を貫設する
ととともに、絶縁層の両面には、電極の外周にこの電極
と同軸に円椎台状の筒部を突設したことを特徴とする。
According to the present invention, an electrode is provided through a disc-shaped insulating layer whose outer peripheral side is held at the end of a gas chamber, and both sides of the insulating layer are provided on the outer periphery of the electrode. It is characterized in that a cylindrical portion having a conical discoid shape is provided so as to be coaxial with the electrode.

【0011】[0011]

【作用】電極の表面とガス室の内面間の電界強度は、絶
縁層の外周の両面において等しくなるとともに、電極の
表面とガス室の内面間に発生する放電は、絶縁層の表面
よりも空隙において先に発生し、放電開始電圧が安定
し、且つ、高くなる。
The electric field strength between the surface of the electrode and the inner surface of the gas chamber is equal on both sides of the outer periphery of the insulating layer, and the discharge generated between the surface of the electrode and the inner surface of the gas chamber is more void than the surface of the insulating layer. Occurs first, the discharge starting voltage becomes stable, and becomes higher.

【0012】[0012]

【実施例】以下、本発明による絶縁スペーサの一実施例
を図面を参照して説明する。図1は、請求項1,2,3
及び請求項4に記載の発明の絶縁スペーサの一例を示す
断面図で、従来の技術で示した図6に対応する図であ
る。図1において、図示しない平面図では円板状で、図
1の前後方向に対称的に形成された絶縁層9には、3相
分の埋込電極2が正三角形をなすの位置に埋設されてい
る。
An embodiment of an insulating spacer according to the present invention will be described below with reference to the drawings. FIG. 1 shows claims 1, 2, and 3.
FIG. 7 is a cross-sectional view showing an example of the insulating spacer of the invention according to claim 4, and is a view corresponding to FIG. 6 shown in the conventional technique. In FIG. 1, a plan view (not shown) has a disk shape, and embedded electrodes 2 for three phases are embedded in positions of an equilateral triangle in an insulating layer 9 formed symmetrically in the front-back direction of FIG. ing.

【0013】絶縁層9の外周部のガス室9A側には、半
円状の溝1bが形成され、ガス室9B側にも溝1cが形
成されている。これらの溝1b,1cには、導電塗料を
塗布した接地層7A,7Bが形成され、Oリング8A,
8Bを介してガス室9A側のフランジ4Aとガス室9B
側のフランジ4Bに固定されている。
A semicircular groove 1b is formed on the gas chamber 9A side of the outer peripheral portion of the insulating layer 9, and a groove 1c is also formed on the gas chamber 9B side. Grounding layers 7A and 7B coated with a conductive paint are formed in these grooves 1b and 1c, and O-rings 8A and
8B through the flange 4A on the gas chamber 9A side and the gas chamber 9B
It is fixed to the side flange 4B.

【0014】また、各フランジ4A,4Bには、円筒状
の容器3A,3Bが溶接で取り付けられている。なお、
各埋込電極2の両端には、小径部2bに続く中空の大径
部2aがそれぞれ形成され、絶縁層1Aの端部は、小径
部2bの中央部を被覆している。小径部2bの内側の大
径部の角部は、外周が大きく面取りされていて、小径部
2b及びこの小径部2bの外周の絶縁層と絶縁ガスで構
成されるトリプルジャンクション部の電界強度が緩和さ
れている。
Further, cylindrical containers 3A and 3B are attached to the flanges 4A and 4B by welding. In addition,
A hollow large-diameter portion 2a following the small-diameter portion 2b is formed at each end of each embedded electrode 2, and the end of the insulating layer 1A covers the central portion of the small-diameter portion 2b. The outer periphery of the corner portion of the large diameter portion inside the small diameter portion 2b is largely chamfered, and the electric field strength of the triple junction portion composed of the small diameter portion 2b and the insulating layer on the outer periphery of the small diameter portion 2b and the insulating gas is relaxed. Has been done.

【0015】各電極2の両端には、従来の技術で示した
図6と同様に、導体5Aの端部が大径部2bの内部の図
示しない接触環を介して嵌合することによって接続さ
れ、ガス室9A,9Bに収納された電気機器へ接続され
ている。
As shown in FIG. 6 of the prior art, the ends of the conductor 5A are connected to both ends of each electrode 2 by fitting them through contact rings (not shown) inside the large diameter part 2b. , Are connected to electrical equipment housed in the gas chambers 9A, 9B.

【0016】ここで、絶縁層1Aは、図1において、前
述したように前後方向に円椎台状に突き出て斜面部1b
を形成し、図1の左側の埋込電極2のガス室9A側の部
分拡大詳細図を示す図2のように、この斜面部1eと埋
込電極2で挾まれる角度θは、図3で後述する理由で58
度となっている。
Here, the insulating layer 1A, as shown in FIG. 1, protrudes in the front-rear direction in the shape of a circular disc to form a slope 1b.
As shown in FIG. 2 which shows a partially enlarged detailed view of the embedded electrode 2 on the left side of FIG. 1 on the gas chamber 9A side, the angle θ sandwiched between the sloped portion 1e and the embedded electrode 2 is as shown in FIG. For the reason described below in 58
It is a degree.

【0017】図3は、図2に示す絶縁スペーサにおい
て、絶縁層2の斜面部2eの角度θを変えたときの電界
強度分布を発明者らが解析した結果を示すグラフであ
る。図3において、曲線E0 は小径部2bから容器3
A,3Bの内周面に至る沿面における最大電界強度の絶
対値であり、一点鎖線で示す曲線E1は絶対値E0 を構
成するうちの法線成分、また、二点鎖線で示す曲線E2
は絶対値E0 を構成するうちの接線成分である。
FIG. 3 is a graph showing the results of the analysis by the inventors of the electric field intensity distribution when the angle θ of the inclined surface portion 2e of the insulating layer 2 is changed in the insulating spacer shown in FIG. In FIG. 3, the curve E 0 is from the small diameter portion 2b to the container 3
The absolute value of the maximum electric field strength on the creeping surfaces of the inner peripheral surfaces of A and 3B. The curve E1 indicated by the alternate long and short dash line is the normal component of the absolute value E 0 and the curve E 2 indicated by the alternate long and two short dashes line.
Is a tangential component of the absolute value E 0 .

【0018】図3に示すように、角度θを変えたとき、
絶対値E0 はほとんど変化しないが、曲線E1 ,曲線E
2 は、右上りと右下りの相反する特性を示し、θが60度
の点で交差している。すなわち、θが60度の点で絶対値
0 を構成する法線成分と、接線成分が等しくなり、θ
が60度以上では接線成分が大きく、逆にθが60度以下で
は、法線成分が大きくなる。
As shown in FIG. 3, when the angle θ is changed,
The absolute value E 0 hardly changes, but the curves E 1 and E
2 shows the opposite characteristics of the upper right and the lower right, which intersect at the point where θ is 60 degrees. That is, the normal component and the tangent component that make up the absolute value E 0 at the point where θ is 60 degrees become equal to each other,
When is greater than 60 degrees, the tangential component is large, and conversely, when θ is less than 60 degrees, the normal component is large.

【0019】この解析例を基に、角度θが60度を境とし
た2個の試料の絶縁破壊現象を調べた結果、60度以下で
は、図2の絶縁ガス中の放電経路Bに示すように、ガス
間隙間で放電が進展し、また、60度以上では、図2で示
す放電経路Cのように絶縁層2の沿面を這って放電が進
展することが判った。
Based on this analysis example, as a result of examining the dielectric breakdown phenomenon of two samples at an angle θ of 60 ° as a boundary, as shown in the discharge path B in the insulating gas in FIG. It was also found that the discharge progresses in the gap between the gases, and at 60 degrees or more, the discharge progresses along the creeping surface of the insulating layer 2 as in the discharge path C shown in FIG.

【0020】これは、沿面の電界強度の成分のうち、法
線成分は、絶縁ガスを電離させる電界であり、接線成分
は沿面を進展する電界であるためと考えられる。このた
め、絶縁ガス空間で発生する放電は、破壊電圧の値の変
動の少ない絶縁耐力を示したのに対し、沿面を進展する
放電は、沿面の状態に左右され易く放電電圧の変動が大
きかった。
It is considered that, of the components of the electric field strength on the creeping surface, the normal component is the electric field for ionizing the insulating gas and the tangential component is the electric field propagating on the creeping surface. Therefore, the discharge generated in the insulating gas space showed a dielectric strength with little fluctuation in the value of the breakdown voltage, whereas the discharge developing along the creeping surface was easily influenced by the state of the creeping surface and the fluctuation of the discharge voltage was large. .

【0021】なお、絶縁破壊の電圧値は、大径部2aの
外周の電界強度に大きく左右されるが、破壊電圧の変動
の少ない60度以下の方が高い値を示し、絶縁性能が優れ
ていた。
The voltage value of the dielectric breakdown largely depends on the electric field strength on the outer circumference of the large diameter portion 2a, but a value of 60 degrees or less, where the variation of the breakdown voltage is small, is higher and the insulation performance is excellent. It was

【0022】この沿面の放電電圧の変動の大きい理由
は、沿面を這う放電が沿面の抵抗率の微妙な違いや、異
物の付着および微小な凹凸などにより、放電を不安定に
させる要因になっていると考えられる。
The reason why the fluctuation of the discharge voltage on the creeping surface is large is that the discharge crawling on the creeping surface causes a destabilization of the discharge due to a subtle difference in the resistivity of the creeping surface, adhesion of foreign matter and minute unevenness. It is believed that

【0023】なお、絶縁層1Aの外周側に形成した接地
層7A,7Bにより、フランジ4A,4Bなどの対地間
における電界緩和が3相分を一括して行えるので、安定
した絶縁性能を維持することができる。
The ground layers 7A and 7B formed on the outer peripheral side of the insulating layer 1A can alleviate the electric field between the ground such as the flanges 4A and 4B for three phases at a time, thus maintaining stable insulating performance. be able to.

【0024】次に、図4は、請求項1,2,3及び請求
項4に記載の絶縁スペーサの他の実施例を示し、相間の
絶縁耐力を向上させた絶縁スペーサの一例を示す。図4
においては、埋込電極2に対して接地層7A,7Bまで
の斜面部1eを含む沿面距離よりも、相間方向の斜面部
1dを含む沿面距離が長くなっている。
Next, FIG. 4 shows another embodiment of the insulating spacer according to claims 1, 2, 3 and 4 and shows an example of an insulating spacer having improved interphase dielectric strength. FIG.
In, the creeping distance including the slope portion 1d in the interphase direction is longer than the creeping distance including the slope portion 1e to the ground layers 7A and 7B with respect to the embedded electrode 2.

【0025】これにより、沿面で形成される電界強度の
成分を法線成分≧接線成分とする条件の領域が大きくな
り、相間方向の絶縁耐力を向上させることができる。し
たがって、このように構成された絶縁スペーサの絶縁耐
力は、相間方向>対地間方向となり、他の電気機器との
絶縁協調を図ることができる。また、図4に示すよう
に、中央部分の絶縁層の厚さが薄くなるので、絶縁層1
Bを形成する樹脂の量を減らすことができ、軽量化を図
ることができる。
As a result, the region under the condition that the electric field strength component formed on the creeping surface satisfies the condition of normal component ≧ tangential component, and the dielectric strength in the interphase direction can be improved. Therefore, the dielectric strength of the insulating spacer configured as described above is in the interphase direction> to-ground direction, and the insulation coordination with other electric devices can be achieved. In addition, as shown in FIG. 4, since the thickness of the insulating layer in the central portion becomes thin, the insulating layer 1
The amount of resin forming B can be reduced, and the weight can be reduced.

【0026】次に、請求項5に記載の発明の絶縁スペー
サの一実施例を図5の断面図に示す。図5において、絶
縁層1Dには、3相分の埋込電極2が埋込まれており、
また、個々の埋込電極2を囲むように一対のリング11が
埋設されている。
Next, one embodiment of the insulating spacer of the invention described in claim 5 is shown in the sectional view of FIG. In FIG. 5, embedded electrodes 2 for three phases are embedded in the insulating layer 1D,
Further, a pair of rings 11 is embedded so as to surround each embedded electrode 2.

【0027】このリング11は、絶縁層1Cが厚い場合に
は、図5に示すように上下段の二段に形成され、リード
線12Aによりフランジ4Bに接続されて接地電位となっ
ている。
When the insulating layer 1C is thick, the ring 11 is formed in two upper and lower stages as shown in FIG. 5, and is connected to the flange 4B by the lead wire 12A to be at the ground potential.

【0028】また、絶縁層1Cの外周は、Oリング8
A,8Bを介してフランジ4A,4Bに固定されてお
り、気密を維持した状態で固定されている。このように
構成された絶縁スペーサにおいて、相間方向の中央部分
は、リング11により接地電位となる。埋込電極2の間に
は、相間の電圧が加わるが、略中間部に接地電位が介在
するため、相間ではそれぞれ対地間の電位となる。
The outer periphery of the insulating layer 1C has an O-ring 8
It is fixed to the flanges 4A and 4B via A and 8B, and is fixed in a state where airtightness is maintained. In the insulating spacer thus configured, the center portion in the interphase direction is set to the ground potential by the ring 11. A voltage between the phases is applied between the buried electrodes 2, but a ground potential is present at a substantially middle portion, so that the potential between the phases is grounded.

【0029】このため、絶縁破壊は、埋込電極2は3相
分とも対地間に対して発生することになり、相間方向へ
の絶縁破壊を防ぐことができる。ここで、リング11の埋
込み深さは、数mm程度必要であり、リング11と最も近接
している斜面部1eの電界強度を緩和する。これは、外
側についても同様である。
Therefore, the dielectric breakdown occurs in the buried electrode 2 for all three phases to the ground, and the dielectric breakdown in the interphase direction can be prevented. Here, the embedding depth of the ring 11 is required to be about several mm, and the electric field strength of the slope portion 1e closest to the ring 11 is relaxed. This also applies to the outside.

【0030】したがって、3相用の絶縁スペーサではあ
るが、絶縁的には各相とも独立した単相の絶縁スペーサ
となり、相間の絶縁破壊が抑制されるので、他の電気機
器と絶縁協調のとれた絶縁スペーサとなる。
Therefore, although it is an insulating spacer for three phases, it is a single-phase insulating spacer which is independent for each phase in terms of insulation and suppresses dielectric breakdown between the phases, so that insulation coordination with other electric equipment can be achieved. It becomes an insulating spacer.

【0031】なお、単相の絶縁スペーサにおいても、埋
込電極と絶縁層の界面にトリプルジャンクションによる
電界の極部的集中を緩和するため埋込電極に凸部の段差
を設け、また、絶縁層の角度を60度以下に保ち、外周に
溝を形成して接地電位とすることにより、絶縁耐力の優
れた絶縁スペーサを得ることができる。さらに、絶縁樹
脂で外側を注型で形成された変流器や変成器などの導体
の端部においても、一方端であるが、導体の端部付近に
凸部の段差を設け、絶縁層の角度を保つことにより、沿
面の絶縁耐力を安定させることができる。
Even in the single-phase insulating spacer, the buried electrode is provided with a stepped portion in order to relieve the local concentration of the electric field due to the triple junction at the interface between the buried electrode and the insulating layer. By keeping the angle of 60 degrees or less and forming a groove on the outer periphery to obtain the ground potential, it is possible to obtain an insulating spacer having excellent dielectric strength. Furthermore, even at the end of a conductor such as a current transformer or transformer formed by casting the outside with an insulating resin, one end is provided, but a step difference of a convex portion is provided near the end of the conductor to form an insulating layer. By maintaining the angle, it is possible to stabilize the dielectric strength of the surface.

【0032】[0032]

【発明の効果】以上、本発明によれば、ガス室の端部で
外周側が挾持される円板状の絶縁層に電極を貫設すると
ともに、電極の外周に同軸に円椎台状の筒部を絶縁層の
両面に突設することで、電極の表面とガス室の内面間の
電界強度を絶縁層の外周の両面において等しくするとと
もに、電極の表面とガス室の内面間に印加される電圧に
よって発生する放電を絶縁層の表面よりも先に空隙にお
いて発生させるようにして、放電開始電圧を高めて、ガ
ス絶縁開閉装置のガス室の隔壁を貫通する導体の支持部
における耐電圧特性を上げたので、ガス絶縁開閉装置の
外形の増加を防ぐことのできる絶縁スペーサを得ること
ができる。
As described above, according to the present invention, the electrode is provided through the disk-shaped insulating layer whose outer peripheral side is held at the end of the gas chamber, and the conical discoid cylinder is coaxial with the outer periphery of the electrode. By projecting parts on both sides of the insulating layer, the electric field strength between the surface of the electrode and the inner surface of the gas chamber is made equal on both sides of the outer periphery of the insulating layer, and applied between the surface of the electrode and the inner surface of the gas chamber. A discharge generated by a voltage is generated in the air gap before the surface of the insulating layer to increase the discharge start voltage, thereby improving the withstand voltage characteristics of the supporting portion of the conductor that penetrates the partition wall of the gas chamber of the gas insulated switchgear. Since it has been raised, it is possible to obtain an insulating spacer that can prevent an increase in the outer shape of the gas insulated switchgear.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1,2,3及び請求項4に記載の発明の
絶縁スペーサの一実施例を示す断面図。
FIG. 1 is a cross-sectional view showing an embodiment of an insulating spacer of the invention described in claims 1, 2, 3 and 4.

【図2】図1の部分拡大詳細図。FIG. 2 is a partially enlarged detailed view of FIG.

【図3】請求項1,2,3,4及び請求項5に記載の発
明の絶縁スペーサの作用を示すグラフ。
FIG. 3 is a graph showing the action of the insulating spacers of the present invention according to claims 1, 2, 3, 4 and 5.

【図4】請求項1,2,3及び請求項4に記載の発明の
絶縁スペーサの他の実施例を示す断面図。
FIG. 4 is a cross-sectional view showing another embodiment of the insulating spacer of the present invention according to claims 1, 2, 3 and 4.

【図5】請求項5に記載の発明の絶縁スペーサの一実施
例を示す断面図。
FIG. 5 is a sectional view showing an embodiment of an insulating spacer of the invention according to claim 5;

【図6】従来の絶縁スペーサの一例を示す断面図。FIG. 6 is a sectional view showing an example of a conventional insulating spacer.

【符号の説明】[Explanation of symbols]

1A,1B,1C…絶縁層、2…電極、2a…大径部、
2b…小径部、3A,3B…容器、4A,4B…フラン
ジ、5A,5B…接続導体、6…絶縁ガス、7A,7B
…接地層、8A,8B…Oリング、9A,9B…ガス
室、11…リング。
1A, 1B, 1C ... Insulating layer, 2 ... Electrode, 2a ... Large diameter part,
2b ... small diameter part, 3A, 3B ... container, 4A, 4B ... flange, 5A, 5B ... connecting conductor, 6 ... insulating gas, 7A, 7B
... ground layer, 8A, 8B ... O-ring, 9A, 9B ... gas chamber, 11 ... ring.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層と、この絶縁層の軸心に貫設され
両端に導体が接続される電極とよりなり、前記絶縁層
は、中央部に突設され外周側がガス室の端部で気密に挾
持される環状のフランジ部と、このフランジ部の中央部
の両側面に突設され前記電極の外周に同軸に形成された
円椎台状の筒部でなる絶縁スペーサ。
1. An insulating layer, and electrodes which are provided so as to penetrate through the axis of the insulating layer and have conductors connected to both ends thereof. The insulating layer is provided so as to project in the central portion and the outer peripheral side is an end portion of the gas chamber. An insulating spacer including an annular flange portion that is airtightly held, and a conical disk-shaped tubular portion that is formed on both side surfaces of the central portion of the flange portion and that is coaxially formed on the outer periphery of the electrode.
【請求項2】 絶縁層と、この絶縁層の軸心に貫設され
両端に導体が接続される電極とよりなり、前記絶縁層
は、中央部に突設され接地被覆が施された溝の外周側が
ガス室の端部で気密に挾持される環状のフランジ部と、
このフランジ部の内側の両側面に突設され前記電極の外
周に同軸に形成された円椎台状の筒部でなる絶縁スペー
サ。
2. An insulating layer, and an electrode penetrating the shaft center of the insulating layer and having conductors connected to both ends thereof, wherein the insulating layer is a groove formed by projecting in the center and grounded. An annular flange portion whose outer peripheral side is airtightly held at the end of the gas chamber,
An insulating spacer, which is a conical disc-shaped cylindrical portion that is formed on both inner side surfaces of the flange portion and is coaxially formed on the outer periphery of the electrode.
【請求項3】 円椎台状の筒部の斜面と電極とで形成さ
れる角度を60度未満としたことを特徴とする請求項1又
は請求項2に記載の絶縁スペーサ。
3. The insulating spacer according to claim 1 or 2, wherein an angle formed between the electrode and the inclined surface of the conical discoidal cylinder is less than 60 degrees.
【請求項4】 隣設されたガス室の端部で外周が気密に
挾持される円板状の絶縁層と、この絶縁層の中心部の周
りに貫設され両端に導体が接続される複数の電極とより
なり、前記絶縁層には、前記電極の外周に形成された円
椎台状の筒部を備えた絶縁スペーサ。
4. A disk-shaped insulating layer having an outer periphery airtightly held by an end of an adjacent gas chamber, and a plurality of disk-shaped insulating layers penetrating around the center of the insulating layer and having conductors connected at both ends. And an insulating spacer having, in the insulating layer, a cylindrical disk-shaped cylindrical portion formed on the outer periphery of the electrode.
【請求項5】 絶縁層に対し電極と同軸に接地環を埋設
したことを特徴とする請求項4に記載の絶縁スペーサ。
5. The insulating spacer according to claim 4, wherein a ground ring is embedded in the insulating layer coaxially with the electrode.
JP6193464A 1994-08-18 1994-08-18 Insulating spacer Pending JPH0865835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193464A JPH0865835A (en) 1994-08-18 1994-08-18 Insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193464A JPH0865835A (en) 1994-08-18 1994-08-18 Insulating spacer

Publications (1)

Publication Number Publication Date
JPH0865835A true JPH0865835A (en) 1996-03-08

Family

ID=16308448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193464A Pending JPH0865835A (en) 1994-08-18 1994-08-18 Insulating spacer

Country Status (1)

Country Link
JP (1) JPH0865835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143472A1 (en) * 2011-04-20 2012-10-26 Alstom Technology Ltd High or medium voltage electrical assembly, comprising an insulating disc forming a conducting bar(s) support and a metallic envelope with a pair of clamps for retaining the disc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143472A1 (en) * 2011-04-20 2012-10-26 Alstom Technology Ltd High or medium voltage electrical assembly, comprising an insulating disc forming a conducting bar(s) support and a metallic envelope with a pair of clamps for retaining the disc
FR2974460A1 (en) * 2011-04-20 2012-10-26 Alstom Grid Ag HIGH OR MEDIUM VOLTAGE ELECTRICAL ASSEMBLY COMPRISING AN INSULATING DISC FORMING A CONDUCTIVE BAR BRACKET (S) AND A METAL ENVELOPE WITH A PAIR OF DISC RETAINING BRACKETS

Similar Documents

Publication Publication Date Title
US20090266600A1 (en) High voltage dc bushing and device comprising such high voltage bushing
JPH0865835A (en) Insulating spacer
JPH03180011A (en) Mainframe of capacitor for electric field control in transformer bushing
EP0080192B1 (en) Bushing for gas-insulated electrical equipment
JPH0350706A (en) Capacitor type barrier for controlling electric field in bushing terminal of transformer
JPS6252527B2 (en)
JP2726537B2 (en) Gas insulating spacer
US5227584A (en) Barrier of condenser type for field control in transformer bushing terminals
US3980804A (en) High tension coaxial cable with end structure for preventing glow discharges
US2253987A (en) Terminal for gas filled cables
JPS6023569B2 (en) gas insulated electrical equipment
JP2002218610A (en) Gas insulated equipment
US4465896A (en) Filamentary tensioned insulating support for a high voltage conductor and method of making same
JPS6341695Y2 (en)
JP3160889B2 (en) Transformer
JPH07230731A (en) Gas insulated switchgear and gas insulated bushing
JPH0130831Y2 (en)
US1350936A (en) Insulator
JPS62502796A (en) X-ray tube with a cylindrical metal member surrounding an anode and a cathode
JPH10189347A (en) Gas insulator
US2619610A (en) Expulsion gap lightning arrester
JPH11288629A (en) Bushing
CA1044312A (en) Device for preventing glow discharges
US2692297A (en) High-voltage bushing
JPH0127394Y2 (en)