JPH0865138A - Signal line driving circuit - Google Patents

Signal line driving circuit

Info

Publication number
JPH0865138A
JPH0865138A JP6196746A JP19674694A JPH0865138A JP H0865138 A JPH0865138 A JP H0865138A JP 6196746 A JP6196746 A JP 6196746A JP 19674694 A JP19674694 A JP 19674694A JP H0865138 A JPH0865138 A JP H0865138A
Authority
JP
Japan
Prior art keywords
potential
signal line
circuit
transistor
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6196746A
Other languages
Japanese (ja)
Inventor
Shusaku Yamaguchi
秀策 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6196746A priority Critical patent/JPH0865138A/en
Publication of JPH0865138A publication Critical patent/JPH0865138A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE: To attain high speed signal delivery and to attain a high processing speed for an integrated circuit by controlling a voltage to drive a wire in the signal driving circuit used for a semiconductor integrated circuit. CONSTITUTION: A transistor(TR) T01 of the driving circuit 2 is turned on when inputs 1, 2 are at a low level and a TR T02 is turned off to set a potential of a signal line 1 to be a high potential VCC of a power supply so as to turn on a low potential load TR T04, then the amplitude is suppressed by a high potential depending on an on-resistance ratio of the T01, T04. In this case, a VREF 2 of a comparator circuit 4 is set to a slightly lower voltage by this potential. When the level of the inputs 1, 2 is transited to a high level from this state the T01 is turned off and the T02 is turned on to reduce the potential of the signal line 1. The potential of the signal line 1 is reduced cup to the VREF 1 of the comparator circuit 3 to set an output of the circuit 3 to be lower and then the high potential side load TR T03 is turned on. Thus, the amplitude is suppressed by the potential depending on the on-resistance of the T02, T03 with the high potential VCC in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路等で使用
される信号線駆動回路に関し、特に半導体集積回路の高
速化を図ることが可能な信号線駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal line driving circuit used in a semiconductor integrated circuit or the like, and more particularly to a signal line driving circuit capable of speeding up the semiconductor integrated circuit.

【0002】[0002]

【従来の技術】半導体集積回路においては、高速化と共
に、大容量化が図られている。近年、半導体集積回路、
特に半導体記憶装置(メモリ)の大容量化に伴いチップ
面積は増大する傾向にある。それに伴って、配線長も増
加する傾向にあり、配線容量も増加するため信号線駆動
回路の駆動能力が同じであれば信号の伝搬時間長くな
り、高速化を図る上で問題になる。
2. Description of the Related Art In a semiconductor integrated circuit, high speed and large capacity have been achieved. In recent years, semiconductor integrated circuits,
In particular, the chip area tends to increase as the capacity of the semiconductor memory device (memory) increases. Along with this, the wiring length tends to increase, and the wiring capacity also increases. Therefore, if the signal line driving circuit has the same driving capability, the signal propagation time becomes longer, which is a problem in achieving higher speed.

【0003】長距離の配線を通常のCMOSインバータ
等で電源電圧の電圧振幅まで駆動する場合、信号の遅延
時間は、配線の容量、ドライブ回路の駆動能力、及び振
幅等で決定される。そこで、信号の遅延時間を短くする
ために、電圧振幅を抑える方法が用いられる。例えば、
MOSメモリでは、電圧振幅を抑えるために、信号を伝
えるための配線プルダウン駆動トランジスタと電圧振幅
を抑えるための配線プルアップ負荷トランジスタとを利
用する技術が主として用いられてきた。
When a long-distance wiring is driven up to the voltage amplitude of the power supply voltage by an ordinary CMOS inverter or the like, the signal delay time is determined by the wiring capacity, the drive capability of the drive circuit, the amplitude and the like. Therefore, a method of suppressing the voltage amplitude is used in order to shorten the signal delay time. For example,
In the MOS memory, in order to suppress the voltage amplitude, a technique using a wire pull-down drive transistor for transmitting a signal and a wire pull-up load transistor for suppressing the voltage amplitude has been mainly used.

【0004】図6は従来の回路例を示す図であり、
(1)はNMOS配線プルダウン駆動トランジスタT0
1とNMOS配線プルアップ負荷トランジスタT02を
組み合わせた例を示し、(2)はNMOS配線プルダウ
ン駆動トランジスタT03とPMOS配線プルアップ負
荷トランジスタT04を組み合わせた例を示す。
FIG. 6 is a diagram showing a conventional circuit example.
(1) is an NMOS wiring pull-down drive transistor T0
1 shows an example in which the NMOS wiring pull-up load transistor T02 is combined, and (2) shows an example in which the NMOS wiring pull-down drive transistor T03 and the PMOS wiring pull-up load transistor T04 are combined.

【0005】[0005]

【発明が解決しようとする課題】図6の(1)の例にお
いては、NMOS配線プルダウン駆動トランジスタT0
1がオフ状態の時には、信号線電位(配線のプリチャー
ジ電圧レベル)は電源電圧VCCからNMOS配線プル
アップ負荷トランジスタT02の閾値電圧Vthを差し
引いた値であり、NMOS配線プルダウン駆動トランジ
スタT01がオン状態の時には、信号線電位は接地電位
VSSになる。NMOS配線プルダウン駆動トランジス
タT01が、オフ状態からオン状態に遷移を開始する時
点には、NMOS配線プルアップ負荷トランジスタT0
2はオフ状態にあるため、NMOS配線プルダウン駆動
トランジスタT01がオン状態になると信号線の寄生容
量に蓄積された電荷がNMOS配線プルダウン駆動トラ
ンジスタT01を通って接地線に流れるため、プルダウ
ン動作の初期段階では高速に電圧が変化する。逆に、N
MOS配線プルダウン駆動トランジスタT01が、オン
状態からオフ状態に遷移を開始する場合には、NMOS
配線プルアップ負荷トランジスタT02は、初期段階に
はオン状態であり信号線の電位を急速に上昇させるが、
ゲート・ソース間電圧VGSが減少してオフ状態になる
方向に変化するため途中からオフ状態になり、プルアッ
プ動作が遅くなる。
In the example of (1) of FIG. 6, the NMOS wiring pulldown drive transistor T0 is used.
When 1 is in the off state, the signal line potential (wiring precharge voltage level) is a value obtained by subtracting the threshold voltage Vth of the NMOS wiring pull-up load transistor T02 from the power supply voltage VCC, and the NMOS wiring pull-down drive transistor T01 is in the on state. At the time of, the signal line potential becomes the ground potential VSS. At the time when the NMOS wiring pull-down drive transistor T01 starts transition from the off state to the on state, the NMOS wiring pull-up load transistor T0
Since 2 is in the off state, when the NMOS wiring pull-down driving transistor T01 is turned on, the charge accumulated in the parasitic capacitance of the signal line flows to the ground line through the NMOS wiring pull-down driving transistor T01, and thus the initial stage of the pull-down operation. Then, the voltage changes rapidly. Conversely, N
When the MOS wiring pull-down drive transistor T01 starts the transition from the on state to the off state, the NMOS
The wiring pull-up load transistor T02 is in the ON state in the initial stage and rapidly raises the potential of the signal line.
Since the gate-source voltage VGS decreases and changes to the off state, the off state is reached midway and the pull-up operation is delayed.

【0006】図6の(2)の場合、配線プルアップ負荷
トランジスタがPMOSであるため、配線のプルアップ
は高速に行えるが、NMOS配線プルダウン駆動トラン
ジスタT03がオフ状態からオン状態に遷移する場合、
遷移開始時点で配線プルアップ負荷トランジスタT04
はオン状態であり、オン抵抗は非常に小さい。そのた
め、NMOS配線プルダウン駆動トランジスタT03が
オン状態になっても、電源線VCCから電荷が供給され
るため、信号線の電位はゆっくり変化し、プルダウン動
作が遅くなる。
In the case of (2) of FIG. 6, since the wiring pull-up load transistor is a PMOS, the wiring can be pulled up at a high speed, but when the NMOS wiring pull-down drive transistor T03 transits from the off state to the on state,
Wiring pull-up load transistor T04 at the start of transition
Is on, and the on resistance is very low. Therefore, even if the NMOS wiring pull-down drive transistor T03 is turned on, electric charges are supplied from the power supply line VCC, so that the potential of the signal line changes slowly and the pull-down operation is delayed.

【0007】以上、配線プルダウン駆動トランジスタと
配線プルアップ負荷トランジスタとを利用する従来の技
術について説明したが、配線プルアップ駆動トランジス
タと配線プルダウン負荷トランジスタとを利用する場合
も同様の問題が生じる。以上のように、従来の回路にお
いては、配線をプルアップ又はプルダウンする負荷トラ
ンジスタが、信号電圧伝搬の初期段階において電圧を抑
制するように作用したり、途中から負荷トランジスタの
駆動能力が低下したりするため、十分な高速化が図れな
いという問題があった。本発明はこのような問題を解決
するもので、信号伝搬の高速化を図ることを目的とす
る。
Although the conventional technique using the wiring pull-down driving transistor and the wiring pull-up load transistor has been described above, the same problem occurs when the wiring pull-up driving transistor and the wiring pull-down load transistor are used. As described above, in the conventional circuit, the load transistor that pulls up or pulls down the wiring acts to suppress the voltage in the initial stage of the signal voltage propagation, or the driving capability of the load transistor decreases from the middle. Therefore, there is a problem that the speed cannot be sufficiently increased. The present invention solves such a problem, and an object thereof is to speed up signal propagation.

【0008】[0008]

【課題を解決するための手段】図1は本発明の信号線駆
動回路の原理構成図である。図1において、参照番号T
01とT02は、入力1と入力2に応じて、信号線1を
駆動する駆動回路2を構成するトランジスタである。T
O3は、信号線1の電位変化範囲の低電位側を、電源の
低電位VSSより所定量高くする高電位側負荷トランジ
スタである。T04は、信号線1の電位変化範囲の高電
位側を、電源の高電位VCCより所定量低くする低電位
側負荷トランジスタである。3は信号線1の電位と第1
の参照電圧VREF1とを比較し、信号線1の電位が第
1の参照電圧VREF1以下の時には高電位側負荷トラ
ンジスタTO3をオン状態にし、信号線1の電位が第1
の参照電圧VREF1以上の時には高電位側負荷トラン
ジスタTO3をオフ状態にする第1の比較回路である。
4は信号線1の電位と第2の参照電圧VREF2とを比
較し、信号線1の電位が第2の参照電圧VREF2以上
の時には低電位側負荷トランジスタTO4をオン状態に
し、信号線1の電位が第2の参照電圧VREF2以下の
時には低電位側負荷トランジスタTO4をオフ状態にす
る第2の比較回路である。
FIG. 1 is a block diagram showing the principle of a signal line drive circuit according to the present invention. In FIG. 1, reference numeral T
01 and T02 are transistors that form the drive circuit 2 that drives the signal line 1 in accordance with the input 1 and the input 2. T
O3 is a high potential side load transistor that raises the low potential side of the potential change range of the signal line 1 by a predetermined amount above the low potential VSS of the power supply. T04 is a low potential side load transistor that lowers the high potential side of the potential change range of the signal line 1 by a predetermined amount from the high potential VCC of the power supply. 3 is the potential of the signal line 1 and the first
Of the reference voltage VREF1. When the potential of the signal line 1 is equal to or lower than the first reference voltage VREF1, the high-potential-side load transistor TO3 is turned on, and the potential of the signal line 1 is
Is a first comparison circuit that turns off the high-potential-side load transistor TO3 when the reference voltage VREF1 is higher than the reference voltage VREF1.
Reference numeral 4 compares the potential of the signal line 1 with the second reference voltage VREF2. When the potential of the signal line 1 is equal to or higher than the second reference voltage VREF2, the low potential side load transistor TO4 is turned on and the potential of the signal line 1 is changed. Is a second comparison circuit that turns off the low-potential-side load transistor TO4 when is less than or equal to the second reference voltage VREF2.

【0009】図1では、高電位側負荷トランジスタT0
3は、Pチャンネルトランジスタで構成され、低電位側
負荷トランジスタT04は、Nチャンネルトランジスタ
で構成されている。また、図1では、第1の比較回路3
は、入力の一方に第1の参照電圧VREF1が入力さ
れ、入力のもう一方は信号線1に接続され、出力が高電
位側負荷トランジスタT03のゲートに接続される差動
増幅器であり、第2の比較回路4は、入力の一方に第2
の参照電圧VREF2が入力され、入力のもう一方は信
号線1に接続され、出力が低電位側負荷トランジスタT
04のゲートに接続される差動増幅器である。
In FIG. 1, the high potential side load transistor T0
3 is a P-channel transistor, and the low potential side load transistor T04 is an N-channel transistor. Further, in FIG. 1, the first comparison circuit 3
Is a differential amplifier in which the first reference voltage VREF1 is input to one input, the other input is connected to the signal line 1, and the output is connected to the gate of the high potential side load transistor T03. Comparing circuit 4 of the
Reference voltage VREF2 is input, the other input is connected to the signal line 1, and the output is the low potential side load transistor T
04 is a differential amplifier connected to the gate.

【0010】[0010]

【作用】図2は、図1の回路における各部の電位変動を
示す図であり、入力1、2と、図1の各ノードa、b、
cの電位変動を示している。信号線1の電位、すなわち
ノードaの電位が第1の参照電圧VREF1より高い
時、ノードbは「高(H)」レベルになり、高電位側負
荷トランジスタTO3はオフ状態になる。同様に、ノー
ドaの電位が第2の参照電圧VREF2より小さい時、
ノードcは「低(L)」レベルになり、低電位側負荷ト
ランジスタTO4はオフ状態になる。
FIG. 2 is a diagram showing the potential fluctuation of each part in the circuit of FIG. 1, in which the inputs 1 and 2 and the nodes a and b of FIG.
The potential fluctuation of c is shown. When the potential of the signal line 1, that is, the potential of the node a is higher than the first reference voltage VREF1, the node b becomes the “high (H)” level and the high potential side load transistor TO3 is turned off. Similarly, when the potential of the node a is smaller than the second reference voltage VREF2,
The node c becomes "low (L)" level, and the low potential side load transistor TO4 is turned off.

【0011】入力1と2が「低」レベルの時には、駆動
回路2のT01はオン状態であり、T02はオフ状態で
あり、信号線1の電位は電源の高電位VCCに近い電位
になるため、T04がオン状態になり、信号線1の電位
は電源の低電位VSSよりT01とT04のオン抵抗比
で決まる所定量高い電位になり、振幅が抑制される。V
REF2は、この電位より若干低く設定されている。
When the inputs 1 and 2 are at the "low" level, T01 of the drive circuit 2 is in the on state and T02 is in the off state, and the potential of the signal line 1 is close to the high potential VCC of the power supply. , T04 are turned on, the potential of the signal line 1 becomes higher than the low potential VSS of the power source by a predetermined amount determined by the ON resistance ratio of T01 and T04, and the amplitude is suppressed. V
REF2 is set to be slightly lower than this potential.

【0012】この状態から、入力1と2が「高」レベル
に遷移すると、T01がオフ状態になり、T02がオン
状態になり、信号線1の電位は低下を始める。低下を開
始して、直ぐにVREF2以下になるので、T04はオ
フ状態になり、信号線はT02を介して電源の低電位側
VSSに接続されるだけであるから、信号線1の電位は
VREF1まで急激に低下する。
From this state, when the inputs 1 and 2 transit to the "high" level, T01 is turned off, T02 is turned on, and the potential of the signal line 1 starts decreasing. Since the voltage starts to drop and immediately becomes VREF2 or less, T04 is turned off and the signal line is only connected to the low potential side VSS of the power supply through T02. Therefore, the potential of the signal line 1 is up to VREF1. Falls sharply.

【0013】信号線1の電位がVREF1まで低下する
と、差動増幅器3の出力が「低」レベルに変化し、高電
位側負荷トランジスタT03がオン状態になり、信号線
1の電位は、電源の高電位VCCよりT02とT03の
オン抵抗比で決まる所定量低い電位になり、電圧振幅が
抑制される。VREF1はこの電位より若干高く設定さ
れている。
When the potential of the signal line 1 drops to VREF1, the output of the differential amplifier 3 changes to the "low" level, the high potential side load transistor T03 is turned on, and the potential of the signal line 1 is equal to that of the power supply. The potential becomes lower than the high potential VCC by a predetermined amount determined by the ON resistance ratio of T02 and T03, and the voltage amplitude is suppressed. VREF1 is set to be slightly higher than this potential.

【0014】この状態から、逆に入力1と2が「低」レ
ベルに遷移すると、T01がオン状態になり、T02が
オフ状態になり、信号線1の電位は上昇を始める。上昇
を開始して、直ぐにVREF1以上になるので、T03
はオフ状態になり、信号線はT01を介して電源の高電
位側VCCに接続されるだけであるから、信号線1の電
位はVREF2まで急激に上昇する。
On the contrary, when the inputs 1 and 2 transit to "low" level from this state, T01 is turned on, T02 is turned off, and the potential of the signal line 1 starts to rise. As soon as it starts rising, it becomes VREF1 or higher, so T03
Turns off and the signal line is only connected to the high potential side VCC of the power supply via T01, so the potential of the signal line 1 rapidly rises to VREF2.

【0015】信号線1の電位がVREF2まで上昇する
と、差動増幅器4の出力が「高」レベルに変化し、低電
位側負荷トランジスタT04がオン状態になり、信号線
1の電位は、電源の低電位VSSよりT01とT04の
オン抵抗比で決まる所定量電位になり、電圧振幅が抑制
される。
When the potential of the signal line 1 rises to VREF2, the output of the differential amplifier 4 changes to "high" level, the low potential side load transistor T04 is turned on, and the potential of the signal line 1 is the level of the power source. From the low potential VSS, the potential becomes a predetermined amount determined by the ON resistance ratio of T01 and T04, and the voltage amplitude is suppressed.

【0016】[0016]

【実施例】図3は、本発明の第1実施例の回路構成を示
す図である。図3の回路は、図1の回路において、差動
増幅器3をPMOSカレントミラー負荷型NMOS差動
増幅回路で、差動増幅器4をNMOSカレントミラー負
荷型PMOS差動増幅回路で構成したものである。PM
OSカレントミラー負荷型NMOS差動増幅回路におい
ては、ノードaの電位がVREF1より低い場合には、
VREF1が入力されるトランジスタがオン状態にな
り、ノードbの電位は「低」になる。ノードaの電位が
VREF1より高い場合には、VREF1が入力される
トランジスタがオフ状態になり、ノードbの電位は
「高」になる。NMOSカレントミラー負荷型PMOS
差動増幅回路においては、ノードaの電位がVREF2
より低い場合には、VREF2が入力されるトランジス
タがオフ状態になり、ノードcの電位は「低」になる。
ノードaの電位がVREF2より高い場合には、VRE
F2が入力されるトランジスタがオン状態になり、ノー
ドcの電位は「高」になる。
FIG. 3 is a diagram showing a circuit configuration of a first embodiment of the present invention. 3 is a circuit in which the differential amplifier 3 is a PMOS current mirror load type NMOS differential amplifier circuit and the differential amplifier 4 is an NMOS current mirror load type PMOS differential amplifier circuit in the circuit of FIG. . PM
In the OS current mirror load type NMOS differential amplifier circuit, when the potential of the node a is lower than VREF1,
The transistor to which VREF1 is input is turned on, and the potential of the node b becomes “low”. When the potential of the node a is higher than VREF1, the transistor to which VREF1 is input is turned off, and the potential of the node b becomes “high”. NMOS current mirror load type PMOS
In the differential amplifier circuit, the potential of the node a is VREF2.
When it is lower, the transistor to which VREF2 is input is turned off, and the potential of the node c becomes “low”.
If the potential of the node a is higher than VREF2, VRE
The transistor to which F2 is input is turned on, and the potential of the node c becomes “high”.

【0017】図4は、本発明の第2実施例の回路構成を
示す図である。図4の回路は、図3の第1実施例の回路
において、差動増幅器4もPMOSカレントミラー負荷
型NMOS差動増幅回路で構成したものである。動作
は、第1実施例と同様である。この場合、VREF1と
2の電圧条件によっては、2つの差動増幅回路のMOS
トランジスタのタイプを異なるものにした方が、応答性
が改善される場合もあり得る。
FIG. 4 is a diagram showing the circuit configuration of the second embodiment of the present invention. The circuit of FIG. 4 differs from the circuit of the first embodiment of FIG. 3 in that the differential amplifier 4 is also a PMOS current mirror load type NMOS differential amplifier circuit. The operation is the same as in the first embodiment. In this case, depending on the voltage conditions of VREF1 and VREF, the MOS of the two differential amplifier circuits may be changed.
Responsiveness may be improved by using different types of transistors.

【0018】図5は、本発明の第3実施例の回路構成を
示す図である。図5の回路は、図1の回路において、差
動増幅器3と4の替わりに比較回路を、閾値電圧の異な
る反転増幅器を用いた回路である。この反転増幅器の閾
値電圧は、主としてPMOSトランジスタとNMOSト
ランジスタのチャンネル幅の比率を変えることで変化さ
せることができる。従って、VREF1とVREF2に
応じてそれぞれの反転増幅器のトランジスタのチャンネ
ル幅の比率を選択する。
FIG. 5 is a diagram showing a circuit configuration of the third embodiment of the present invention. The circuit of FIG. 5 is a circuit using a comparison circuit in place of the differential amplifiers 3 and 4 in the circuit of FIG. 1 and an inverting amplifier having a different threshold voltage. The threshold voltage of this inverting amplifier can be changed mainly by changing the ratio of the channel widths of the PMOS transistor and the NMOS transistor. Therefore, the channel width ratio of the transistors of the respective inverting amplifiers is selected according to VREF1 and VREF2.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
電圧振幅を抑制した上で、配線を高速に駆動できるた
め、信号伝搬が高速に行える信号線駆動回路が実現さ
れ、半導体集積回路の高速化が図れる。
As described above, according to the present invention,
Since the wiring can be driven at a high speed while suppressing the voltage amplitude, a signal line drive circuit capable of high-speed signal propagation can be realized, and the speed of the semiconductor integrated circuit can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成を示す図である。FIG. 1 is a diagram showing a principle configuration of the present invention.

【図2】本発明の原理を説明する図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】本発明の第1実施例の回路図である。FIG. 3 is a circuit diagram of a first embodiment of the present invention.

【図4】本発明の第2実施例の回路図である。FIG. 4 is a circuit diagram of a second embodiment of the present invention.

【図5】本発明の第3実施例の回路図である。FIG. 5 is a circuit diagram of a third embodiment of the present invention.

【図6】従来の信号線の駆動回路を示す図である。FIG. 6 is a diagram showing a conventional signal line drive circuit.

【符号の説明】[Explanation of symbols]

1…信号線 2…駆動回路 3…第1の比較回路 4…第2の比較回路 T03…高電位側負荷トランジスタ T04…低電位側負荷トランジスタ 1 ... Signal line 2 ... Drive circuit 3 ... First comparison circuit 4 ... Second comparison circuit T03 ... High potential side load transistor T04 ... Low potential side load transistor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 19/017 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H03K 19/017

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 信号に応じて信号線(1)の電位を変化
させるように駆動する駆動回路(2)と、 前記信号線の電位変化範囲の低電位側を、電源の低電位
(VSS)より所定量高くする高電位側負荷トランジス
タ(T03)と、 前記信号線の電位変化範囲の高電位側を、電源の高電位
(VCC)より所定量低くする低電位側負荷トランジス
タ(T04)と、 前記信号線の電位と第1の参照電圧(VREF1)とを
比較し、前記信号線の電位が前記第1の参照電圧以下の
時には前記高電位側負荷トランジスタ(T03)をオン
状態にし、前記信号線の電位が前記第1の参照電圧以上
の時には前記高電位側負荷トランジスタをオフ状態にす
る第1の比較回路(3)と、 前記信号線の電位と第2の参照電圧(VREF2)とを
比較し、前記信号線の電位が前記第2の参照電圧以上の
時には前記低電位側負荷トランジスタ(T04)をオン
状態にし、前記信号線の電位が前記第2の参照電圧以下
の時には前記低電位側負荷トランジスタをオフ状態にす
る第2の比較回路(4)とを備えることを特徴とする信
号線駆動回路。
1. A drive circuit (2) for driving so as to change the potential of a signal line (1) according to a signal, and a low potential side of a potential change range of the signal line is a low potential (VSS) of a power supply. A high-potential-side load transistor (T03) that raises the potential by a predetermined amount, and a low-potential-side load transistor (T04) that lowers the high-potential side of the potential change range of the signal line from the high potential (VCC) of the power supply by a predetermined amount. The potential of the signal line is compared with a first reference voltage (VREF1), and when the potential of the signal line is equal to or lower than the first reference voltage, the high potential side load transistor (T03) is turned on, and the signal A first comparison circuit (3) that turns off the high-potential-side load transistor when the potential of the line is equal to or higher than the first reference voltage, and a potential of the signal line and a second reference voltage (VREF2). Compare the signal line When the potential is equal to or higher than the second reference voltage, the low potential side load transistor (T04) is turned on, and when the potential of the signal line is equal to or lower than the second reference voltage, the low potential side load transistor is turned off. And a second comparison circuit (4) for performing the signal line driving circuit.
【請求項2】 前記高電位側負荷トランジスタは、Pチ
ャンネルトランジスタであり、 前記低電位側負荷トランジスタは、Nチャンネルトラン
ジスタであることを特徴とする請求項1に記載の信号線
駆動回路。
2. The signal line drive circuit according to claim 1, wherein the high potential side load transistor is a P channel transistor, and the low potential side load transistor is an N channel transistor.
【請求項3】 前記第1の比較回路は、入力の一方に前
記第1の参照電圧が入力され、入力のもう一方は前記信
号線に接続され、出力が前記高電位側負荷トランジスタ
のゲートに接続される差動増幅器であり、 前記第2の比較回路は、入力の一方に前記第2の参照電
圧が入力され、入力のもう一方は前記信号線に接続さ
れ、出力が前記低電位側負荷トランジスタのゲートに接
続される差動増幅器であることを特徴とする請求項1に
記載の信号線駆動回路。
3. The first comparison circuit receives the first reference voltage at one input, the other input is connected to the signal line, and the output is at the gate of the high potential side load transistor. A second differential circuit connected to the signal line, the second reference voltage being input to one of the inputs, the other input being connected to the signal line, and the output being the low potential side load. The signal line drive circuit according to claim 1, wherein the signal line drive circuit is a differential amplifier connected to a gate of a transistor.
【請求項4】 前記第1及び第2の比較回路の差動増幅
器は、PMOSカレントミラー負荷型NMOS差動増幅
回路であることを特徴とする請求項3に記載の信号線駆
動回路。
4. The signal line drive circuit according to claim 3, wherein the differential amplifiers of the first and second comparison circuits are PMOS current mirror load type NMOS differential amplifier circuits.
【請求項5】 前記第1及び第2の比較回路の差動増幅
器の一方は、PMOSカレントミラー負荷型NMOS差
動増幅回路であり、もう一方はNMOSカレントミラー
負荷型PMOS差動増幅回路であることを特徴とする請
求項3に記載の信号線駆動回路。
5. One of the differential amplifiers of the first and second comparison circuits is a PMOS current mirror load type NMOS differential amplifier circuit, and the other is an NMOS current mirror load type PMOS differential amplifier circuit. The signal line drive circuit according to claim 3, wherein
【請求項6】 前記第1及び第2の比較回路の差動増幅
器は、異なる閾値を有するCMOSインバータであるこ
とを特徴とする請求項3に記載の信号線駆動回路。
6. The signal line drive circuit according to claim 3, wherein the differential amplifiers of the first and second comparison circuits are CMOS inverters having different threshold values.
JP6196746A 1994-08-22 1994-08-22 Signal line driving circuit Withdrawn JPH0865138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6196746A JPH0865138A (en) 1994-08-22 1994-08-22 Signal line driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6196746A JPH0865138A (en) 1994-08-22 1994-08-22 Signal line driving circuit

Publications (1)

Publication Number Publication Date
JPH0865138A true JPH0865138A (en) 1996-03-08

Family

ID=16362924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6196746A Withdrawn JPH0865138A (en) 1994-08-22 1994-08-22 Signal line driving circuit

Country Status (1)

Country Link
JP (1) JPH0865138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049586A (en) * 1998-07-27 2000-02-18 New Japan Radio Co Ltd Cmos output circuit
DE10331607A1 (en) * 2003-07-12 2005-02-17 Infineon Technologies Ag Output driver for an integrated circuit and method for driving an output driver
KR100687104B1 (en) * 2000-03-07 2007-02-26 노바텍 마이크로일렉트로닉스 코포레이션 Method and Apparatus for immunization against noise inherent in signal level transition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049586A (en) * 1998-07-27 2000-02-18 New Japan Radio Co Ltd Cmos output circuit
KR100687104B1 (en) * 2000-03-07 2007-02-26 노바텍 마이크로일렉트로닉스 코포레이션 Method and Apparatus for immunization against noise inherent in signal level transition
DE10331607A1 (en) * 2003-07-12 2005-02-17 Infineon Technologies Ag Output driver for an integrated circuit and method for driving an output driver
US7145369B2 (en) 2003-07-12 2006-12-05 Infineon Technologies Ag Output driver for an integrated circuit and method for driving an output driver
DE10331607B4 (en) * 2003-07-12 2007-02-15 Infineon Technologies Ag Output driver for an integrated circuit and method for driving an output driver

Similar Documents

Publication Publication Date Title
EP0329285B1 (en) Output buffer
US6593795B2 (en) Level adjustment circuit and data output circuit thereof
JP3076300B2 (en) Output buffer circuit
EP0533340A2 (en) Output driver circuits
US5698994A (en) Data output circuit, intermediate potential setting circuit, and semiconductor integrated circuit
JPH0720060B2 (en) Output circuit device
KR960011964B1 (en) Output buffer device
EP0542227A2 (en) Output buffer circuit
JP2567153B2 (en) CMOS output buffer circuit
JPH07118635B2 (en) Integrated circuit with input inverting device with dynamic hysteresis means
US5055713A (en) Output circuit of semiconductor integrated circuit
JPH04229714A (en) Integrated circuit having buffer
KR19990044240A (en) Output buffer with shared intermediate node
US5059823A (en) Supply bounce controlled output buffer circuit
US6707324B1 (en) Low ground bounce output driver
US4880998A (en) Bipolar transistor and CMOS transistor logic circuit having improved discharge capabilities
US6307399B1 (en) High speed buffer circuit with improved noise immunity
US5057713A (en) Bipolar MOS logic circuit and semiconductor integrated circuit
US20060066353A1 (en) Output circuit with reduced gate voltage swings
JP2573431B2 (en) Output buffer circuit
EP0619652A2 (en) Data output circuit
JPH0865138A (en) Signal line driving circuit
US5146109A (en) Circuit for driving a floating circuit in response to a digital signal
CN113810040B (en) Circuit and method for slew rate control
JPH0677804A (en) Output circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106