JPH0864537A - Vapor growing method - Google Patents

Vapor growing method

Info

Publication number
JPH0864537A
JPH0864537A JP19547794A JP19547794A JPH0864537A JP H0864537 A JPH0864537 A JP H0864537A JP 19547794 A JP19547794 A JP 19547794A JP 19547794 A JP19547794 A JP 19547794A JP H0864537 A JPH0864537 A JP H0864537A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
compound semiconductor
growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19547794A
Other languages
Japanese (ja)
Other versions
JP3435645B2 (en
Inventor
Masashi Nakamura
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP19547794A priority Critical patent/JP3435645B2/en
Publication of JPH0864537A publication Critical patent/JPH0864537A/en
Application granted granted Critical
Publication of JP3435645B2 publication Critical patent/JP3435645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To reduce the n-type carrier on the interface between a compound semiconductor growing film and a substrate, after feat-treating an InP substrate meeting specific heating requirement under the atmosphere comprising PH3 and H2 in a specific flow rate, the growing step of a compound semiconductor layer is to be started under reduced pressure. CONSTITUTION: A compound semiconductor layer is grown by vapor deposition on an InP substrate in a growing vessel under reduced pressure of 10-150Torr. In this process heat-treating the InP substrate at the temperature between 630 deg.C and 700 deg.C for longer than 10 minutes under the atmosphere comprising PH3 and H2 in the flow rate of PH3 exceeding 0.50SCCM/cm<2> per unit area of the growing vessel under the pressure reduced atmosphere of 10-150Torr, and then the growing step of the compound semiconductor layer is started. Otherwise, after heat-treating the InP substrate at the temperature between 670 deg.C and 700 deg.C for longer 10 minutes under the atmosphere comprising PH3 and H2 in the flow rate of PF3 exceeding 0.30SCCM/cm<2> , the growing step of the compound semiconductor is started.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相成長方法に関し、
例えば10〜150Torr程度の減圧雰囲気下でInP基
板上にInPやAlInPやGaInAs等の化合物半
導体層を気相成長させる減圧MOCVD法(有機金属気
相成長法)に適用して有用な技術に関する。
FIELD OF THE INVENTION The present invention relates to a vapor phase growth method,
For example, the present invention relates to a technique useful when applied to a low pressure MOCVD method (metal organic chemical vapor deposition method) of vapor-depositing a compound semiconductor layer of InP, AlInP, GaInAs or the like on an InP substrate under a reduced pressure atmosphere of about 10 to 150 Torr.

【0002】[0002]

【従来の技術】InP基板上にInPやAlInPやG
aInAs等の化合物半導体層を気相成長させる一手法
として、III 族元素の原料として有機金属を用いるとと
もに、V 族元素の原料としてAsH3 やPH3 等の水素
化物を用いるMOCVD法がある。この方法では、気相
成長を開始する前にInP基板が所定の成長温度になる
までの基板加熱中に蒸気圧の大きなV 族元素が基板から
解離するのを防ぐために、基板加熱時に成長容器内にP
3 を供給してInP基板にリン圧を印加していた。そ
して、基板温度が所定の成長温度になったら、成長容器
内に有機金属ガス等を供給して気相成長を開始してい
た。
2. Description of the Related Art InP, AlInP, G on an InP substrate
As a method of vapor-phase growing a compound semiconductor layer such as aInAs, there is a MOCVD method in which an organic metal is used as a raw material of a group III element and a hydride such as AsH 3 or PH 3 is used as a raw material of a group V element. In this method, in order to prevent the group V element having a large vapor pressure from being dissociated from the substrate during the substrate heating until the InP substrate reaches a predetermined growth temperature before the vapor phase growth is started, the inside of the growth container is heated during the substrate heating. To P
The phosphorus pressure was applied to the InP substrate by supplying H 3 . Then, when the substrate temperature reached a predetermined growth temperature, an organic metal gas or the like was supplied into the growth container to start vapor phase growth.

【0003】しかし、従来より、上記のようにして成長
させた化合物半導体層とInP基板との界面にn型のキ
ャリアが発生するという問題があった。これに対して、
化合物半導体層を気相成長させる前にPH3 雰囲気中で
成長温度以上、30分以上の熱処理をInP基板に施す
ことによって、界面のn型キャリアを減少させる技術が
提案されている(特開昭64−57711号公報及びJ.
Appl.Phys.71(8),15 April 1992,pp3898-3903 に記載さ
れている)。この提案によれば、常圧(1atm、即ち7
60Torr)下で膜成長を行なう常圧MOCVD法の場合
には、640℃で30分以上の熱処理を行なうことで界
面のSi濃度を低下させることができ、それによって界
面のn型キャリアが減少または消失するとされている。
However, conventionally, there has been a problem that n-type carriers are generated at the interface between the compound semiconductor layer grown as described above and the InP substrate. On the contrary,
A technique has been proposed in which n-type carriers at the interface are reduced by subjecting an InP substrate to a heat treatment at a growth temperature or higher for 30 minutes or longer in a PH 3 atmosphere before vapor-depositing a compound semiconductor layer (Japanese Patent Laid-Open Publication No. Sho. 64-57711 and J.
Appl.Phys.71 (8), 15 April 1992, pp3898-3903). According to this proposal, normal pressure (1 atm, or 7
In the case of the atmospheric pressure MOCVD method in which the film is grown under 60 Torr), the Si concentration at the interface can be reduced by performing a heat treatment at 640 ° C. for 30 minutes or more, whereby the n-type carriers at the interface are reduced or It is said to disappear.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開昭64−57711号公報等に記載された技術は、成
長膜の厚さ及び組成の均一性並びに結晶性が良いことな
どから近年主流となっている30Torr程度の減圧下で膜
成長を行なう減圧MOCVD法においては、上述した界
面のn型キャリアの減少効果を奏しないことが本発明者
の行なった以下の実験により明らかとなった。
However, the technique described in the above-mentioned Japanese Patent Laid-Open No. 64-57711, etc. has become mainstream in recent years because the thickness and composition uniformity of the grown film and the crystallinity are good. In the low pressure MOCVD method in which film growth is performed under a reduced pressure of about 30 Torr, it has been revealed by the following experiments conducted by the present inventor that the effect of reducing n-type carriers at the interface described above is not exhibited.

【0005】即ち、本発明者は、化合物半導体層を成長
させる前に通常InP基板上に成長させるInPバッフ
ァー層の成長条件と同じ温度(660℃)及び同じPH
3 量でもって、30Torrの減圧下で30〜60分間の種
々の処理時間で基板を熱処理した後、成長容器内にTM
I(トリメチルインジウム)を流して基板上にInP膜
を成長させた。そして、その成長膜と基板との界面にお
けるn型のキャリア濃度を測定したところ、n型キャリ
アの減少は認められなかった。
That is, the present inventor has found that the same temperature (660 ° C.) and the same PH as the growth conditions of the InP buffer layer that is normally grown on the InP substrate before growing the compound semiconductor layer.
After the substrate was heat-treated at a reduced pressure of 30 Torr for various treatment times of 30 to 60 minutes with 3 amounts, TM was placed in the growth chamber.
InP film was grown on the substrate by flowing I (trimethylindium). Then, when the n-type carrier concentration at the interface between the growth film and the substrate was measured, no decrease in n-type carriers was observed.

【0006】本発明は、上記事情に鑑みてなされたもの
で、その目的は、成長膜と基板との界面のn型キャリア
が低減されるように、10〜150Torr程度の減圧雰囲
気下でInP基板上にInPやAlInPやGaInA
s等の化合物半導体層を気相成長させることのできる気
相成長方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to reduce the n-type carriers at the interface between the growth film and the substrate under a reduced pressure atmosphere of about 10 to 150 Torr. InP, AlInP, GaInA on top
Another object of the present invention is to provide a vapor phase growth method capable of vapor-phase growing a compound semiconductor layer such as s.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は鋭意研究を重ねた結果、減圧下で気相成
長を開始する前に行なう熱処理の処理温度をInPバッ
ファー層の通常の成長温度(660℃)よりも高くする
か、もしくはPH3 の流量をInPバッファー層の通常
の成長時の流量よりも多くするか、またはそれらを同時
に行なうことにより、成長膜と基板との界面のn型キャ
リアを低減させることができることを見い出した。
In order to achieve the above object, the present inventor has conducted extensive studies and, as a result, has found that the treatment temperature of the heat treatment to be performed before the start of vapor phase growth under reduced pressure is usually the InP buffer layer. The growth temperature (660 ° C.) of the InP buffer layer, or the flow rate of PH 3 is higher than the flow rate during the normal growth of the InP buffer layer, or by performing them simultaneously, the interface between the growth film and the substrate is increased. It has been found that the n-type carrier can be reduced.

【0008】本発明は、上記知見に基づきなされたもの
で、10〜150Torrの減圧雰囲気とした成長容器内で
InP基板上に化合物半導体層を気相成長させるにあた
り、請求項1記載の発明では、前記成長容器の単位断面
積あたりのPH3 の流量を0.50SCCM/cm2 以上とし
たPH3 とH2 よりなる雰囲気下で、630℃以上70
0℃以下の温度、請求項2記載の発明では、前記成長容
器の単位断面積あたりのPH3 の流量を0.30SCCM/
cm2 以上としたPH3 とH2 よりなる雰囲気下で、67
0℃以上700℃以下の温度、請求項3記載の発明で
は、前記成長容器の単位断面積あたりのPH3 の流量を
0.50SCCM/cm2 以上としたPH3 とH2 よりなる雰
囲気下で、670℃以上700℃以下の温度、でそれぞ
れ10分以上の熱処理を前記InP基板に施した後、前
記化合物半導体層の成長を開始するものである。
The present invention has been made based on the above findings, and in vapor-depositing a compound semiconductor layer on an InP substrate in a growth container in a reduced pressure atmosphere of 10 to 150 Torr, the invention according to claim 1 The flow rate of PH 3 per unit cross-sectional area of the growth container is 0.50 SCCM / cm 2 or more, and the atmosphere is composed of PH 3 and H 2 and is 630 ° C. or more 70
In the invention according to claim 2, the flow rate of PH 3 per unit cross sectional area of the growth container is 0.30 SCCM /
67 in an atmosphere consisting of PH 3 and H 2 that is at least cm 2.
At a temperature of 0 ° C. or higher and 700 ° C. or lower, in the invention according to claim 3, in an atmosphere composed of PH 3 and H 2 in which the flow rate of PH 3 per unit cross-sectional area of the growth container is 0.50 SCCM / cm 2 or more. After subjecting the InP substrate to a heat treatment at a temperature of 670 ° C. or higher and 700 ° C. or lower for 10 minutes or longer, the growth of the compound semiconductor layer is started.

【0009】[0009]

【作用】請求項1記載の発明ではPH3 の流量を0.5
0SCCM/cm2 以上として630℃以上700℃以下の温
度、また請求項2記載の発明ではPH3 の流量を0.3
0SCCM/cm2 以上として670℃以上700℃以下の温
度、また請求項3記載の発明ではPH3 の流量を0.5
0SCCM/cm2 以上として670℃以上700℃以下の温
度、でそれぞれInP基板を熱処理してからその上にI
nPやAlInPやGaInAs等の化合物半導体層を
気相成長させることにより、成長膜と基板との界面に存
在するn型キャリアが従来よりも低減される。
According to the invention described in claim 1, the flow rate of PH 3 is 0.5.
A temperature of 630 ° C. or more and 700 ° C. or less as 0 SCCM / cm 2 or more, and the flow rate of PH 3 is 0.3 in the invention of claim 2.
A temperature of 670 ° C. or higher and 700 ° C. or lower as 0 SCCM / cm 2 or higher, and the flow rate of PH 3 is 0.5 in the invention of claim 3.
The InP substrate is heat-treated at a temperature of 670 ° C. or higher and 700 ° C. or lower at 0 SCCM / cm 2 or higher, and then I
By vapor-depositing a compound semiconductor layer of nP, AlInP, GaInAs, or the like, the number of n-type carriers existing at the interface between the growth film and the substrate is reduced as compared with the conventional case.

【0010】[0010]

【実施例】以下に、本発明者の行なった実験及びそれに
対する考察について説明し、本発明の特徴とするところ
を明らかとする。なお、本発明は以下に挙げる実験によ
り何等制限されるものではない。
EXAMPLES The experiments conducted by the present inventor and their consideration will be described below to clarify the features of the present invention. The present invention is not limited to the experiments described below.

【0011】先ず、本発明者は、熱処理温度及びPH3
の流量を種々変化させて減圧雰囲気下でInP基板の熱
処理を行なった後、減圧MOCVD法により基板上にI
nP膜を成長させる実験を行なった。各試料の処理条件
は、図1のタイムチャート及び表1に示す通りであっ
た。
First, the present inventor has found that the heat treatment temperature and PH 3
The InP substrate is heat-treated under a reduced pressure atmosphere by variously changing the flow rate of I, and then I
An experiment was conducted to grow an nP film. The processing conditions of each sample were as shown in the time chart of FIG. 1 and Table 1.

【表1】 [Table 1]

【0012】(試料1)図1のタイムチャートにおい
て、温度パターンを(A)としてPH3 供給パターンを
(a)とした。即ち、成長容器内にInPバッファー層
成長時のPH3 流量Vp2 の2倍量Vp1 のPH3 を流
しながら、基板をInPバッファー層の成長温度T1
(660℃)よりも高い温度T2 (680℃)でt1 時
間(900sec )保持した後、t2 時間(300sec )
かけて基板温度をT1 に下げ、その後TMIの供給を開
始し、さらにt3 時間(300sec )たった後にPH3
の流量をVp2 に下げた。
(Sample 1) In the time chart of FIG. 1, the temperature pattern is (A) and the PH 3 supply pattern is (a). That is, while the flow rate of PH 3 which is twice the flow rate Vp 2 of PH 3 during growth of the InP buffer layer is flown into the growth chamber, the substrate is grown at the growth temperature T 1 of the InP buffer layer.
After holding at temperature T2 (680 ℃) higher than (660 ℃) for t1 hour (900sec), t2 time (300sec)
After that, the substrate temperature is lowered to T1 and then TMI supply is started, and PH3 is supplied after t3 time (300 seconds).
Was reduced to Vp2.

【0013】(試料2)温度パターンを(A)としてP
3 供給パターンを(b)とした。即ち、PH3 の流量
を終始Vp2 に保ちながら、基板を温度T2 でt1 時間
保持した後、t2 時間かけて基板温度をT1 に下げ、そ
の後TMIの供給を開始した。
(Sample 2) P with temperature pattern (A)
The H 3 supply pattern was set to (b). That is, while maintaining the flow rate of PH 3 preoccupied Vp2, after holding t1 hours the substrate at temperature T2, the substrate temperature over time t2 lowered to T1, and then starting the supply of TMI.

【0014】(試料3)温度パターンを(B)としてP
3 供給パターンを(a)とした。即ち、基板温度をT
1 に達してから気相成長が終了するまで終始その温度に
保持しながら、先ずPH3 の流量をVp1 とし、TMI
の供給開始後t3 時間経過したらPH3の流量をVp2
とした。
(Sample 3) P as temperature pattern (B)
The H 3 supply pattern was set to (a). That is, the substrate temperature is T
First, the flow rate of PH 3 is set to Vp1 while maintaining the temperature from the time when the temperature reaches 1 to the end of the vapor phase growth, and the TMI
When the time t3 has elapsed after the start of the supply of
And

【0015】(試料4)温度パターンを(B)としてP
3 供給パターンを(b)とした。即ち、PH3 の流量
を終始Vp2 に保ちながら、基板温度をT1 に達してか
ら気相成長が終了するまで終始その温度に保持した。こ
の処理条件は、InP基板上にInPバッファー層を減
圧MOCVD法により成長させる従来の成長条件と同じ
である。
(Sample 4) P as a temperature pattern (B)
The H 3 supply pattern was set to (b). That is, while keeping the flow rate of PH 3 at Vp2 all the time, the temperature of the substrate was kept at that temperature all the way from when the substrate temperature reached T1 until the vapor phase growth was completed. This processing condition is the same as the conventional growth condition for growing the InP buffer layer on the InP substrate by the low pressure MOCVD method.

【0016】(考察)以上の4つの試料について、成長
膜と基板との間に存在するn型キャリアの濃度を測定し
たところ、表1に示すように、試料1では2.0×10
14cm-3、試料2では3.0×1015cm-3、試料3では
6.0×1015cm-3、試料4では5.0×1016cm-3
あり、試料1,2,3では明らかに試料4よりも界面の
n型キャリアが低減されていた。
(Discussion) The concentration of n-type carriers existing between the growth film and the substrate was measured for the above four samples, and as shown in Table 1, in Sample 1, 2.0 × 10 5 was obtained.
14 cm −3 , 3.0 × 10 15 cm −3 for sample 2, 6.0 × 10 15 cm −3 for sample 3, 5.0 × 10 16 cm −3 for sample 4, , 3 clearly reduced the n-type carriers at the interface as compared with Sample 4.

【0017】そこで、本発明者は、本発明者の行なった
減圧MOCVD法についての上記実験と常圧MOCVD
法についての上記特開昭64−57711号公報等に記
載された技術との比較検討を行なった。そして、その検
討結果から、減圧MOCVD法を行なう際の好適な熱処
理条件を導出した。以下に、その検討内容を記す。
Therefore, the inventor of the present invention conducted the above-mentioned experiment on the low pressure MOCVD method performed by the inventor and the atmospheric pressure MOCVD.
The method was compared and examined with the technique described in Japanese Patent Laid-Open No. 64-57711. Then, from the examination results, suitable heat treatment conditions for performing the low pressure MOCVD method were derived. The details of the examination are described below.

【0018】先ず、特開昭64−57711号公報等で
開示された技術の熱処理条件は、以下の通りである。 処理温度:640℃ PH3 の流量:毎分80cc PH3 及びH2 の総流量:毎分12リットル 流速:毎秒1m 圧力:1atm (即ち、76Torr) なお、PH3 の流量は、水素ベース20%のPH3 を毎
分400cc流したと記載されていることから以下の
(1)式の計算により求めた。 20%PH3 ×400[cc/分]=80[cc/分] ・・・・(1)
First, the heat treatment conditions of the technique disclosed in Japanese Patent Laid-Open No. 64-57711 are as follows. Processing temperature: 640 ° C. PH 3 flow rate: 80 cc per minute Total flow rate of PH 3 and H 2 : 12 liters per minute Flow rate: 1 m / sec Pressure: 1 atm (ie 76 Torr) The flow rate of PH 3 is 20% hydrogen base Since it is described that 400 cc of PH 3 was flowed per minute, it was calculated by the following equation (1). 20% PH 3 x 400 [cc / min] = 80 [cc / min] ... (1)

【0019】ここで、本発明者は、流速について、毎秒
1mは誤りであって、正しくは毎分1mであると推測す
る。その根拠は、上記諸条件に基づいて以下の(2)式
及び(3)式の計算によりリアクタの断面積Scm2 及び
半径rcmを求めたところ、リアクタの半径は1.5cmと
なり、小さ過ぎるからである。そこで、流速を毎分1m
として以下の(4)式及び(5)式の計算によりリアク
タの断面積Scm2 及び半径rcmを求めると、リアクタの
半径は11.3cmであり、適当な大きさとなるので、流
速は毎分1mであるのが妥当であると推測される。従っ
て、以下の説明では、上記特開昭64−57711号公
報に記載の技術に関して流速を毎分1mとする。 S[cm2 ]=12[l/分]×(273+640)[K]/273[K] ÷1[m/秒]=6.7[cm2 ] ・・・・(2) r[cm]=√(6.7[cm2 ]÷π)=1.5[cm] ・・・・(3) S[cm2 ]=12[l/分]×(273+640)[K]/273[K] ÷1[m/分]=401[cm2 ] ・・・・(4) r[cm]=√(401[cm2 ]÷π)=11.3[cm] ・・・・(5)
The inventor of the present invention estimates that the flow velocity is 1 m / s in error and 1 m / min in accuracy. The reason is that the cross-sectional area Scm 2 and radius rcm of the reactor were calculated by the following equations (2) and (3) based on the above conditions, and the radius of the reactor was 1.5 cm, which was too small. Is. Therefore, the flow velocity is 1m / min.
When the cross-sectional area Scm 2 and radius rcm of the reactor are calculated by the following equations (4) and (5), the radius of the reactor is 11.3 cm, which is an appropriate size, and the flow rate is 1 m / min. Is supposed to be reasonable. Therefore, in the following description, the flow velocity will be 1 m / min for the technique described in Japanese Patent Laid-Open No. 64-57711. S [cm 2 ] = 12 [l / min] × (273 + 640) [K] / 273 [K] ÷ 1 [m / sec] = 6.7 [cm 2 ] ... (2) r [cm] = √ (6.7 [cm 2 ] ÷ π) = 1.5 [cm] ... (3) S [cm 2 ] = 12 [l / min] × (273 + 640) [K] / 273 [K ] ÷ 1 [m / min] = 401 [cm 2 ] ··· (4) r [cm] = √ (401 [cm 2 ] ÷ π) = 11.3 [cm] ··· (5)

【0020】一方、本発明者の行なった実験の熱処理条
件は、以下の通りであった。 処理温度:660℃(試料3,4)、680℃(試料
1,2) PH3 の流量:毎分400cc(試料2,4)、毎分80
0cc(試料1,3) PH3 及びH2 の総流量:毎分15リットル 流速:毎分10m 圧力:30Torr リアクタの断面積S:1256cm2 リアクタの半径r:20cm なお、PH3 の流量は、水素ベース50%のPH3 を毎
分800ccまたは1600cc流したので、それぞれ以下
の(6)式及び(7)式の計算により求めた。 50%PH3 ×800[cc/分]=400[cc/分] ・・・・(6) 50%PH3 ×1600[cc/分]=800[cc/分] ・・・・(7)
On the other hand, the heat treatment conditions of the experiment conducted by the present inventor were as follows. Processing temperature: 660 ° C. (samples 3, 4), 680 ° C. (samples 1, 2) PH 3 flow rate: 400 cc / min (samples 2, 4), 80 / min
0 cc (Samples 1 and 3) Total flow rate of PH 3 and H 2 : 15 liters per minute Flow rate: 10 m per minute Pressure: 30 Torr Cross sectional area of reactor S: 1256 cm 2 Radius r of reactor: 20 cm The flow rate of PH 3 is: Since PH 3 with 50% hydrogen base was flowed at 800 cc or 1600 cc per minute, it was calculated by the following equations (6) and (7), respectively. 50% PH 3 x 800 [cc / min] = 400 [cc / min] ... (6) 50% PH 3 x 1600 [cc / min] = 800 [cc / min] ... (7)

【0021】上記各処理条件からわかるように、本発明
者の使用したリアクタは上記特開昭64−57711号
公報記載の技術におけるリアクタの約3倍大きい面積で
あるため、本発明者の実験ではPH3 の流量は特開昭6
4−57711号のPH3 流量の3倍である毎分240
ccで同等であると考えられる。しかし、処理温度を通常
のInPバッファー層の成長温度と同じにした場合で比
較すると、試料4の毎分400cc(240ccの1.67
倍)ではn型キャリアの低減効果が無く、試料3の毎分
800cc(240ccの3.3倍)で低減効果が得られ
た。このことより、常圧MOCVD法の場合に効果があ
るとされたPH3 量では、減圧MOCVD法では不十分
であると推測された。
As can be seen from the above processing conditions, the reactor used by the present inventor has an area about three times larger than that of the reactor disclosed in the above-mentioned Japanese Patent Laid-Open No. 64-57711, and therefore, in the experiment by the present inventor. The flow rate of PH 3 is JP-A-6
4-57711 PH 3 flow rate is three times 240 per minute
It is considered to be equivalent in cc. However, comparing the case where the processing temperature is the same as the growth temperature of the normal InP buffer layer, 400 cc / min (240 cc of 1.67) of Sample 4 is compared.
2 times), there was no reduction effect of the n-type carrier, and the reduction effect was obtained at 800 cc / min of sample 3 (3.3 times 240 cc). From this, it was speculated that the low pressure MOCVD method was insufficient with the amount of PH 3 that was considered to be effective in the atmospheric pressure MOCVD method.

【0022】次に、PH3 の分圧について比較すると、
特開昭64−57711号でのPH3 の分圧は以下の
(8)式の計算より6.7×10-3atm であるが、試料
3では以下の(9)式の計算より2.2×10-3atm 、
試料4では以下の(10)式の計算より1.1×10-3
atm であった。つまり、PH3 の分圧が高ければn型キ
ャリアの低減効果が得られるようであるが、本発明者の
行なった別の実験では、PH3 の流量を毎分400ccと
し、全圧を76TorrとしてPH3 の分圧を以下の(1
1)式の計算より2.7×10-3atm としても所望の効
果は得られなかった。このことより、PH3 の分圧の大
小がn型キャリアの低減効果の直接的な要因でないこと
がわかった。 80[cc/分]÷12[l/分]×1[atm ] =6.7×10-3[atm ] ・・・・(8) 800[cc/分]÷15[l/分]×30/760[atm ] =2.2×10-3[atm ] ・・・・(9) 400[cc/分]÷15[l/分]×30/760[atm ] =1.1×10-3[atm ] ・・・・(10) 400[cc/分]÷15[l/分]×76/760[atm ] =2.7×10-3[atm ] ・・・・(11)
Next, comparing the partial pressure of PH 3 ,
The partial pressure of PH 3 in JP-A-64-57711 is 6.7 × 10 −3 atm according to the calculation of the following formula (8), but for sample 3, it is 2. 2 × 10 -3 atm,
For sample 4, 1.1 × 10 −3 is calculated from the following equation (10).
It was atm. That is, it seems that if the partial pressure of PH 3 is high, the effect of reducing n-type carriers can be obtained, but in another experiment conducted by the present inventor, the flow rate of PH 3 was 400 cc / min, and the total pressure was 76 Torr. The partial pressure of PH 3 is (1
From the calculation of the equation (1), the desired effect could not be obtained even at 2.7 × 10 −3 atm. From this, it was found that the magnitude of the partial pressure of PH 3 was not a direct factor for the effect of reducing n-type carriers. 80 [cc / min] ÷ 12 [l / min] × 1 [atm] = 6.7 × 10 −3 [atm] ... (8) 800 [cc / min] ÷ 15 [l / min] × 30/760 [atm] = 2.2 × 10 −3 [atm] (9) 400 [cc / min] ÷ 15 [l / min] × 30/760 [atm] = 1.1 × 10 -3 [atm] ... (10) 400 [cc / min] ÷ 15 [l / min] x 76/760 [atm] = 2.7 x 10-3 [atm] ... (11)

【0023】ここまでの検討結果から、常圧下における
熱処理と減圧下における熱処理とでは、リアクタの単位
断面積あたりに要するPH3 流量が異なることがわかっ
た。そこで、試料3と試料4についてリアクタの単位断
面積あたりのPH3 流量を求めたところ、試料3では以
下の(12)式の計算より0.64cc/分/cm2 、試料
4では以下の(13)式の計算より0.32cc/分/cm
2 であった。従って、減圧下における熱処理により所望
の効果を得るための単位断面積あたりのPH3流量の臨
界値は、0.32cc/分/cm2 と0.64cc/分/cm2
との中間にあることになる。その臨界値を求めるべく本
発明者はさらに実験を行なったところ、0.50cc/分
/cm2 が臨界値であることがわかった。即ち、熱処理温
度が通常のInPバッファー層の成長温度と同じである
場合には、リアクタの単位断面積あたりのPH3 流量が
0.50cc/分/cm2 以上であれば、n型キャリアの低
減効果が得られることがわかった。 800[cc/分]÷1256[cm2 ] =0.64[cc/分/cm2 ] ・・・・(12) 400[cc/分]÷1256[cm2 ] =0.32[cc/分/cm2 ] ・・・・(13)
From the results of the examination so far, it was found that the PH 3 flow rate required per unit cross-sectional area of the reactor is different between the heat treatment under the normal pressure and the heat treatment under the reduced pressure. Therefore, when the PH 3 flow rate per unit cross-sectional area of the reactor was determined for Samples 3 and 4, it was 0.64 cc / min / cm 2 for Sample 3, and for Sample 4 the following ( From the calculation of formula 13), 0.32 cc / min / cm
Was 2 . Therefore, the critical value of the flow rate of PH 3 per unit cross-sectional area for obtaining the desired effect by heat treatment under reduced pressure is 0.32 cc / min / cm 2 and 0.64 cc / min / cm 2
It will be somewhere in between. The inventors further conducted an experiment to find the critical value, and found that the critical value was 0.50 cc / min / cm 2 . That is, when the heat treatment temperature is the same as the growth temperature of the normal InP buffer layer, if the PH 3 flow rate per unit cross-sectional area of the reactor is 0.50 cc / min / cm 2 or more, the n-type carriers are reduced. It turned out that the effect was obtained. 800 [cc / min] / 1256 [cm 2 ] = 0.64 [cc / min / cm 2 ] ... (12) 400 [cc / min] / 1256 [cm 2 ] = 0.32 [cc / Min / cm 2 ] ・ ・ ・ ・ (13)

【0024】次に、上記試料3と試料4について、成長
膜と基板との界面のSi濃度を調べたところ、何れも1
〜2×1017cm-3程度で明らかな差がなかった。このこ
とより、界面におけるn型キャリアの低減効果はSiの
除去によりもたらされたものではないことがわかった。
即ち、減圧下での熱処理では、常圧下における場合と異
なり、Si除去以外の何らかの作用によりn型キャリア
が低減されたと考えられる。その作用については、試料
2のように試料4と同じPH3 流量であっても熱処理温
度を680℃と高くすることによってn型キャリアの低
減効果が得られたことと、上述したように常圧下と減圧
下とで必要とされるPH3 流量が異なることから、PH
3 が分解した時に生成されるラジカルな水素が何らかの
作用をしていると推測される。
Next, with respect to the samples 3 and 4, the Si concentration at the interface between the growth film and the substrate was examined.
There was no obvious difference at about 2 × 10 17 cm −3 . From this, it was found that the effect of reducing n-type carriers at the interface was not brought about by the removal of Si.
That is, in the heat treatment under reduced pressure, unlike the case under normal pressure, it is considered that n-type carriers were reduced by some action other than Si removal. Regarding the action, even if the flow rate of PH 3 is the same as that of sample 4 as in sample 2, the effect of reducing n-type carriers was obtained by increasing the heat treatment temperature to 680 ° C. Since the required PH 3 flow rate differs between the
It is speculated that the radical hydrogen generated when 3 is decomposed has some action.

【0025】また、熱処理時間については、試料3のよ
うに15分でも所望の効果が得られた。本発明者の行な
った別の実験では、熱処理時間が15分の試料と30分
の試料とではn型キャリアの低減効果は同程度であっ
た。そこで、その低減効果が飽和傾向を示す熱処理時間
を求めるべく本発明者はさらに実験を行なったところ、
10分程度でも所望の効果が得られた。従って、熱処理
時間は10分以上が適当であることがわかった。
As for the heat treatment time, the desired effect was obtained even if the heat treatment time was 15 minutes as in Sample 3. In another experiment conducted by the present inventor, the effect of reducing the n-type carrier was about the same between the sample having the heat treatment time of 15 minutes and the sample having the heat treatment time of 30 minutes. Therefore, when the present inventor further conducted an experiment to find a heat treatment time at which the reduction effect shows a saturation tendency,
The desired effect was obtained even in about 10 minutes. Therefore, it was found that the heat treatment time of 10 minutes or more is suitable.

【0026】さらに、熱処理温度については、試料1,
2,3より660℃及び680℃で所望の効果が得られ
ているが、その効果を得るための熱処理温度の臨界値を
求めるべく本発明者はさらに実験を行なったところ、6
30℃での熱処理でも効果のあることが確認された。但
し、700℃を超える温度での熱処理では、InP基板
からのP原子の解離が著しく、基板表面に荒れが生じて
しまうので好ましくない。従って、熱処理温度の適切な
範囲は630〜700℃である。なお、熱処理温度が高
いほうがより優れたn型キャリアの低減効果を得ること
ができることと、InP層の成長温度(660℃)より
も低い温度で熱処理を行なっても気相成長を開始する際
にはその成長温度まで高めなければならないことなどか
ら、好ましくは成長温度以上、より好ましくは成長温度
よりも10℃高い温度(670℃)以上であるのがよ
い。
Regarding the heat treatment temperature, Sample 1,
The desired effect was obtained at 660 ° C. and 680 ° C. from 2 and 3, but the present inventor further conducted an experiment to find the critical value of the heat treatment temperature for obtaining the effect.
It was confirmed that the heat treatment at 30 ° C was also effective. However, the heat treatment at a temperature higher than 700 ° C. is not preferable because the dissociation of P atoms from the InP substrate is significant and the substrate surface is roughened. Therefore, a suitable range of the heat treatment temperature is 630 to 700 ° C. It should be noted that the higher the heat treatment temperature is, the more excellent the effect of reducing the n-type carriers can be obtained, and that even if the heat treatment is performed at a temperature lower than the growth temperature (660 ° C.) of the InP layer, the vapor phase growth can be started. Since it has to be raised to the growth temperature, it is preferably at least the growth temperature, more preferably at a temperature 10 ° C. higher than the growth temperature (670 ° C.) or higher.

【0027】熱処理温度が670℃以上であるとより好
ましい理由は、本発明者の行なった他の実験によれば、
その温度以上であればリアクタの単位断面積あたりに要
するPH3 流量が0.30cc/分/cm2 でもn型キャリ
アの低減効果が得られたからである。試料2がこれに該
当する。但し、PH3 流量が0.20cc/分/cm2
0.25cc/分/cm2 では所望の効果が得られなかっ
た。
The reason why the heat treatment temperature is more preferably 670 ° C. or higher is according to another experiment conducted by the present inventor.
This is because if the temperature is equal to or higher than that temperature, the effect of reducing n-type carriers can be obtained even if the PH 3 flow rate required per unit cross-sectional area of the reactor is 0.30 cc / min / cm 2 . Sample 2 corresponds to this. However, the desired effect was not obtained when the PH 3 flow rate was 0.20 cc / min / cm 2 or 0.25 cc / min / cm 2 .

【0028】なお、上記実施例における各熱処理温度及
び成長温度は、熱電対により基板の裏側の温度を測定し
た値である。
The heat treatment temperature and the growth temperature in the above embodiment are values obtained by measuring the temperature on the back side of the substrate with a thermocouple.

【0029】以上の検討結果をまとめると、好適な熱処
理条件は、PH3 の流量を0.50SCCM/cm2 以上とし
て630℃以上700℃以下の温度(試料3が該当)、
またPH3 の流量を0.30SCCM/cm2 以上として67
0℃以上700℃以下の温度(試料2が該当)、またP
3 の流量を0.50SCCM/cm2 以上として670℃以
上700℃以下の温度(試料1が該当)である。そのよ
うな条件でもってInP基板を熱処理してからその上に
InPやAlInPやGaInAs等の化合物半導体層
を気相成長させることにより、成長膜と基板との界面に
存在するn型キャリアを従来よりも低減させることがで
きるので、減圧MOCVD法により成長膜と基板との界
面のn型キャリアが従来よりも少なくなるように、In
P基板上に化合物半導体層を成長させることができる。
Summarizing the results of the above examinations, the preferable heat treatment conditions are that the flow rate of PH 3 is 0.50 SCCM / cm 2 or more and the temperature is 630 ° C. or more and 700 ° C. or less (Sample 3 corresponds),
Also, the flow rate of PH 3 is set to 0.30 SCCM / cm 2 or more 67
Temperatures above 0 ° C and below 700 ° C (Sample 2 applies), P
The temperature of 670 ° C. or more and 700 ° C. or less (Sample 1 applies) when the flow rate of H 3 is 0.50 SCCM / cm 2 or more. By heat-treating the InP substrate under such conditions and then vapor-depositing a compound semiconductor layer such as InP, AlInP, or GaInAs on the InP substrate, n-type carriers existing at the interface between the growth film and the substrate can be removed from the conventional one. It is also possible to reduce In so that the n-type carriers at the interface between the growth film and the substrate are reduced by the low pressure MOCVD method.
A compound semiconductor layer can be grown on the P substrate.

【0030】なお、本発明は、30Torrの減圧下に限ら
ず、10〜150Torrの減圧下でも適用可能である。ま
た、リアクタの大きさも上記実施例に挙げたものに限ら
ないのはいうまでもない。さらに、上記実施例の各実験
においては、InP基板上にInP層を気相成長させた
が、InP基板上にAlInPやGaInAs等の化合
物半導体層を気相成長させる場合にも同様の効果、即ち
基板と成長膜との界面におけるn型キャリアの低減効果
が得られる。
The present invention can be applied not only under the reduced pressure of 30 Torr but also under the reduced pressure of 10 to 150 Torr. Needless to say, the size of the reactor is not limited to the size given in the above embodiment. Further, in each of the experiments of the above-described examples, the InP layer was vapor-phase grown on the InP substrate. However, the same effect is obtained when the compound semiconductor layer such as AlInP or GaInAs is vapor-phase grown on the InP substrate. An effect of reducing n-type carriers at the interface between the substrate and the growth film can be obtained.

【0031】[0031]

【発明の効果】請求項1記載の発明ではPH3 の流量を
0.50SCCM/cm2 以上として630℃以上700℃以
下の温度、また請求項2記載の発明ではPH3 の流量を
0.30SCCM/cm2 以上として670℃以上700℃以
下の温度、また請求項3記載の発明ではPH3 の流量を
0.50SCCM/cm2 以上として670℃以上700℃以
下の温度、でそれぞれInP基板を熱処理してからその
上にInPやAlInPやGaInAs等の化合物半導
体層を気相成長させることにより、成長膜と基板との界
面に存在するn型キャリアを従来よりも低減させること
ができるので、減圧MOCVD法により成長膜と基板と
の界面のn型キャリアが従来よりも少なくなるように、
InP基板上に化合物半導体層を成長させることができ
る。
Claim 1 PH 3 flow rates 0.50SCCM / cm 2 or more as 630 ° C. or higher 700 ° C. temperature below the invention according according to the present invention, also the flow rate of PH 3 in the invention of claim 2, wherein 0.30SCCM / Cm 2 or more and a temperature of 670 ° C. or more and 700 ° C. or less, and in the invention of claim 3 , the flow rate of PH 3 is 0.50 SCCM / cm 2 or more and a temperature of 670 ° C. or more and 700 ° C. or less. Then, by vapor-depositing a compound semiconductor layer of InP, AlInP, GaInAs, or the like thereon, the n-type carriers existing at the interface between the growth film and the substrate can be reduced more than in the conventional case, and thus low pressure MOCVD is performed. Method so that the number of n-type carriers at the interface between the growth film and the substrate becomes smaller than before.
A compound semiconductor layer can be grown on the InP substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明者の行なった実験における各試料の処理
温度及びPH3 の流量を示すタイムチャートである。
FIG. 1 is a time chart showing a processing temperature and a flow rate of PH 3 of each sample in an experiment conducted by the present inventor.

【符号の説明】[Explanation of symbols]

T1 InPバッファー層を成長させる場合の成長温度
(660℃) T2 T1 よりも高い温度(680℃) Vp1 Vp2 の2倍量 Vp2 InPバッファー層成長時のPH3 流量
Growth temperature for growing T1 InP buffer layer (660 ° C.) T2 Temperature higher than T1 (680 ° C.) Vp1 Vp2 double amount Vp2 InP buffer layer PH 3 flow rate during growth

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 10〜150Torrの減圧雰囲気とした成
長容器内でInP基板上に化合物半導体層を気相成長さ
せるにあたり、前記成長容器の単位断面積あたりのPH
3 の流量を0.50SCCM/cm2 以上としたPH3 とH2
よりなる雰囲気下で、630℃以上700℃以下の温度
で10分以上の熱処理を前記InP基板に施した後、前
記化合物半導体層の成長を開始することを特徴とする気
相成長方法。
1. When a compound semiconductor layer is vapor-phase grown on an InP substrate in a growth chamber in a reduced pressure atmosphere of 10 to 150 Torr, a PH per unit cross-sectional area of the growth chamber is increased.
PH 3 and H 2 with a flow rate of 3 of 0.50 SCCM / cm 2 or more
In the above atmosphere, after subjecting the InP substrate to a heat treatment at a temperature of 630 ° C. or higher and 700 ° C. or lower for 10 minutes or longer, the growth of the compound semiconductor layer is started.
【請求項2】 10〜150Torrの減圧雰囲気とした成
長容器内でInP基板上に化合物半導体層を気相成長さ
せるにあたり、前記成長容器の単位断面積あたりのPH
3 の流量を0.30SCCM/cm2 以上としたPH3 とH2
よりなる雰囲気下で、670℃以上700℃以下の温度
で10分以上の熱処理を前記InP基板に施した後、前
記化合物半導体層の成長を開始することを特徴とする気
相成長方法。
2. When a compound semiconductor layer is vapor-deposited on an InP substrate in a growth chamber in a reduced pressure atmosphere of 10 to 150 Torr, the pH per unit cross-sectional area of the growth chamber is PH.
PH 3 and H 2 with a flow rate of 3 of 0.30 SCCM / cm 2 or more
In the above atmosphere, the InP substrate is subjected to heat treatment at a temperature of 670 ° C. or higher and 700 ° C. or lower for 10 minutes or longer, and then the growth of the compound semiconductor layer is started.
【請求項3】 10〜150Torrの減圧雰囲気とした成
長容器内でInP基板上に化合物半導体層を気相成長さ
せるにあたり、前記成長容器の単位断面積あたりのPH
3 の流量を0.50SCCM/cm2 以上としたPH3 とH2
よりなる雰囲気下で、670℃以上700℃以下の温度
で10分以上の熱処理を前記InP基板に施した後、前
記化合物半導体層の成長を開始することを特徴とする気
相成長方法。
3. When the compound semiconductor layer is vapor-phase grown on the InP substrate in the growth chamber in a reduced pressure atmosphere of 10 to 150 Torr, the pH per unit cross-sectional area of the growth chamber is PH.
PH 3 and H 2 with a flow rate of 3 of 0.50 SCCM / cm 2 or more
In the above atmosphere, the InP substrate is subjected to heat treatment at a temperature of 670 ° C. or higher and 700 ° C. or lower for 10 minutes or longer, and then the growth of the compound semiconductor layer is started.
JP19547794A 1994-08-19 1994-08-19 Vapor growth method Expired - Fee Related JP3435645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19547794A JP3435645B2 (en) 1994-08-19 1994-08-19 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19547794A JP3435645B2 (en) 1994-08-19 1994-08-19 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH0864537A true JPH0864537A (en) 1996-03-08
JP3435645B2 JP3435645B2 (en) 2003-08-11

Family

ID=16341744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19547794A Expired - Fee Related JP3435645B2 (en) 1994-08-19 1994-08-19 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3435645B2 (en)

Also Published As

Publication number Publication date
JP3435645B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
EP1997125B1 (en) Growth method using nanocolumn compliant layers and hvpe for producing high quality compound semiconductor materials
WO2008108381A1 (en) Process for producing group iii nitride crystal
EP3626865A1 (en) Susceptor and method for manufacturing the same
JPH05182920A (en) Epitaxial semiconductor wafer with low oxygen region, spread of which can be adjusted, and manufacture thereof
US4204893A (en) Process for depositing chrome doped epitaxial layers of gallium arsenide utilizing a preliminary formed chemical vapor-deposited chromium oxide dopant source
US20030038302A1 (en) Nitride semiconductor growing process
US4389273A (en) Method of manufacturing a semiconductor device
JP3435645B2 (en) Vapor growth method
EP0826798A2 (en) Heteroepitaxy cyclic texture growth method for diamond film
US11753739B2 (en) Method for manufacturing a group III-nitride crystal comprising supplying a group III-element oxide gas and a nitrogen element-containng gas at a supersation ratio of greater than 1 and equal to or less than 5
JPH05291153A (en) Manufacturing method of semiconductor device
JP3448695B2 (en) Vapor growth method
JP2965653B2 (en) Organic metal growth method
JP2014201491A (en) Method for producing ground substrate and method for producing group iii nitride semiconductor substrate
JP2566488B2 (en) Thin film manufacturing method
JPH0730451B2 (en) Method for chemical vapor deposition of aluminum layer
JPH06260415A (en) Epitaxial wafer and manufacture thereof
JPH03236219A (en) Surface treating method for semiconductor substrate
JP3894016B2 (en) Solution raw material for metalorganic chemical vapor deposition containing titanium complex and method for producing titanium-containing thin film using the raw material
JPS62147722A (en) Epitaxial growth method
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JP4634572B2 (en) Copper thin film formation method
Mecouch et al. Initial stages of growth of gallium nitride via iodine vapor phase epitaxy
JPH0753631B2 (en) Method for forming compound semiconductor thin film

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080606

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110606

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130606

LAPS Cancellation because of no payment of annual fees