JPH086413A - Heating device and image forming device - Google Patents

Heating device and image forming device

Info

Publication number
JPH086413A
JPH086413A JP16328494A JP16328494A JPH086413A JP H086413 A JPH086413 A JP H086413A JP 16328494 A JP16328494 A JP 16328494A JP 16328494 A JP16328494 A JP 16328494A JP H086413 A JPH086413 A JP H086413A
Authority
JP
Japan
Prior art keywords
film
heating device
heating
conductive member
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16328494A
Other languages
Japanese (ja)
Inventor
Yasumasa Otsuka
康正 大塚
Manabu Takano
学 高野
Tokuyoshi Abe
篤義 阿部
Yoji Tomoyuki
洋二 友行
Daizo Fukuzawa
大三 福沢
Kenichi Ogawa
賢一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16328494A priority Critical patent/JPH086413A/en
Publication of JPH086413A publication Critical patent/JPH086413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To enhance the accuracy of a system detecting the temperature of the required part of a device and controlling the device by making a temperature detection element arranged in the device of a metal. CONSTITUTION:An E type core material 1 being as a magnetic field generation means and an exciting coil 2 wound round the core material 1 are a long sideways member obtained by defining a direction crossed(orthogonally crossed) to the carrying(moving) direction of a film 5 and a material to be recorded(material to be heated) P as a longitudinal direction. Then, the temperature of the film 5 being the heating member is measured by the temperature detection element 7. Based on the measured temperature, the excitation circuit 10 of an exciting coil 2 is controlled by a regulator 11 and the value of a current impressed on the coil 2 is controlled. Then, the temperature(fixing temperature) of the film 5 is precisely controlled. In such a case, the element 7 detecting the surface temperature of the film 5 is a thermoelectric couple being as the metallic temperature detection element. Such a thermoelectric couple is used because the calorific capacity thereof is small, the heat conductivity thereof is excellent and it can be closely brought into contact with the film 5 by utilizing the spring property of the metal itself.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁(磁気)誘導加熱
方式の加熱装置、および該加熱装置を像加熱装置として
備えた画像形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic (magnetic) induction heating type heating device and an image forming apparatus provided with the heating device as an image heating device.

【0002】[0002]

【従来の技術】従来、例えば画像の加熱定着等のための
記録材の加熱装置、即ち、複写機・レーザービームプリ
ンター・ファクシミリ・マイクロフィルムリーダプリン
ター・画像表示(ディスプレイ)装置・記録機等の画像
形成装置において、電子写真・静電記録・磁気記録等の
適宜の画像形成プロセス手段により加熱溶融性の樹脂等
より成るトナーを用いて記録材(エレクトロファックス
シート・静電記録シート・転写材シート・印刷紙など)
の面に直接方式もしくは間接(転写)方式で形成した目
的の画像情報に対応した顕画像(未定着のトナー画像)
を該画像を担持している記録材面に永久固着画像として
加熱定着処理する画像加熱定着装置(像加熱装置)とし
ては、熱ローラ方式、フィルム加熱方式等の接触加熱方
式の装置が広く用いられている。
2. Description of the Related Art Conventionally, a recording material heating device for heating and fixing an image, that is, an image of a copying machine, a laser beam printer, a facsimile, a microfilm reader printer, an image display (display) device, a recording machine, etc. In the forming apparatus, a recording material (electrofax sheet, electrostatic recording sheet, transfer material sheet, transfer material sheet, or the like) is formed by using a toner made of a heat-meltable resin or the like by an appropriate image forming process means such as electrophotography, electrostatic recording, and magnetic recording. Printing paper etc.)
Image (unfixed toner image) corresponding to the target image information formed on the surface of the paper by direct method or indirect (transfer) method
As an image heating and fixing device (image heating device) for performing heat fixing processing as a permanently fixed image on the surface of a recording material carrying the image, a contact heating type device such as a heat roller type or a film heating type is widely used. ing.

【0003】このような装置はハロゲンランプ、発熱抵
抗体に電流を流して発熱させ、加熱部材としてのローラ
やフィルムを介してトナー像の加熱を行っている。
In such an apparatus, an electric current is passed through a halogen lamp and a heating resistor to generate heat, and a toner image is heated through a roller or a film as a heating member.

【0004】一方、電磁誘導加熱方式の加熱装置もあ
る。特公平5−9027号公報には、磁束により加熱部
材としての定着ローラに渦電流(うず電流)を発生させ
ジュール熱により発熱させることが提案されている。
On the other hand, there is also an electromagnetic induction heating type heating device. Japanese Patent Publication No. 5-9027 proposes that eddy current (eddy current) is generated in a fixing roller as a heating member by magnetic flux to generate heat by Joule heat.

【0005】このように渦電流の発生を利用することで
発熱位置をトナーに近くすることができ、ハロゲンラン
プを用いた熱ローラ方式に比べウォームアップ時間の短
縮が達成できる。
By utilizing the generation of the eddy current as described above, the heat generation position can be brought closer to the toner, and the warm-up time can be shortened as compared with the heat roller system using the halogen lamp.

【0006】また本発明者等は、加熱部材としてのフィ
ルム自体を発熱させることでフィルムが熱抵抗とならな
いようにして熱効率を向上させた電磁誘導加熱方式・フ
ィルム加熱方式の加熱装置の研究を行なってきた。
Further, the present inventors have conducted research on a heating device of an electromagnetic induction heating system / film heating system in which the film itself as a heating member is heated so that the film does not become a thermal resistance and the thermal efficiency is improved. Came.

【0007】これは磁界発生手段、例えば磁性体である
芯材(コア)と励磁コイルを組み合わせることによって
発生する磁場を励磁回路で変化させる。即ちコイルに高
周波を加えてその発生磁場の中を移動する導電部材(誘
導磁性材、磁界吸収導電材)としてのフィルムに磁界が
発生消滅を繰り返すようにしてフィルムの中の導電層に
渦電流を発生させるものである。この渦電流が導電層の
電気抵抗によって熱(ジュール熱)に変換し、結果的に
被加熱材に密着する加熱部材としてのフィルムのみが発
熱する加熱装置であり、熱効率が優れている。
This is to change the magnetic field generated in the exciting circuit by combining magnetic field generating means, for example, a core material which is a magnetic body and an exciting coil. That is, by applying a high frequency to the coil, a magnetic field is repeatedly generated and extinguished in the film as a conductive member (inductive magnetic material, magnetic field absorbing conductive material) that moves in the generated magnetic field, and an eddy current is generated in the conductive layer in the film. It is what is generated. This eddy current is converted into heat (Joule heat) by the electric resistance of the conductive layer, and as a result, only the film serving as the heating member that comes into close contact with the material to be heated generates heat, and the thermal efficiency is excellent.

【0008】即ち、変動する磁界が導体中を横切ると
き、その磁界の変化を妨げる磁界を発生させるようにフ
ィルムの導電層には渦電流が発生する。この渦電流がフ
ィルムの導電層の表皮抵抗により、表皮抵抗に比例した
電力でフィルムの導電層を発熱させる。このように加熱
部材としてのフィルムの表層近くを直接発熱させるの
で、フィルム基層の熱伝導率、熱容量によらず急速に加
熱できる利点がある。また、フィルムの厚さにも依存し
ない急速加熱が実現できる。
That is, when a fluctuating magnetic field traverses the conductor, an eddy current is generated in the conductive layer of the film so as to generate a magnetic field that prevents the change of the magnetic field. This eddy current causes the skin resistance of the conductive layer of the film to generate heat in the conductive layer of the film with an electric power proportional to the skin resistance. As described above, since heat is generated directly near the surface layer of the film as the heating member, there is an advantage that heating can be performed rapidly regardless of the thermal conductivity and heat capacity of the film base layer. In addition, rapid heating that does not depend on the film thickness can be realized.

【0009】これにより省エネルギー・クイックスター
ト性を損なうことなく、フィルム基層の高剛性の厚膜化
を図り、耐久性・高速化に対処することが可能である。
Thus, it is possible to increase the thickness and rigidity of the film base layer without sacrificing energy saving and quick start properties, and to cope with durability and speeding up.

【0010】[0010]

【発明が解決しようとしている課題】本発明は上記のよ
うな各種の加熱装置のうち特に電磁誘導加熱方式の加熱
装置について、装置の所要部の温度を検知して装置を制
御する系の精度・信頼性を向上させたものを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an electromagnetic induction heating type heating device, among the various heating devices described above, in which the accuracy of a system for detecting the temperature of a required part of the device and controlling the device is improved. The purpose is to provide improved reliability.

【0011】[0011]

【課題を解決するための手段】本発明は下記の構成を特
徴とする加熱装置および画像形成装置である。
The present invention is a heating device and an image forming apparatus characterized by the following configurations.

【0012】(1)磁場発生手段により導電部材に磁場
を作用させて該導電部材に発生する渦電流による該導電
部材の発熱により被加熱材を加熱する電磁誘導加熱方式
の加熱装置であり、装置に配置した温度検知素子を金属
性の温度検知素子にしたことを特徴とする加熱装置。
(1) An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device characterized in that the temperature detecting element arranged at is a metallic temperature detecting element.

【0013】(2)磁場発生手段により導電部材に磁場
を作用させて該導電部材に発生する渦電流による該導電
部材の発熱により被加熱材を加熱する電磁誘導加熱方式
の加熱装置であり、装置に配置した温度検知素子を金属
性の温度検知素子にし、磁場発生手段の励磁コイルの作
る磁力線が入るように配置したことを特徴とする加熱装
置。
(2) An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member caused by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device characterized in that the temperature detecting element arranged in the above is a metallic temperature detecting element, and is arranged so that magnetic lines of force generated by the exciting coil of the magnetic field generating means enter.

【0014】(3)磁場発生手段により導電部材に磁場
を作用させて該導電部材に発生する渦電流による該導電
部材の発熱により被加熱材を加熱する電磁誘導加熱方式
の加熱装置であり、装置に配置した温度検知素子に金属
片を当接させたことを特徴とする加熱装置。
(3) An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device, characterized in that a metal piece is brought into contact with the temperature detecting element arranged at.

【0015】(4)磁場発生手段により導電部材に磁場
を作用させて該導電部材に発生する渦電流による該導電
部材の発熱により被加熱材を加熱する電磁誘導加熱方式
の加熱装置であり、装置に配置した温度検知素子に金属
片を当接させ、磁場発生手段の励磁コイルの作る磁力線
が入るように配置したことを特徴とする加熱装置。
(4) An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device, characterized in that a metal piece is brought into contact with the temperature detecting element arranged in (1), and the magnetic field line generated by the exciting coil of the magnetic field generating means is inserted.

【0016】(5)導電部材が固定部材、あるいは回転
体もしくは走行移動有端部材である事を特徴とする
(1)乃至(4)の何れかに記載の加熱装置。
(5) The heating device according to any one of (1) to (4), characterized in that the conductive member is a fixed member, or a rotating member or a member for traveling and moving.

【0017】(6)導電部材が導電層を含む積層部材も
しくはそれ自体導電性の部材である事を特徴とする
(1)乃至(5)の何れかに記載の加熱装置。
(6) The heating device according to any one of (1) to (5), wherein the conductive member is a laminated member including a conductive layer or a member itself conductive.

【0018】(7)導電部材に被加熱部材を直接もしく
は間接的に密着させる加圧部材を有する事を特徴とする
(1)乃至(6)の何れかに記載の加熱装置。
(7) The heating device according to any one of (1) to (6), further comprising a pressing member for directly or indirectly adhering the member to be heated to the conductive member.

【0019】(8)加圧部材が回転駆動されるあるいは
従動回転する加圧回転体である事を特徴とする(7)に
記載の加熱装置。
(8) The heating device according to (7), wherein the pressure member is a pressure rotating body that is rotationally driven or driven to rotate.

【0020】(9)被加熱材が加熱処理すべき画像を担
持させた被記録材であり、該被記録材に画像を加熱処理
する像加熱装置である事を特徴とする(1)乃至(8)
の何れかに記載の加熱装置。
(9) The material to be heated is a recording material carrying an image to be heat-treated, and is an image heating device for heating the image on the recording material (1) to (). 8)
The heating device according to any one of 1.

【0021】(10)前記(1)乃至(9)の何れかに
記載の加熱装置を像加熱装置として備えている事を特徴
とする画像形成装置。
(10) An image forming apparatus comprising the heating device according to any one of (1) to (9) as an image heating device.

【0022】[0022]

【作用】[Action]

a.温度検知素子を金属性のもの、例えば熱電対や白金
の抵抗変化を利用したものなどにすることにより、該温
度検知素子は熱容量が小さく、かつ熱伝導姓がよく、金
属自身の有するばね性を利用して、電磁誘導加熱装置の
加熱部材等の被検体に軽い負荷でしかも良好に圧接可能
であり、精度良く、かつ応答性も向上させることが可能
である。
a. By making the temperature sensing element metallic, for example, by utilizing the resistance change of a thermocouple or platinum, the temperature sensing element has a small heat capacity, good thermal conductivity, and the spring property of the metal itself. By utilizing this, it is possible to press-contact the object such as the heating member of the electromagnetic induction heating device with a light load and satisfactorily, and it is possible to improve the accuracy and the responsiveness.

【0023】b.また、この金属性の温度検知素子を電
磁誘導加熱装置の磁場発生手段の励磁コイルの作る磁力
線が入るように配置することで、その金属性の温度検知
素子自身も渦電流による発熱をする。このため該温度検
知素子を電磁誘導加熱装置の加熱部材等の被検体に非接
触状態で配置し、どの程度のエネルギーが被検体に加え
られたかを検知することが可能である。即ち被検体温度
の非接触検知が可能である。
B. Further, by arranging the metallic temperature detecting element so that the magnetic field lines created by the exciting coil of the magnetic field generating means of the electromagnetic induction heating device enter, the metallic temperature detecting element itself also generates heat by eddy current. Therefore, it is possible to arrange the temperature detecting element in a non-contact state with a subject such as a heating member of an electromagnetic induction heating device and detect how much energy is applied to the subject. That is, non-contact detection of the subject temperature is possible.

【0024】これにより温度検知素子を被検体に接触さ
せることによる被検体に対する傷発生や被検体の駆動ト
ルクの増加といった問題も解消できる。また温度検知素
子自身も保護用被膜等の必要性がなくなる。
As a result, it is possible to solve the problems that the temperature sensing element is brought into contact with the subject and that the subject is scratched and the driving torque of the subject is increased. In addition, the temperature detecting element itself does not require a protective film or the like.

【0025】特に、この非接触検知により実際に被検体
に供給された熱量を直接検出できるので、回路のばらつ
きや温度検知素子の当接状態のばらつきに左右されない
温度制御が可能となった。
In particular, since the amount of heat actually supplied to the subject can be directly detected by this non-contact detection, temperature control can be performed without being influenced by circuit variations and temperature sensor contact state variations.

【0026】c.温度検知素子が金属性でなくとも、例
えばサーミスタ等の半導電性のものである場合でも、こ
れに金属片を当接付加させる構成とすることで前記a項
の金属性の温度検知素子の場合と同様の効果を得ること
ができる。
C. Even if the temperature detecting element is not metallic, for example, even if it is a semi-conductive one such as a thermistor, a metal temperature detecting element as described in the above item a is formed by abutting the addition of a metal piece. The same effect as can be obtained.

【0027】d.またさらにこの金属片を当接付加した
温度検知素子を電磁誘導加熱装置の磁場発生手段の励磁
コイルの作る磁力線が入るように配置することで、前記
b項の金属性の温度検知素子の場合と同様の効果を得る
ことができる。
D. Further, by disposing the temperature detecting element to which the metal piece is abutted and added so that the magnetic field lines created by the exciting coil of the magnetic field generating means of the electromagnetic induction heating device may enter, the temperature detecting element in the case of the metallic temperature detecting element of the above item b may be obtained. The same effect can be obtained.

【0028】[0028]

【実施例】【Example】

〈実施例1〉(図1〜図3) (1)装置の全体的な概略構成 図1は本発明に従う電磁誘導加熱方式の加熱装置の一例
の構成を示す横断面摸式図である。本実施例の加熱装置
は、導電部材(加熱部材)として導電層を有する回転エ
ンドレスフィルム(定着フィルム)を用いた、電磁誘導
加熱方式・フィルム加熱方式の画像加熱定着装置(像加
熱装置)である。図2は磁場発生手段である芯材(コ
ア)と励磁コイルの斜視図である。
<Embodiment 1> (FIGS. 1 to 3) (1) Overall schematic configuration of apparatus FIG. 1 is a schematic cross-sectional view showing the configuration of an example of an electromagnetic induction heating type heating apparatus according to the present invention. The heating device of this embodiment is an electromagnetic induction heating type / film heating type image heating / fixing device (image heating device) using a rotating endless film (fixing film) having a conductive layer as a conductive member (heating member). . FIG. 2 is a perspective view of a core material (magnetic field generation means) and an exciting coil.

【0029】1・2は磁場発生手段としての、E型芯材
と、これに巻き付けた励磁コイルである。この芯材1・
励磁コイル2は後述するフィルム5・被記録材(被加熱
材)Pの搬送(移動)方向と交差(直交)する方向を長
手とする横長部材である。
Reference numerals 1 and 2 are an E-shaped core material as a magnetic field generating means and an exciting coil wound around the E-shaped core material. This core material 1
The exciting coil 2 is a laterally long member having a length in a direction intersecting (orthogonal) with a conveying (moving) direction of a film 5 and a recording material (heating material) P described later.

【0030】3・3は励磁コイル2を巻き付けた芯材1
を支持し、フィルム5の走行を保つためのステーであ
り、液晶ポリマー・フェノール樹脂等で構成され、フィ
ルムと接触する部分に摺擦板が張り付けられている。
3, 3 is a core material 1 around which an exciting coil 2 is wound.
Is a stay for supporting the film 5 and for keeping the film 5 running, and is made of a liquid crystal polymer, a phenolic resin, or the like, and a rubbing plate is attached to a portion in contact with the film.

【0031】このステー3・3は励磁コイル2を巻き付
けたE型芯材1の3本足側を下向きにして、その長手両
側を挟み込むように配設された横長部材である。
The stays 3 and 3 are laterally long members arranged so that the three legs of the E-shaped core 1 around which the exciting coil 2 is wound face downward and both longitudinal sides thereof are sandwiched.

【0032】4は励磁コイル2を巻き付けたE型芯材1
の下向き面に設けたフィルム摺動板(滑板)であり、フ
ィルム5との摩擦抵抗の少ないガラス等である。更にそ
の表面にグリース・オイル等の潤滑材を塗布することが
好ましい。あるいは芯材1で平滑な面としてフィルム摺
動部を構成しても良い。
Reference numeral 4 is an E-shaped core material 1 around which an exciting coil 2 is wound.
It is a film sliding plate (sliding plate) provided on the downward surface, and is glass or the like having a small frictional resistance with the film 5. Further, it is preferable to apply a lubricant such as grease or oil to the surface thereof. Alternatively, the film sliding portion may be configured as a smooth surface with the core material 1.

【0033】上記の芯材1・励磁コイル2・ステー3・
フィルム摺動板4等からなるアセンブリ(電磁誘導加熱
構造体)の外側に導電部材としてのエンドレス状(円筒
状、シームレス)の耐熱性フィルム5をルーズに外嵌さ
せてある。
The above core material 1, exciting coil 2, stay 3,
An endless (cylindrical, seamless) heat-resistant film 5 as a conductive member is loosely fitted outside the assembly (electromagnetic induction heating structure) including the film sliding plate 4 and the like.

【0034】6は加圧ローラであり、芯金の周囲にシリ
コーンゴム、フッ素ゴム等を被覆して構成される。この
加圧ローラ6は不図示の軸受手段・付勢手段により所定
の押圧力をもって上記アセンブリ1〜4のフィルム摺動
板4の下面に対してフィルム5を挟ませて圧接してあ
り、フィルム摺動板4の下面との間にフィルム5を挟ん
で圧接ニップ部(定着ニップ部)Nを形成する。
Reference numeral 6 is a pressure roller, which is formed by coating the core metal with silicone rubber, fluororubber or the like. The pressure roller 6 is pressed against the lower surface of the film sliding plate 4 of each of the above-mentioned assemblies 1 to 4 by sandwiching the film 5 with a predetermined pressing force by bearing means and biasing means (not shown). The film 5 is sandwiched between the lower surface of the moving plate 4 and the lower surface of the moving plate 4 to form a pressure contact nip portion (fixing nip portion) N.

【0035】該加圧ローラ6は駆動手段Mにより矢示の
反時計方向に回転駆動される。この加圧ローラ6の回転
駆動による該ローラとフィルム外面との摩擦力でフィル
ム5に回転力が作用して、該フィルム5がフィルム摺動
板4の下面に密着摺動してアセンブリ1〜4の外回りを
回転する。
The pressure roller 6 is rotationally driven by the driving means M in the counterclockwise direction indicated by the arrow. A rotational force acts on the film 5 due to the frictional force between the pressure roller 6 and the outer surface of the film due to the rotational driving of the pressure roller 6, and the film 5 slides in close contact with the lower surface of the film sliding plate 4 to assemble the assembly 1-4. To rotate around.

【0036】導電部材(加熱部材)としてのフィルム5
は厚さ10μm〜100μmのポリイミド・ポリアミド
イミド・PEEK・PES・PPS・PFA・PTFE
・FEP等の耐熱性樹脂を基層5aとし、その基層5a
の外周(被加熱材圧接面側)に導電層5bを、Fe,C
oや、例えばNi,Cu,Cr等の金属を1μm〜10
0μmの厚みでメッキ等の処理によって形成している。
更にその導電層5bの自由面に表面層として例えばPF
A,PTFE,FEP,シリコーン樹脂等のトナー離型
性の良好な耐熱性樹脂を混合ないし独立で被覆して離形
層5cを形成した、3層構成のものである。この例では
フィルム基層5aと導電層5bを別々の層としたが、フ
ィルム基層5aそのものを導電層としてもよい。
Film 5 as conductive member (heating member)
Is 10 μm to 100 μm thick polyimide, polyamideimide, PEEK, PES, PPS, PFA, PTFE
-The heat resistant resin such as FEP is used as the base layer 5a, and the base layer 5a
Of the conductive layer 5b on the outer periphery (the surface of the material to be pressure-contacted) of Fe and C
or metal such as Ni, Cu, Cr, etc.
It is formed with a thickness of 0 μm by a treatment such as plating.
Further, as a surface layer on the free surface of the conductive layer 5b, for example, PF
The release layer 5c has a three-layer structure in which a heat-resistant resin having good toner releasability such as A, PTFE, FEP, and silicone resin is mixed or independently coated to form the release layer 5c. In this example, the film base layer 5a and the conductive layer 5b are separate layers, but the film base layer 5a itself may be the conductive layer.

【0037】励磁コイル2に励磁回路10から電流が印
加されることでフィルム5の導電層5bが電磁誘導加熱
により発熱する。
When a current is applied to the exciting coil 2 from the exciting circuit 10, the conductive layer 5b of the film 5 generates heat by electromagnetic induction heating.

【0038】7は加熱部材としてのフィルム5に接触さ
せた、フィルムの表面温度を検知する温度検知素子であ
る。この温度検知素子については後記(3)項で詳述す
るが、この温度検知素子7にて加熱部材としてのフィル
ム5の温度を計測して、その計測温度に基づき励磁コイ
ル2の励磁回路10がレギュレータ11にて制御されて
励磁コイル2への印加電流値が制御され、フィルム5の
温度(定着温度)が適正に制御される。
Reference numeral 7 is a temperature detecting element which is in contact with the film 5 as a heating member and detects the surface temperature of the film. This temperature detecting element will be described in detail later in (3), but the temperature of the film 5 as a heating member is measured by the temperature detecting element 7, and the exciting circuit 10 of the exciting coil 2 detects the temperature based on the measured temperature. The current value applied to the exciting coil 2 is controlled by the regulator 11 and the temperature of the film 5 (fixing temperature) is appropriately controlled.

【0039】8は過昇温時に励磁コイル2への通電を遮
断する温度ヒューズ、サーモスイッチ等の安全素子であ
り、本実施例では芯材1に当接させて配置してある。
Reference numeral 8 is a safety element such as a temperature fuse and a thermoswitch that cut off the energization to the exciting coil 2 when the temperature rises excessively, and is arranged in contact with the core material 1 in this embodiment.

【0040】而して、加圧ローラ6の回転によるフィル
ム5の回転がなされ、励磁回路10から励磁コイル2へ
の電流印加がなされてフィルム5の導電層5bが発熱し
た状態において、圧接ニップ部Nに被加熱体としての被
記録材Pが導入されてフィルム5面に密着して該フィル
ムと一緒に圧接ニップ部Nを通過することで、電磁誘導
加熱されたフィルム5の熱が被記録材Pに付与された未
定着トナー像Tが加熱定着T′される。圧接ニップ部N
を通った被記録材Pはフィルム4の面から分離されて搬
送される。 (2)加熱原理 励磁コイル2には励磁回路10から交流電流が印加さ
れ、これによってコイル2の周囲に図1・図2の矢印H
で示した磁束が生成消滅をくり返す。この磁束Hがフィ
ルム5の導電層5bを横切るように芯材1は構成され
る。
Thus, when the film 5 is rotated by the rotation of the pressure roller 6 and a current is applied from the exciting circuit 10 to the exciting coil 2 to heat the conductive layer 5b of the film 5, the pressure contact nip portion is formed. The recording material P as a heated body is introduced into N and is brought into close contact with the surface of the film 5 and passes through the pressure contact nip portion N together with the film, so that the heat of the film 5 which is electromagnetically heated is recorded. The unfixed toner image T applied to P is heat-fixed T ′. Pressure contact nip N
The recording material P that has passed through is separated from the surface of the film 4 and conveyed. (2) Heating Principle An alternating current is applied to the exciting coil 2 from the exciting circuit 10, whereby an arrow H in FIGS.
The magnetic flux indicated by repeats generation and disappearance. The core material 1 is configured so that the magnetic flux H crosses the conductive layer 5b of the film 5.

【0041】変動する磁界が導体中を横切るとき、その
磁界の変化を妨げる磁界を生じるように導体中には渦電
流が発生する。この渦電流を矢印A(図1)で示す。
When a fluctuating magnetic field traverses in a conductor, eddy currents are generated in the conductor so as to create a magnetic field that impedes changes in the magnetic field. This eddy current is indicated by arrow A (FIG. 1).

【0042】この渦電流は表皮効果のためにほとんど導
電層5bの励磁コイル2側の面に集中して流れ、フィル
ム導電層5bの表皮抵抗RS に比例した電力で発熱を生
じる。
Due to the skin effect, this eddy current almost concentrates and flows on the surface of the conductive layer 5b on the side of the exciting coil 2, and heat is generated by electric power proportional to the skin resistance R S of the film conductive layer 5b.

【0043】RS は、角周波数ω、透磁率μ、固有抵抗
ρから得られる表皮深さ
R S is the skin depth obtained from the angular frequency ω, the magnetic permeability μ, and the specific resistance ρ.

【0044】[0044]

【外1】 と表せる。[Outer 1] Can be expressed as

【0045】従って、RS を大きくするか、If を大き
くすれば、電力を増すことができ、発熱量を増すことが
可能となる。
Therefore, the power can be increased and the amount of heat generation can be increased by increasing R S or increasing I f .

【0046】RS を大きくするには周波数ωを高くする
か、透磁率μの高い材料、固有抵抗ρの高いものを使え
ば良い。
To increase R S , the frequency ω may be increased, or a material having a high magnetic permeability μ and a material having a high specific resistance ρ may be used.

【0047】これからすると、非磁性金属を導電層5b
に用いると加熱しずらいことが推測されるが、導電層5
bの厚さtが表皮深さδより薄い場合には、 RS ≒ρ/t となるので加熱可能となる。
From now on, the non-magnetic metal is added to the conductive layer 5b.
It is presumed that it is difficult to heat when used for
When the thickness t of b is smaller than the skin depth δ, R S ≈ρ / t, and thus heating is possible.

【0048】励磁コイル2に印加する交流電流の周波数
は10〜500kHzが好ましい。
The frequency of the alternating current applied to the exciting coil 2 is preferably 10 to 500 kHz.

【0049】10kHz以上になると、導電層5bへの
吸収効率が良くなり、500kHz迄は安価な素子を用
いて励磁回路を組むことができる。
When the frequency is 10 kHz or higher, the efficiency of absorption in the conductive layer 5b is improved, and up to 500 kHz, an exciting circuit can be assembled by using an inexpensive element.

【0050】更には20kHz以上であれば可聴域をこ
えるため通電時に音がすることがなく、200kHz以
下では励磁回路で生じるロスも少なく、周辺への放射ノ
イズも小さい。
Further, if the frequency is 20 kHz or more, the sound exceeds the audible range and no noise is generated when energized, and if it is 200 kHz or less, the loss generated in the exciting circuit is small and the radiation noise to the surroundings is small.

【0051】また10〜500kHzの交流電流を導電
層5bに印加した場合、表皮深さは数μmから数百μm
程度である。
When an alternating current of 10 to 500 kHz is applied to the conductive layer 5b, the skin depth is several μm to several hundred μm.
It is a degree.

【0052】実際に導電層5bの厚みを1μmより小さ
くすると、ほとんどの電磁エネルギーが導電層5bで吸
収しきれないためエネルギー効率が悪くなる。
When the thickness of the conductive layer 5b is actually less than 1 μm, most of the electromagnetic energy cannot be absorbed by the conductive layer 5b, resulting in poor energy efficiency.

【0053】また、もれた磁界が他の金属部を加熱する
という問題も生じる。
There is also a problem that the leaked magnetic field heats other metal parts.

【0054】一方で100μを越えた導電層5bではフ
ィルム5の剛性が高くなりすぎることと、導電層5b中
の熱伝導によって熱が伝わり、離形層5cが暖まりにく
くなるという問題が生じる。
On the other hand, in the conductive layer 5b having a thickness of more than 100 μ, the rigidity of the film 5 becomes too high, and heat is transferred by the heat conduction in the conductive layer 5b, so that the releasing layer 5c becomes difficult to warm.

【0055】従って導電層5bの厚みは1〜100μm
が好ましい。
Therefore, the thickness of the conductive layer 5b is 1 to 100 μm.
Is preferred.

【0056】また導電層5bの発熱を増すためにはIf
を大きくすれば良く、そのためには励磁コイル2によっ
て生成される磁束を強くする、あるいは磁束の変化を大
きくすれば良い。この方法としてコイル2の巻き線数を
増すか、励磁コイル2の芯材1をフェライト、パーマロ
イといった高透磁率で残留磁束密度の低いものを用いる
と良い。
In order to increase the heat generation of the conductive layer 5b, I f
Is increased, and for that purpose, the magnetic flux generated by the exciting coil 2 may be strengthened or the change of the magnetic flux may be increased. As this method, the number of windings of the coil 2 may be increased, or the core material 1 of the exciting coil 2 may be made of ferrite or permalloy having high magnetic permeability and low residual magnetic flux density.

【0057】本実施例では芯材1として断面E字型のE
型心材を用い、この芯材1にフィルム5の移動方向と略
直交する方向である圧接ニップ部Nの長手方向に沿って
励磁コイル2を巻いている。端部側B・Cでは磁束が集
中して発熱量が増して端部での熱の逃げが補償される。
In this embodiment, the core material 1 has an E-shaped cross section.
An exciting coil 2 is wound around this core material 1 along the longitudinal direction of the pressure contact nip portion N, which is a direction substantially orthogonal to the moving direction of the film 5, using a die core material. At the end portions B and C, the magnetic flux concentrates and the amount of heat generation increases, so that the escape of heat at the end portions is compensated.

【0058】フィルム5の導電層5bの抵抗値が小さす
ぎると、渦電流が発生した際の発熱効率が悪化するた
め、導電層5bの固有体積低効率は20℃環境下で1.
5×10-8Ωm以上が好ましい。
When the resistance value of the conductive layer 5b of the film 5 is too small, the heat generation efficiency when eddy current is generated is deteriorated, so the low specific volume efficiency of the conductive layer 5b is 1.
It is preferably 5 × 10 −8 Ωm or more.

【0059】本実施例ではフィルム5の導電層5bをメ
ッキ処理によって形成したが、真空蒸着・スパッタリン
グ等で形成しても良い。これによりメッキ処理できない
アルミニウムや金属酸化物合金を導電層5bに用いるこ
とができる。但し、メッキ処理が膜厚を得られ易いため
1〜100μmの層厚を得るためにはメッキ処理が好ま
しい。
In this embodiment, the conductive layer 5b of the film 5 is formed by plating, but it may be formed by vacuum vapor deposition, sputtering or the like. As a result, aluminum or metal oxide alloy that cannot be plated can be used for the conductive layer 5b. However, it is preferable to perform the plating treatment in order to obtain a layer thickness of 1 to 100 μm because the plating treatment can easily obtain the film thickness.

【0060】例えば高透過率の鉄、コバルト、ニッケル
等の強磁性体を付けると、励磁コイル2によって生成さ
れる電磁エネルギーを吸収し易く、効率よく加熱できか
つ、機外へもれる磁気も少なくなり、周辺装置への影響
も減らせる。また、これらのもので高低効率のものを選
ぶともっと良い。
For example, when a ferromagnetic material such as iron, cobalt or nickel having a high transmittance is attached, the electromagnetic energy generated by the exciting coil 2 can be easily absorbed, the heating can be efficiently performed, and the magnetism leaked out of the machine is small. It also reduces the impact on peripheral devices. Moreover, it is better to select one of these with high and low efficiency.

【0061】また、フィルム5の導電層5bは金属のみ
ならず、低熱伝導電性基材に表面離形層を接着するため
の接着剤中に導電性、高透磁率な粒子、ウィスカーを分
散させて導電層としても良い。
The conductive layer 5b of the film 5 is made of not only metal but also conductive and high magnetic permeability particles and whiskers dispersed in an adhesive for bonding the surface release layer to the low thermal conductive base material. It may be used as a conductive layer.

【0062】例えば、マンガン、チタン、クロム、鉄、
銅、コバルト、ニッケル等の粒子やこれらの合金である
フェライトや酸化物の粒子やウィスカーといったものを
カーボン等の導電性粒子と混合し、接着剤中に分散させ
て導電層とすることができる。
For example, manganese, titanium, chromium, iron,
Particles of copper, cobalt, nickel or the like, particles of these alloys such as ferrite or oxide, or whiskers can be mixed with conductive particles such as carbon and dispersed in an adhesive to form a conductive layer.

【0063】以上説明したように、フィルム5の表層近
くを直接発熱させるので、フィルム基材(基層)5aの
熱伝導率、熱容量によらず、急速に加熱できる利点があ
る。
As described above, since heat is directly generated near the surface layer of the film 5, there is an advantage that heating can be performed rapidly regardless of the thermal conductivity and heat capacity of the film base material (base layer) 5a.

【0064】またフィルム5の厚さにも依存しないため
に、高速化のためにフィルム5の剛性を向上するためフ
ィルム5の基材5aを厚くしても迅速に定着温度にまで
加熱できる。
Further, since it does not depend on the thickness of the film 5, in order to improve the rigidity of the film 5 for speeding up, even if the base material 5a of the film 5 is thickened, it can be quickly heated to the fixing temperature.

【0065】更にはフィルム基材5aは低熱伝導性の樹
脂のため断熱性が良く、フィルム内側にあるコイル等の
熱容量の大きなものとは断熱ができるので連続プリント
を行なっても熱のロスが少なく、エネルギー効率が良
い。かつフィルム内のコイル2に熱が伝わらずコイルと
しての性能低下も生じない。
Further, since the film base material 5a is a resin having a low thermal conductivity, it has a good heat insulating property, and it can be insulated from a coil having a large heat capacity such as a coil inside the film, so that heat loss is small even if continuous printing is performed. , Energy efficient. Moreover, heat is not transmitted to the coil 2 in the film, and the performance of the coil does not deteriorate.

【0066】そして熱効率が向上した分、装置内の昇温
も抑えられて、該加熱装置を画像加熱定着装置として用
いた電子写真装置等の画像形成装置の像形成部への影響
も少なくできる。
Since the thermal efficiency is improved, the temperature rise in the apparatus can be suppressed and the influence on the image forming portion of the image forming apparatus such as an electrophotographic apparatus using the heating apparatus as an image heating and fixing apparatus can be reduced.

【0067】本実施例では、磁場の方向がフィルム5に
垂直に入るように構成していたが、導電層5b中に層面
に平行に磁場を駆けても良い。
In this embodiment, the direction of the magnetic field is perpendicular to the film 5. However, the magnetic field may be run in the conductive layer 5b parallel to the layer surface.

【0068】また導電層5bを構成する材料として、キ
ュリー温度が定着に必要な温度のものを使用すると加熱
されてキュリー温度に近づくと比熱が増大し、内部エネ
ルギーに変わるので自己温度制御が可能となる。キュリ
ー温度を越えると自発磁化がなくなり、これによって導
電層5b中に生成される磁界はキュリー温度以下より減
少し、そのため渦電流が減少して発熱を抑制する方向で
働くので自己温度制御が可能となる。このキュリー点と
してはトナーの軟化点に合わせて100℃〜200℃が
好ましい。
When a material having a Curie temperature required for fixing is used as a material for forming the conductive layer 5b, the specific heat increases when the Curie temperature approaches the Curie temperature and changes to internal energy, which allows self-temperature control. Become. When the Curie temperature is exceeded, the spontaneous magnetization disappears, whereby the magnetic field generated in the conductive layer 5b decreases below the Curie temperature, and therefore the eddy current decreases and works to suppress heat generation, so that self-temperature control is possible. Become. The Curie point is preferably 100 ° C. to 200 ° C. according to the softening point of the toner.

【0069】あるいは、キュリー温度付近では励磁コイ
ル2とフィルム5との間での合成インダクタンスが大き
く変化するので、コイル2に高周波を加える励磁回路側
で温度を検出し、温度制御を行なうことも可能である。
Alternatively, since the combined inductance between the exciting coil 2 and the film 5 changes greatly near the Curie temperature, it is possible to detect the temperature on the side of the exciting circuit that applies a high frequency to the coil 2 and control the temperature. Is.

【0070】またコイル2の芯材1の材質としてはキュ
リー点の低いものを用いることが好ましい。
As the material of the core material 1 of the coil 2, it is preferable to use one having a low Curie point.

【0071】装置の搬送動作が停止して加熱制御が不可
能な所謂暴走状態になった場合に芯材1が昇温し始め
る。この結果、高周波を発生させる回路から見ると励磁
コイル2のインダクタンスが大きくなったように見える
ので、励磁回路が周波数を合わせようとするとどんどん
高周波側へ変化して励磁回路の電力ロスとしてエネルギ
ーが消費され、コイル2に供給されるエネルギーは減
り、暴走は防止される。具体的にキュリー点は100℃
〜250℃で選ぶと良い。
When the conveying operation of the apparatus is stopped and a so-called runaway state where heating control is impossible is performed, the temperature of the core material 1 starts to rise. As a result, the inductance of the exciting coil 2 seems to have increased from the viewpoint of the circuit that generates the high frequency, so when the exciting circuit tries to match the frequency, it gradually changes to the higher frequency side and energy is consumed as power loss in the exciting circuit. As a result, the energy supplied to the coil 2 is reduced and runaway is prevented. Specifically, the Curie point is 100 ° C
It is recommended to select at ~ 250 ° C.

【0072】100℃以下ではトナーの融点より低くフ
ィルム内部が断熱されていても昇温が存在するので暴走
防止が誤作動し易く、250℃以上では暴走防止になら
ない。前述実施例ではフィルム加熱で説明したが低熱伝
導性の芯材とした熱ローラとしても良い。
If the temperature is 100 ° C. or lower, the temperature rises even if the temperature is lower than the melting point of the toner and the inside of the film is thermally insulated. Therefore, the runaway prevention is apt to malfunction. In the above embodiment, the film heating is explained, but a heat roller using a core material having low thermal conductivity may be used.

【0073】ただし、励磁コイルと導電層は近い方が高
い磁束密度が得られるため低熱伝導性基材の薄いフィル
ム加熱方式が好ましい。
However, since a higher magnetic flux density can be obtained when the exciting coil and the conductive layer are closer to each other, it is preferable to use a thin film heating system of a low thermal conductive substrate.

【0074】また実施例においてはE型の芯材1を用い
たが、I型、U型の芯材を用いても良い。またこれらを
組み合わせても良く、組み合わせないで寸法、材質を各
々で変えても良い。 (3)温度検知素子7 前述したように温度検知素子7にて加熱部材としてのフ
ィルム5の温度を計測して、その計測温度に基づき励磁
コイル2の励磁回路10がレギュレータ11にて制御さ
れて励磁コイル2への印加電流値が制御され、フィルム
5の温度(定着温度)が適正に制御される。
Although the E-shaped core material 1 is used in the embodiment, I-shaped and U-shaped core materials may be used. In addition, these may be combined, or the dimensions and materials may be changed for each without combining them. (3) Temperature detecting element 7 As described above, the temperature detecting element 7 measures the temperature of the film 5 as a heating member, and the exciting circuit 10 of the exciting coil 2 is controlled by the regulator 11 based on the measured temperature. The current value applied to the exciting coil 2 is controlled, and the temperature of the film 5 (fixing temperature) is properly controlled.

【0075】このようにフィルム5の温度を計測する理
由は、このようなフィルムを用いて定着する場合に、定
着装置全体の暖まり具合によって、被記録材Pに対する
熱の供給量が大きく変化する。そこで、定着性を確保
し、かつ過剰な熱供給によるオフセットを防止するため
にフィルム5の温度を見ながら、フィルム5に供給する
熱量、即ち励磁コイル2に印加する交流電圧、電流やデ
ューティー、周波数等を変化させる。
The reason why the temperature of the film 5 is measured in this way is that, when fixing is performed using such a film, the amount of heat supplied to the recording material P greatly changes depending on the temperature of the entire fixing device. Therefore, the amount of heat supplied to the film 5, that is, the AC voltage, the current, the duty, and the frequency applied to the exciting coil 2 are checked while watching the temperature of the film 5 in order to secure the fixing property and prevent the offset due to the excessive heat supply. And so on.

【0076】このフィルム5の表面温度を検知する温度
検知素子7は、本実施例では金属性温度検知素子として
の熱電対である。
The temperature detecting element 7 for detecting the surface temperature of the film 5 is a thermocouple as a metallic temperature detecting element in this embodiment.

【0077】熱電対7を使用する理由は、熱容量が小さ
く、かつ熱伝導性がよく、金属自身の有するばね性を利
用して、フィルム5に密着させることができるからであ
る。このため、スポンジにビーズ型のサーミスタを埋め
こんだ従来型のサーミスタに比べて軽い負荷でフィルム
5に圧接可能で、精度よく、かつ応答性も向上させるこ
とが可能である。
The reason for using the thermocouple 7 is that it has a small heat capacity, good thermal conductivity, and can be adhered to the film 5 by utilizing the spring property of the metal itself. Therefore, it is possible to press-contact the film 5 with a lighter load than a conventional thermistor in which a bead type thermistor is embedded in a sponge, and it is possible to improve the accuracy and responsiveness.

【0078】このような熱電対7を図3の(a)に示
す。本例の熱電対7は銅−コンスタンタン熱電対であ
る。7aは銅電極、7bはコンスタンタン電極であり、
破損防止及び摺擦性を向上させる為にPFA・PTFE
・ポリイミド等の耐熱テープ7cで被覆されている。
Such a thermocouple 7 is shown in FIG. The thermocouple 7 in this example is a copper-constantan thermocouple. 7a is a copper electrode, 7b is a constantan electrode,
PFA / PTFE to prevent damage and improve rubbing
-It is covered with heat resistant tape 7c such as polyimide.

【0079】熱電対7としては通常よく使用される、上
記の銅−コンスタンタン熱電対の他にも、クロメル−ア
ルメル熱電対、白金−10%ロジウム熱電対、白金−1
3%ロジウム熱電対、そのほかに任意の2種類の金属を
組み合わせてもよい。このような熱電対7を温度検知素
子とする場合は、熱電対7に生じる起電力を計測して、
フィルム5の温度を計測する。
As the thermocouple 7, in addition to the above-mentioned copper-constantan thermocouple which is usually used, chromel-alumel thermocouple, platinum-10% rhodium thermocouple, platinum-1.
A 3% rhodium thermocouple and any other two kinds of metals may be combined. When such a thermocouple 7 is used as a temperature detecting element, the electromotive force generated in the thermocouple 7 is measured,
The temperature of the film 5 is measured.

【0080】また温度検知素子は熱電対の代りに、白金
の抵抗変化を用いるものでもフィルム5の温度を計測す
ることは可能である。この場合も白金フィルムは非常に
薄く熱容量が小さく、かつ熱伝導性が良いので、リード
電極のばね性によって軽い負荷でフィルム5に圧接可能
で、精度よく、かつ応答性も向上させることが可能であ
る。図3の(b)はこの温度検知素子を示すもので、7
dは白金電極、7e・7fはリード電極、7cは補強か
つ摺擦性向上の為のPFA,PTFE,ポリイミド等の
耐熱被覆テープである。
Further, the temperature detecting element can use the resistance change of platinum in place of the thermocouple to measure the temperature of the film 5. Also in this case, since the platinum film is very thin and has a small heat capacity and good thermal conductivity, it can be pressed against the film 5 with a light load due to the spring property of the lead electrode, and the accuracy and the responsiveness can be improved. is there. FIG. 3B shows this temperature detecting element.
d is a platinum electrode, 7e and 7f are lead electrodes, and 7c is a heat-resistant coating tape made of PFA, PTFE, polyimide or the like for reinforcing and improving the sliding property.

【0081】温度検知素子7はフィルム5に当接させる
ならば、図1の実線示のようにフィルム5の上面(外
面)に接触させて配置しても、2点鎖線示のようにフィ
ルム5の内面に接触させて配置しても、いずれでもよ
い。
If the temperature detecting element 7 is brought into contact with the film 5, even if the temperature detecting element 7 is placed in contact with the upper surface (outer surface) of the film 5 as shown by the solid line in FIG. It may be arranged so as to be in contact with the inner surface of.

【0082】また、このようなフィルムを使用した定着
装置は、加圧ローラ6の熱容量が大きく、その暖まり具
合が被記録材Pに供給される熱量を大きく変化させる。
Further, in the fixing device using such a film, the heat capacity of the pressure roller 6 is large, and the degree of warming of the pressure roller 6 greatly changes the amount of heat supplied to the recording material P.

【0083】そのため、図1の3点鎖線示のように加圧
ローラ6に温度検知素子7を接触させて配置してこの加
圧ローラ6の表面温度を検出して、加圧ローラ6が暖ま
るに従って、徐々に励磁コイル2に加える電力を変え
て、フィルム5に発生する渦電流を変化させて定着温度
を下げる方向で変化させることが好ましい。
Therefore, as shown by the three-dot chain line in FIG. 1, the temperature detecting element 7 is arranged in contact with the pressure roller 6 and the surface temperature of the pressure roller 6 is detected to warm the pressure roller 6. Accordingly, it is preferable that the electric power applied to the exciting coil 2 is gradually changed to change the eddy current generated in the film 5 to lower the fixing temperature.

【0084】〈実施例2〉(図4〜図6) 前述の実施例1においては、励磁コイル2によって形成
される磁場に無関係に温度検知素子7を配置していた
が、本実施例においては、形成される磁場内に温度検知
素子7を配置するものである。
<Embodiment 2> (FIGS. 4 to 6) In Embodiment 1 described above, the temperature detecting element 7 is arranged regardless of the magnetic field formed by the exciting coil 2, but in this embodiment, The temperature detecting element 7 is arranged in the formed magnetic field.

【0085】この結果として温度検知素子自身も渦電流
による発熱をする。このためフィルム5との非接触状態
で、どの程度のエネルギーがフィルムに加えられたかを
検出することが可能である。これは温度検知素子7をフ
ィルム5に接触させることによるフィルム5の傷や摺動
トルクの増加といった問題を解決することができる。こ
のため温度検知素子7自身にも前述例のような保護用の
テープ7c(図3の(a)・(b))は必要なくなる。
As a result, the temperature detecting element itself also generates heat due to the eddy current. Therefore, it is possible to detect how much energy is applied to the film in the non-contact state with the film 5. This can solve problems such as scratches on the film 5 and an increase in sliding torque caused by bringing the temperature detecting element 7 into contact with the film 5. Therefore, the temperature detecting element 7 itself does not need the protective tape 7c ((a) and (b) in FIG. 3) as in the above-described example.

【0086】このような自己発熱をさせるためには、温
度検知素子7としては金属性のものが好ましく、銅−コ
ンスタンタン熱電対、クロメル−アルメル熱電対、白金
−10%ロジウム熱電対、白金−13%ロジウム熱電対
のほかに、任意の2種類の金属を組み合わせてもよい。
あるいは白金の薄膜0.1mm程度のものを使用しても
よい。
In order to cause such self-heating, the temperature detecting element 7 is preferably made of metal, such as copper-constantan thermocouple, chromel-alumel thermocouple, platinum-10% rhodium thermocouple, platinum-13. In addition to the% rhodium thermocouple, any two kinds of metals may be combined.
Alternatively, a platinum thin film having a thickness of about 0.1 mm may be used.

【0087】これらの金属は磁性的には弱いものである
が、厚みが0.01mmから1mm付近の厚さでは、熱
容量が小さいのと、表皮効果でほとんどの渦電流がこの
厚さの中で流れるため、充分に自己発熱する。
These metals are magnetically weak, but when the thickness is in the range of 0.01 mm to 1 mm, the heat capacity is small, and most of the eddy currents are in this thickness due to the skin effect. As it flows, it self-heats sufficiently.

【0088】このような温度検知素子7の配置場所は、
磁場内であればどこでもよいが、より好ましくは、図4
のように圧接ニップ部Nの近傍、さらに好ましくは図5
のように圧接ニップ部N内、ないし図6のように圧接ニ
ップ部Nの長手方向の延長線上に配置することが好まし
い。図6は圧接ニップ部Nの長手方向の延長線上に通紙
域外に配置したものである。なお図6ではステー1やフ
ィルム5を省略してある。
The location of the temperature detecting element 7 is
It may be anywhere in the magnetic field, but more preferably, as shown in FIG.
As shown in FIG.
It is preferable to arrange the pressure contact nip portion N in the pressure contact nip portion N or on the extension line of the pressure contact nip portion N in the longitudinal direction as shown in FIG. In FIG. 6, the pressure contact nip portion N is arranged on the extension line in the longitudinal direction outside the paper passing area. In FIG. 6, the stay 1 and the film 5 are omitted.

【0089】図5のように圧接ニップ部N内に配置した
場合、非磁性の金属で構成した温度検知素子7であれ
ば、フィルム5の磁性金属等からなる発熱層5bに対し
て、ほとんど発熱に影響することなく磁束を通過させる
ので、実際の発生する磁束密度の変化に精度よく対応し
た自己発熱が得られる。かつ設計的には圧接ニップ部N
内にもっとも磁束密度の変化が大きくなるようにしてい
るため、自己発熱で温度検知を行なう場合はもっとも発
熱が大きくなり、実際のフィルムに近いものになる。
When arranged in the pressure contact nip portion N as shown in FIG. 5, the temperature detecting element 7 made of a non-magnetic metal almost generates heat to the heat generating layer 5b of the film 5 made of a magnetic metal or the like. Since the magnetic flux is allowed to pass through without affecting the above, self-heating that accurately corresponds to the actual change in the magnetic flux density can be obtained. And, by design, the pressure contact nip N
Since the change of the magnetic flux density is the largest in the inside, when the temperature is detected by the self-heating, the heat generation becomes the largest, and it becomes close to the actual film.

【0090】図6のように圧接ニップ部Nの長手方向の
延長線上に温度検知素子7を配置した場合には、フィル
ム5への磁束に対する影響はなくなる。前述の非磁性の
金属で温度検知素子7を形成してもよいが、より好まし
くは熱電対の少なくとも一方の金属を磁性金属と使用す
る。これにより、磁束密度が同じ変化をしても大きな発
熱をするため、より精度よく温度を測定することができ
る。
When the temperature detecting element 7 is arranged on the extension line of the pressure contact nip portion N in the longitudinal direction as shown in FIG. 6, the magnetic flux on the film 5 is not affected. The temperature sensing element 7 may be formed of the non-magnetic metal described above, but more preferably at least one metal of the thermocouple is used as the magnetic metal. With this, even if the magnetic flux density changes the same, a large amount of heat is generated, so that the temperature can be measured more accurately.

【0091】〈実施例3〉(図3の(c)・(d)) 前述の実施例においては、金属性の温度検知素子7を使
用したが、本実施例においては、チタン酸バリウム,S
iC,Co/Mn/Ni等の半導電性の温度検知素子を
使用する。
Example 3 ((c) and (d) in FIG. 3) Although the metallic temperature detecting element 7 was used in the above-mentioned examples, in the present example, barium titanate, S were used.
A semiconductive temperature sensing element such as iC or Co / Mn / Ni is used.

【0092】これらの素子は抵抗が高い為に渦電流が発
生しない。しかし、磁性金属の薄片を該素子に接触させ
れば金属性の温度検知素子7と同じ効果が得られる。あ
るいは、素子自身を磁性金属で被うことで、前述実施例
と同様の効果を期待できる。
Since these elements have high resistance, no eddy current is generated. However, if a thin piece of magnetic metal is brought into contact with the element, the same effect as the metallic temperature detecting element 7 can be obtained. Alternatively, by covering the element itself with a magnetic metal, the same effect as that of the above-described embodiment can be expected.

【0093】この構造例を図3の(c)・(d)に示
す。即ち、(c)のものは半導電性のいわゆるサーミス
タビーズ7Aを磁性の金属箔7gで覆ったものであり、
(d)はサーミスタビーズ7Aに磁性の金属板7hを当
接させたものである。本例ではサーミスタビーズ7Aと
磁性の金属箔7gまたは金属板7hとの間はシリコーン
樹脂等の耐熱性・熱伝導性の樹脂接着材7iを充填して
磁性の金属箔7gまたは金属板7hからサーミスタビー
ズ7Aへの熱伝導性の向上を図っている。7jはサーミ
スタビーズ7Aのリード線である。
An example of this structure is shown in FIGS. 3 (c) and 3 (d). That is, (c) is a semiconductive so-called thermistor bead 7A covered with a magnetic metal foil 7g,
(D) shows the thermistor beads 7A in contact with a magnetic metal plate 7h. In this example, a heat-resistant and heat-conductive resin adhesive 7i such as a silicone resin is filled between the thermistor beads 7A and the magnetic metal foil 7g or the metal plate 7h, and the magnetic metal foil 7g or the metal plate 7h is connected to the thermistor. The thermal conductivity to the beads 7A is improved. 7j is a lead wire of the thermistor bead 7A.

【0094】このような温度検知素子の装置内の配置は
前述実施例2の金属性の温度検知素子7と同様に磁場内
である。
The arrangement of such a temperature detecting element in the apparatus is in the magnetic field as in the case of the metallic temperature detecting element 7 of the second embodiment.

【0095】前述の金属系の温度検知素子7の場合は、
起電力は200℃までは数mVであって増幅しなければ
TTL,C−MOS等の制御レベルにできなかった。こ
のため回路が複雑高価なものになった。
In the case of the metal-based temperature detecting element 7 described above,
The electromotive force was several mV up to 200 ° C. and could not reach the control level of TTL, C-MOS, etc. without amplification. This makes the circuit complex and expensive.

【0096】しかし本実施例のように、金属片7g・7
hを当接した半導電性のいわゆるサーミスタを使用すれ
ば、常温で数kΩから数百kΩ、100℃以上で数Ωか
ら数kΩのものがあり、これと10Ωから10kΩの固
定抵抗を直列につなぎ、5vを印加すれば、分圧された
電圧で0Vから5Vまで5度の変化で電圧レベルで0.
01V程度の変化が得られる。これならば充分TTL、
C−MOS等のレベルで直接ROMに取り込んで制御す
ることができるので回路も簡単で低価格に達成できる。
However, as in this embodiment, metal pieces 7g.7
If a semi-conductive so-called thermistor in contact with h is used, there are several kΩ to several hundred kΩ at room temperature, and several Ω to several kΩ at 100 ° C. or higher. When 5 V is applied as a connection, the divided voltage is 0.about.5 V with a voltage level of 0.
A change of about 01V can be obtained. If this is enough TTL,
Since it can be directly loaded into the ROM and controlled at the level of C-MOS or the like, the circuit is simple and can be achieved at low cost.

【0097】〈実施例4〉(図7) 本実施例においては、磁場発生手段と導電部材は上下に
向かい合わせて対向もしくは接触させて配設した、線輪
としての界磁コイルプレート12と、誘導磁性材として
の磁性金属材13からなる電磁誘導加熱構造体(ヒー
タ)である。この電磁誘導加熱構造体12・13を磁性
金属材13を下向きに露呈させて、熱硬化性樹脂等より
形成された剛性・耐熱性を有する横断面略半円樋型のフ
ィルム内面ガイドステー14の下面の略中央部にガイド
長手に沿って嵌め込み的に取り付け保持させてある。
<Embodiment 4> (FIG. 7) In this embodiment, the magnetic field generating means and the conductive member are arranged facing each other in the vertical direction, facing each other or in contact with each other, and a field coil plate 12 as a coil. It is an electromagnetic induction heating structure (heater) made of a magnetic metal material 13 as an induction magnetic material. This electromagnetic induction heating structure 12 and 13 is exposed to the magnetic metal material 13 downward so that the film inner surface guide stay 14 formed of a thermosetting resin or the like has a rigidity and heat resistance and has a substantially semi-circular cross section. It is fitted and held along the length of the guide in a substantially central portion of the lower surface.

【0098】15はエンドレスの耐熱性フィルムであ
り、上記の電磁誘導加熱構造体12・13を含むフィル
ム内面ガイドステー14にルーズに外嵌させてあり、該
フィルム15を加圧ローラ6により電磁誘導加熱構造体
12・13の磁性金属材13の下面に圧接させてある。
フィルム15には導電層は具備させていない。
Reference numeral 15 is an endless heat resistant film, which is loosely fitted onto the film inner surface guide stay 14 including the electromagnetic induction heating structures 12 and 13, and the film 15 is electromagnetically induced by the pressure roller 6. It is pressed against the lower surface of the magnetic metal material 13 of the heating structures 12 and 13.
The film 15 is not provided with a conductive layer.

【0099】加圧ローラ6は駆動手段Mにより矢示の反
時計方向に回転駆動され、該加圧ローラ6の回転駆動に
よる該ローラとフィルム外面との摩擦力でフィルム15
に回転力が作用して、該フィルム15が磁性金属材13
の下面に密着して摺動回転する。
The pressure roller 6 is rotationally driven in the counterclockwise direction indicated by the arrow by the driving means M, and the film 15 is driven by the frictional force between the roller and the film outer surface due to the rotational driving of the pressure roller 6.
Rotational force acts on the film 15 to cause the film 15 to
It slides and rotates in close contact with the bottom surface of.

【0100】界磁コイルプレート12の磁界コイルから
の発生高周波磁界を磁性金属材13に磁気結合させ、磁
気が及ぼす渦電流損によって磁性金属材13を加熱し、
該磁性金属材13の発熱により該磁性金属材13に密着
移動する耐熱性フィルム15が加熱される。
The high frequency magnetic field generated from the magnetic field coil of the field coil plate 12 is magnetically coupled to the magnetic metal material 13, and the magnetic metal material 13 is heated by the eddy current loss caused by magnetism,
The heat generation of the magnetic metal material 13 heats the heat-resistant film 15 that closely moves to the magnetic metal material 13.

【0101】而して、フィルム15を挟んで磁性金属材
13と加圧ローラ6とで形成される圧接ニップ部Nのフ
ィルム15と加圧ローラ6との間に被加熱材としての画
像定着すべき被記録材Pが不図示の画像形成部より導入
されてフィルム15と一緒に圧接ニップ部Nを挟持搬送
されることにより磁性金属材13の熱がフィルム15を
介して被記録材Pに付与され被記録材P上の未定着トナ
ー像Tが被記録材P面に加熱定着されるものである。圧
接ニップ部Nを通った被記録材Pはフィルム15の面か
ら分離されて搬送される。
Then, an image as a material to be heated is fixed between the film 15 and the pressure roller 6 in the pressure contact nip portion N formed by the magnetic metal material 13 and the pressure roller 6 with the film 15 interposed therebetween. The recording material P to be recorded is introduced from an image forming unit (not shown) and is nipped and conveyed together with the film 15 in the pressure contact nip portion N, so that the heat of the magnetic metal material 13 is applied to the recording material P via the film 15. Then, the unfixed toner image T on the recording material P is heated and fixed on the surface of the recording material P. The recording material P passing through the pressure nip portion N is separated from the surface of the film 15 and conveyed.

【0102】本例のような装置においても、実施例1乃
至同3のような温度検知素子を配置することで同様な効
果が得られる。
Also in the apparatus of this example, the same effect can be obtained by disposing the temperature detecting elements as in Examples 1 to 3.

【0103】〈実施例5〉(図8) 図8の(a)・(b)・(c)はそれぞれ電磁誘導加熱
方式の加熱装置の他の構成形態例を示したものである。
<Embodiment 5> (FIG. 8) FIGS. 8A, 8B, and 8C show another example of the configuration of the electromagnetic induction heating type heating device.

【0104】(a)のものは電磁誘導加熱構造体1・2
・3のステー3の下面と、駆動ローラ16と、従動ロー
ラ(テンションローラ)17との、3部材間にエンドレ
スベルト状の導電部材としてのフィルム5を懸回張設し
て駆動ローラ16によりフィルム5を回転駆動する構成
のものである。18はフィルム4を挟んでステー下面に
圧接させた加圧ローラであり、フィルム5の回転移動に
伴ない従動回転する。
(A) is an electromagnetic induction heating structure 1.2.
A film 5 serving as an endless belt-shaped conductive member is suspended and stretched between the three members of the lower surface of the stay 3 of 3, the driving roller 16 and the driven roller (tension roller) 17, and the film is driven by the driving roller 16. 5 is rotationally driven. Reference numeral 18 denotes a pressure roller that is pressed against the lower surface of the stay with the film 4 interposed therebetween, and is driven to rotate as the film 5 rotates.

【0105】(b)のものは、電磁誘導加熱構造体1・
2・3のステー3の下面と駆動ローラ16の2部材間に
エンドレスベルト状の導電部材としてのフィルム5を懸
回張設して駆動ローラ16により回転駆動する構成のも
のである。
In (b), the electromagnetic induction heating structure 1
A film 5 as an endless belt-shaped conductive member is suspended and stretched between the lower surface of the 2.3 stay 3 and two members of the driving roller 16 and is rotationally driven by the driving roller 16.

【0106】(c)のものは、導電部材としてのフィル
ム5として、エンドレスベルト状のものではなく、ロー
ル巻きにした長尺の有端フィルムを用い、これを繰り出
し軸19側から電磁誘導加熱構造体1・2・3のステー
下面を経由させて巻き取り軸20側へ所定の速度で走行
させるように構成したものである。
In the case of (c), the film 5 as the conductive member is not an endless belt-like one but a long end film wound in a roll is used, and this is an electromagnetic induction heating structure from the feeding shaft 19 side. The body 1, 2, 3 is configured to run at a predetermined speed to the winding shaft 20 side via the stay lower surface.

【0107】〈実施例6〉(図9) 本実施例は例えば前述実施例1の電磁誘導加熱方式の加
熱装置を画像加熱定着装置(像加熱装置)35として用
いた画像形成装置の一例の概略構成図である。本例の画
像形成装置は、電子写真プロセス利用のレーザービーム
プリンタである。
<Embodiment 6> (FIG. 9) In this embodiment, for example, an outline of an example of an image forming apparatus in which the heating apparatus of the electromagnetic induction heating system of the above-described Embodiment 1 is used as an image heating fixing device (image heating device) 35 It is a block diagram. The image forming apparatus of this example is a laser beam printer using an electrophotographic process.

【0108】21は像担持体(第1の像担持体)として
の回転ドラム型の電子写真感光体(以下、感光ドラムと
記す)である。該感光ドラム21は矢印の時計方向に所
定の周速度(プロセススピード)をもって回転駆動さ
れ、その回転過程で一次帯電器22によりマイナスの所
定の暗電位Vに一様に帯電処理される。
Reference numeral 21 is a rotary drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) as an image supporting member (first image supporting member). The photosensitive drum 21 is rotationally driven in the clockwise direction indicated by an arrow at a predetermined peripheral speed (process speed), and in the course of the rotation, the primary charger 22 uniformly charges the negative dark potential V D.

【0109】23はレーザービームスキャナであり、不
図示の画像読取装置・ワードプロセッサ・コンピュータ
等のホスト装置から入力される目的画像情報の時系列電
気デジタル画素信号に対応して変調されたレーザービー
ムLを出力し、前記のように一次帯電器22でマイナス
に一様帯電された感光ドラム21面が該レーザービーム
で走査露光されることで露光部分は電位絶対値が小さく
なって明電位Vとなり回転露光ドラム21面に目的の
画像情報に対応した静電潜像が形成されていく。
Reference numeral 23 denotes a laser beam scanner which emits a laser beam L modulated in accordance with a time series electric digital pixel signal of target image information input from a host device such as an image reading device, a word processor and a computer (not shown). The surface of the photosensitive drum 21, which is output and is negatively and uniformly charged by the primary charger 22 as described above, is scanned and exposed by the laser beam, so that the potential absolute value of the exposed portion becomes small and becomes the bright potential V L , and rotates. An electrostatic latent image corresponding to the target image information is formed on the surface of the exposure drum 21.

【0110】次いでその潜像は現像器24によりマイナ
スに帯電した粉体トナーで反転現像(レーザー露光部V
にトナーが付着)されて顕像化される。
Then, the latent image is subjected to reversal development with the powder toner negatively charged by the developing device 24 (laser exposure portion V
Toner is attached to L ) to make it visible.

【0111】現像器24は回転駆動される現像スリーブ
24aを有し、そのスリーブ外周面にマイナスの電荷を
もったトナーの薄層がコートされて感光ドラム21面と
対向し、スリーブ24aにはその絶対値が感光ドラム2
1の暗電位Vよりも小さく、明電位Vよりも大きな
現像バイアス電圧VDCが印加されていることで、スリ
ーブ24a上のトナーが感光ドラム21の明電位V
部分のみ転移して潜像が顕像化(反転現像)される。
The developing device 24 has a developing sleeve 24a which is rotationally driven, and the outer peripheral surface of the developing sleeve 24 is coated with a thin layer of toner having a negative charge to face the surface of the photosensitive drum 21. Absolute value is photosensitive drum 2
By applying the developing bias voltage VDC which is smaller than the dark potential V D of 1 and larger than the bright potential V L , the toner on the sleeve 24a is transferred only at the portion of the light potential V L of the photosensitive drum 21. The latent image is visualized (reversal development).

【0112】一方、給紙トレー25上に積載セットされ
ている被記録材(第2の像担持体、転写紙)Pが給紙ロ
ーラ26により1枚宛繰り出し給送され、搬送ガイド2
7、レジストローラ対28、転写前ガイド29を経由し
て、感光ドラム21とこれに当接させて電源31で転写
バイアスを印加した転写部材としての転写ローラ30と
のニップ部(転写部)32へ、感光ドラム21の回転と
同期どりされた適切タイミングをもって給送されて該給
送被記録材Pの面に感光ドラム21面側のトナー像が順
次に転写されていく。転写部材としての転写ローラ30
の抵抗値は10〜10Ωm程度のものが適当であ
る。
On the other hand, the recording material (second image carrier, transfer paper) P stacked and set on the paper feed tray 25 is fed out and fed one by one by the paper feed roller 26, and the conveyance guide 2
7, a nip portion (transfer portion) 32 between the photosensitive drum 21 and the transfer roller 30 as a transfer member which is brought into contact with the photosensitive drum 21 and a transfer bias is applied by a power source 31 through the registration roller pair 28 and the pre-transfer guide 29. The toner images on the surface of the photosensitive drum 21 are sequentially transferred onto the surface of the fed recording material P by being fed at an appropriate timing synchronized with the rotation of the photosensitive drum 21. Transfer roller 30 as transfer member
A resistance value of 10 8 to 10 9 Ωm is suitable.

【0113】転写部32を通った被記録材Pは感光ドラ
ム21面から分離され、搬送ガイド34で定着装置35
へ導入されて転写トナー像の定着を受け、画像形成物
(プリント)として排紙トレイ36へ出力される。被記
録材分離後の感光ドラム21面はクリーニング装置33
で転写残りトナー等の感光ドラム面残留物の除去を受け
て清浄面化されて繰り返して作像に供される。
The recording material P that has passed through the transfer portion 32 is separated from the surface of the photosensitive drum 21, and is fixed by the conveyance guide 34 to the fixing device 35.
Then, the transferred toner image is fixed and is output to the discharge tray 36 as an image formed product (print). The surface of the photosensitive drum 21 after the recording material is separated is cleaned by a cleaning device 33.
Then, the residual toner on the surface of the photosensitive drum such as residual toner after transfer is removed, and the surface is cleaned to be repeatedly used for image formation.

【0114】[0114]

【発明の効果】以上説明したように本発明によれば、電
磁誘導加熱方式の加熱装置について、装置の所要部の温
度を検知して装置を制御する系の精度・信頼性を向上さ
せることができる。即ち、金属性の温度検知素子、ない
し金属片を一体化した温度検知素子を使用して、被検体
にきずをつけることなく、かつ摺動抵抗とならずに温度
検知を行なうことが可能となった。
As described above, according to the present invention, it is possible to improve the accuracy and reliability of the system for controlling the apparatus by detecting the temperature of the required portion of the apparatus for the electromagnetic induction heating type heating apparatus. it can. That is, it is possible to detect a temperature by using a metal temperature detecting element or a temperature detecting element in which a metal piece is integrated, without causing scratches on the subject and without causing sliding resistance. It was

【0115】特に、金属に渦電流を発生させて自己発熱
させることで、実際に被検体に供給された熱量を直接検
出できるので、回路のばらつきや温度検知素子の当接状
態のばらつきに左右されない温度制御が可能となった。
In particular, since the amount of heat actually supplied to the subject can be directly detected by generating an eddy current in the metal and causing the metal to self-heat, it is not affected by variations in the circuit or variations in the contact state of the temperature detecting element. The temperature can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の加熱装置(電磁誘導加熱方式・フ
ィルム加熱方式の画像加熱定着装置)の概略構成を示す
横断面摸式図
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a heating device (electromagnetic induction heating type / film heating type image heating / fixing device) according to a first embodiment.

【図2】 磁場発生手段である芯材(コア)と励磁コイ
ルの斜視図
FIG. 2 is a perspective view of a core material (magnetic field generation means) and an exciting coil.

【図3】 (a)・(b)・(c)・(d)はそれぞれ
温度検知素子の構成例の斜視図
3 (a), (b), (c), and (d) are perspective views of configuration examples of temperature detection elements, respectively.

【図4】 温度検知素子を圧接ニップ部の近傍に配置し
た例の要部図
FIG. 4 is a main part diagram of an example in which a temperature detecting element is arranged in the vicinity of a pressure contact nip portion.

【図5】 温度検知素子を圧接ニップ部内に配置した例
の要部図
FIG. 5 is a main part diagram of an example in which a temperature detecting element is arranged in a pressure contact nip portion.

【図6】 温度検知素子を圧接ニップ部の長手方向の延
長線上に配置した例の斜視図
FIG. 6 is a perspective view of an example in which a temperature detecting element is arranged on an extension line in the longitudinal direction of a pressure contact nip portion.

【図7】 加熱装置の他の構成例の摸式図FIG. 7 is a schematic diagram of another configuration example of the heating device.

【図8】 (a)・(b)・(c)はそれぞれ加熱装置
の他の構成形態例の略図
8 (a), (b), and (c) are schematic diagrams of other configuration examples of the heating device, respectively.

【図9】 画像形成装置例の概略構成図FIG. 9 is a schematic configuration diagram of an example of an image forming apparatus.

【符号の説明】[Explanation of symbols]

1・2 磁場発生手段としての鉄心(芯材)と励磁コイ
ル 3 フィルム内面ガイドステー 4 フィルム摺動板(滑板) 5 導電部材(加熱部材)としてのフィルム 5a フィルム基層 5b 導電層 5c 離形層 6 加圧ローラ N 圧接ニップ部 P 被加熱材としての被記録材 7 温度検知素子 8 安全素子(温度ヒューズ、サーモスイッチ等)
1.2 Iron core (core material) as magnetic field generating means and exciting coil 3 Film inner surface guide stay 4 Film sliding plate (sliding plate) 5 Film as conductive member (heating member) 5a Film base layer 5b Conductive layer 5c Release layer 6 Pressure roller N Pressure contact nip P Recording material as heated material 7 Temperature detection element 8 Safety element (temperature fuse, thermo switch, etc.)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 友行 洋二 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 福沢 大三 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 小川 賢一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoji Tomoyuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Daizo Fukuzawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Kenichi Ogawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 磁場発生手段により導電部材に磁場を作
用させて該導電部材に発生する渦電流による該導電部材
の発熱により被加熱材を加熱する電磁誘導加熱方式の加
熱装置であり、装置に配置した温度検知素子を金属性の
温度検知素子にしたことを特徴とする加熱装置。
1. An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member caused by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by a magnetic field generating means. A heating device characterized in that the arranged temperature detecting element is a metallic temperature detecting element.
【請求項2】 磁場発生手段により導電部材に磁場を作
用させて該導電部材に発生する渦電流による該導電部材
の発熱により被加熱材を加熱する電磁誘導加熱方式の加
熱装置であり、装置に配置した温度検知素子を金属性の
温度検知素子にし、磁場発生手段の励磁コイルの作る磁
力線が入るように配置したことを特徴とする加熱装置。
2. A heating device of an electromagnetic induction heating system for heating a material to be heated by heat generation of the conductive member due to an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device characterized in that the arranged temperature detecting element is a metallic temperature detecting element, and is arranged so that a magnetic line of force generated by an exciting coil of the magnetic field generating means enters.
【請求項3】 磁場発生手段により導電部材に磁場を作
用させて該導電部材に発生する渦電流による該導電部材
の発熱により被加熱材を加熱する電磁誘導加熱方式の加
熱装置であり、装置に配置した温度検知素子に金属片を
当接させたことを特徴とする加熱装置。
3. An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member caused by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device characterized in that a metal piece is brought into contact with the arranged temperature detection element.
【請求項4】 磁場発生手段により導電部材に磁場を作
用させて該導電部材に発生する渦電流による該導電部材
の発熱により被加熱材を加熱する電磁誘導加熱方式の加
熱装置であり、装置に配置した温度検知素子に金属片を
当接させ、磁場発生手段の励磁コイルの作る磁力線が入
るように配置したことを特徴とする加熱装置。
4. An electromagnetic induction heating type heating device for heating a material to be heated by heat generation of the conductive member caused by an eddy current generated in the conductive member by applying a magnetic field to the conductive member by the magnetic field generating means. A heating device, characterized in that a metal piece is brought into contact with the arranged temperature detecting element so that a magnetic line of force generated by an exciting coil of the magnetic field generating means enters.
【請求項5】 導電部材が固定部材、あるいは回転体も
しくは走行移動有端部材である事を特徴とする請求項1
乃至同4の何れかに記載の加熱装置。
5. The conductive member is a fixed member, or a rotating member or a member for traveling and moving, which is an end member.
The heating device according to any one of to 4 above.
【請求項6】 導電部材が導電層を含む積層部材もしく
はそれ自体導電性の部材である事を特徴とする請求項1
乃至同5の何れかに記載の加熱装置。
6. The conductive member is a laminated member including a conductive layer or a conductive member itself.
The heating device according to any one of to 5 above.
【請求項7】 導電部材に被加熱部材を直接もしくは間
接的に密着させる加圧部材を有する事を特徴とする請求
項1乃至同6の何れかに記載の加熱装置。
7. The heating device according to claim 1, further comprising a pressing member for directly or indirectly adhering the member to be heated to the conductive member.
【請求項8】 加圧部材が回転駆動されるあるいは従動
回転する加圧回転体である事を特徴とする請求項7に記
載の加熱装置。
8. The heating device according to claim 7, wherein the pressurizing member is a pressurizing rotary member that is rotationally driven or driven to rotate.
【請求項9】 被加熱材が加熱処理すべき画像を担持さ
せた被記録材であり、該被記録材に画像を加熱処理する
像加熱装置である事を特徴とする請求項1乃至同8の何
れかに記載の加熱装置。
9. The heating target material is a recording material carrying an image to be heat-treated, and is an image heating device for heating the image on the recording material. The heating device according to any one of 1.
【請求項10】 前記請求項1乃至同9の何れかに記載
の加熱装置を像加熱装置として備えている事を特徴とす
る画像形成装置。
10. An image forming apparatus comprising the heating device according to any one of claims 1 to 9 as an image heating device.
JP16328494A 1994-06-22 1994-06-22 Heating device and image forming device Pending JPH086413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16328494A JPH086413A (en) 1994-06-22 1994-06-22 Heating device and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16328494A JPH086413A (en) 1994-06-22 1994-06-22 Heating device and image forming device

Publications (1)

Publication Number Publication Date
JPH086413A true JPH086413A (en) 1996-01-12

Family

ID=15770900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16328494A Pending JPH086413A (en) 1994-06-22 1994-06-22 Heating device and image forming device

Country Status (1)

Country Link
JP (1) JPH086413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072964A (en) * 1996-11-28 2000-06-06 Canon Kabushiki Kaisha Image heating apparatus with temperature detecting means
WO2001031405A1 (en) * 1999-10-26 2001-05-03 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
JP2007017723A (en) * 2005-07-08 2007-01-25 Ricoh Co Ltd Heating device, fixing device, and image forming apparatus
JP2015025903A (en) * 2013-07-25 2015-02-05 株式会社沖データ Fixing apparatus and image forming apparatus
JP6159900B1 (en) * 2017-03-01 2017-07-05 東亜電器株式会社 Flat sheet interface sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072964A (en) * 1996-11-28 2000-06-06 Canon Kabushiki Kaisha Image heating apparatus with temperature detecting means
US6343195B1 (en) 1996-11-28 2002-01-29 Canon Kabushiki Kaisha Image heating apparatus with core for guiding magnetic flux and temperature sensor to control power supply
WO2001031405A1 (en) * 1999-10-26 2001-05-03 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
US6725009B1 (en) 1999-10-26 2004-04-20 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming apparatus using the same
US6845226B2 (en) 1999-10-26 2005-01-18 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming apparatus using the same
JP2007017723A (en) * 2005-07-08 2007-01-25 Ricoh Co Ltd Heating device, fixing device, and image forming apparatus
JP2015025903A (en) * 2013-07-25 2015-02-05 株式会社沖データ Fixing apparatus and image forming apparatus
JP6159900B1 (en) * 2017-03-01 2017-07-05 東亜電器株式会社 Flat sheet interface sensor
JP2018146267A (en) * 2017-03-01 2018-09-20 東亜電器株式会社 Flat sheet type interface sensor

Similar Documents

Publication Publication Date Title
JP3311111B2 (en) Image heating device and rotating body for image heating
JP3491973B2 (en) Heating equipment
JP3527442B2 (en) Image heating device and image forming device
JP3437392B2 (en) Image heating device
US20070071523A1 (en) Image heating apparatus
JP2008234837A (en) Heating device, fixing device, and image forming device
US8892017B2 (en) Fixing device and image forming apparatus
JP4717292B2 (en) Image forming apparatus
JPH0876620A (en) Heating device and image forming device
JP3441820B2 (en) Heating equipment
US7473871B2 (en) Heating apparatus, fixing apparatus and image forming apparatus
JP4692038B2 (en) Fixing device
JP4303349B2 (en) Image heating apparatus and image forming apparatus
JPH0816007A (en) Heating apparatus and image forming apparatus
JPH0816006A (en) Heating apparatus and image forming apparatus
JP4261727B2 (en) Image heating device
JP3504943B2 (en) Image heating device and image forming device
JPH086413A (en) Heating device and image forming device
JP2004325678A (en) Image forming apparatus
JP5780450B2 (en) Fixing apparatus and image forming apparatus
JP3323658B2 (en) Heating equipment
JP5403931B2 (en) Image heating device
JP3342193B2 (en) Heating equipment
JPH0980939A (en) Heating device for image forming device
US9983521B2 (en) Fixing device and image forming apparatus