JPH0862555A - Optical functional device - Google Patents

Optical functional device

Info

Publication number
JPH0862555A
JPH0862555A JP20169194A JP20169194A JPH0862555A JP H0862555 A JPH0862555 A JP H0862555A JP 20169194 A JP20169194 A JP 20169194A JP 20169194 A JP20169194 A JP 20169194A JP H0862555 A JPH0862555 A JP H0862555A
Authority
JP
Japan
Prior art keywords
electrode
comb
optical waveguide
optical
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20169194A
Other languages
Japanese (ja)
Other versions
JP3490150B2 (en
Inventor
Tadao Nakazawa
忠雄 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20169194A priority Critical patent/JP3490150B2/en
Publication of JPH0862555A publication Critical patent/JPH0862555A/en
Application granted granted Critical
Publication of JP3490150B2 publication Critical patent/JP3490150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the efficiency of mode transformation by means of an electric field and to reduce an impressed voltage in an optical functional device in which electric optical efficiency is utilized. CONSTITUTION: This optical functional device having a comb-line electrode 30 for periodically adding the electric field along extending direction with respect to an optical waveguide 20 on the surface of a substrate constituted of an electric optical material on the surface layer of which the optical waveguide 20 is formed is provided with a conductor 50 which is partially superposed on the optical waveguide 20 and which is separated from the electrode 30 in arrangement by plane view between respective electrode fingers 31 constituting the electrode 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気光学効果を利用し
た光機能デバイスに関する。光伝送によるマルチメディ
ア情報網の構築が進む中で、モード変換器、波長フィル
タ、光変調器などの光機能デバイスの実用性の向上が望
まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical functional device utilizing the electro-optic effect. As the construction of multimedia information networks by optical transmission progresses, it is desired to improve the practicality of optical functional devices such as mode converters, wavelength filters, and optical modulators.

【0002】[0002]

【従来の技術】電気光学材料の基板内に形成した光導波
路に、櫛形電極によって周期的に電界を加えることによ
って、光導波路を伝播する光の偏光モードを、TEモー
ドからTMモードに、又はTMモードからTEモードに
変換することができる。そして、櫛形電極の電極指の配
列周期Λを適当に選定することにより、(1)式で表さ
れる波長λの光を選択的にモード変換することができ
る。光導波路の後端に検光子を設け、モード変換後の光
を検光子を介して後段へ送り出すようにした構成のデバ
イスは波長フィルタとして機能する。
2. Description of the Related Art A polarization mode of light propagating in an optical waveguide is changed from a TE mode to a TM mode or a TM mode by periodically applying an electric field to the optical waveguide formed in a substrate of an electro-optical material by a comb-shaped electrode. Mode can be converted to TE mode. Then, by appropriately selecting the arrangement period Λ of the electrode fingers of the comb-shaped electrodes, it is possible to selectively perform mode conversion of the light having the wavelength λ expressed by the equation (1). A device having a structure in which an analyzer is provided at the rear end of the optical waveguide and the light after mode conversion is sent to the subsequent stage through the analyzer functions as a wavelength filter.

【0003】λ=Λ|NTE−NTM| …(1) NTE:TEモードの実効屈折率 NTM:TMモードの実効屈折率 例えば、ニオブ酸リチウム(LiNbO3 )では、複屈
折率|NTE−NTM|が約0.072であり、波長1.5
μmの光を選択する場合には、電極指の配列周期Λを約
20.8μmにすればよい。
Λ = Λ | N TE −N TM | (1) N TE : Effective refractive index of TE mode N TM : Effective refractive index of TM mode For example, in lithium niobate (LiNbO 3 ), the birefringent index | N TE −N TM | is about 0.072 and the wavelength is 1.5.
When selecting the light of μm, the arrangement period Λ of the electrode fingers may be set to about 20.8 μm.

【0004】[0004]

【発明が解決しようとする課題】ところで、モード変換
に必要な印加電圧(電界強度)は、櫛形電極の光伝播方
向の長さ(電極指の配列数)に反比例する。つまり、偏
光方向をπ/2だけ回転させるにあたって、デバイスの
小型化及び材料費の低減を図るために基板寸法を短くし
ようとすると、それだけ高い電圧を印加しなければなら
ず、耐電圧の確保が難しくなる。
The applied voltage (electric field strength) required for mode conversion is inversely proportional to the length of the comb-shaped electrode in the light propagation direction (the number of electrode fingers arranged). In other words, in rotating the polarization direction by π / 2, if the substrate size is shortened in order to downsize the device and reduce the material cost, a higher voltage must be applied, and the withstand voltage cannot be secured. It gets harder.

【0005】例えば、Zカットのニオブ酸リチウムを基
板材料として用い、櫛形電極の光伝播方向(Y方向)の
長さを5mmとした場合、波長1.5μmの光のモード
変換に100V以上の電圧を印加する必要があった。
For example, when Z-cut lithium niobate is used as the substrate material and the length of the comb electrodes in the light propagation direction (Y direction) is 5 mm, a voltage of 100 V or more is used for mode conversion of light having a wavelength of 1.5 μm. Had to be applied.

【0006】なお、Xカットのニオブ酸リチウムによれ
ば、Zカットを用いる場合に比べて印加電圧を低くする
ことができる。ただし、Xカットの結晶では、不純物拡
散係数の異方性に起因して光導波路の断面形状が偏平に
なり、光ファイバなどの外部伝送路との接続における損
失が大きい。
The X-cut lithium niobate can reduce the applied voltage as compared with the case of using the Z-cut. However, in the X-cut crystal, the cross-sectional shape of the optical waveguide becomes flat due to the anisotropy of the impurity diffusion coefficient, and the loss in connection with an external transmission line such as an optical fiber is large.

【0007】本発明は、このような問題に鑑みてなされ
たもので、電界によるモード変換の効率を高め、印加電
圧の低減を図ることを目的としている。
The present invention has been made in view of the above problems, and an object thereof is to improve the efficiency of mode conversion by an electric field and reduce the applied voltage.

【0008】[0008]

【課題を解決するための手段】請求項1の発明のデバイ
スは、上述の課題を解決するため、図1及び図2に示す
ように、表層部に光導波路が形成された電気光学材料か
らなる基板の表面上に、前記光導波路に対してその延長
方向に沿って周期的に電界を加えるための櫛形電極を有
した光機能デバイスであって、前記櫛形電極を構成する
各電極指の間に、平面視配置の上で前記光導波路と部分
的に重なり且つ前記櫛形電極と離れた導体が設けられて
なる。
In order to solve the above-mentioned problems, the device of the present invention comprises an electro-optical material having an optical waveguide formed in the surface layer portion as shown in FIGS. 1 and 2. An optical functional device having a comb-shaped electrode for periodically applying an electric field on the surface of a substrate along the extension direction of the optical waveguide, the device being provided between the electrode fingers constituting the comb-shaped electrode. A conductor that partially overlaps the optical waveguide in a plan view and is separated from the comb-shaped electrode is provided.

【0009】請求項2の発明のデバイスは、前記櫛形電
極と対をなす電極が前記電極指の配列方向に延びる直線
状電極であり、前記導体が前記直線状電極と電気的に一
体化されてなる。
According to a second aspect of the present invention, the electrode paired with the comb-shaped electrode is a linear electrode extending in the arrangement direction of the electrode fingers, and the conductor is electrically integrated with the linear electrode. Become.

【0010】請求項3の発明のデバイスは、前記導体
が、前記光導波路の導波光に対して透光性を有した透明
導電材料からなる。
In the device of the third aspect of the present invention, the conductor is made of a transparent conductive material having a light-transmitting property with respect to the guided light of the optical waveguide.

【0011】[0011]

【作用】本発明の原理を示す図1のように、モード変換
に際しては、光導波路20を挟む一対の電極間に所定の
電圧VMCが印加される。このとき、少なくとも一方の電
極は複数の電極指(櫛歯部)31を有した櫛形電極30
であり、光導波路20にはその延長方向(光伝播方向)
に沿って周期的に電界が加わる。
As shown in FIG. 1 showing the principle of the present invention, a predetermined voltage V MC is applied between a pair of electrodes sandwiching the optical waveguide 20 during mode conversion. At this time, at least one of the electrodes is a comb-shaped electrode 30 having a plurality of electrode fingers (comb teeth) 31.
And the extension direction (light propagation direction) of the optical waveguide 20.
An electric field is periodically applied along.

【0012】各電極指31の間に導体50が存在する
と、フローティング状態を含む導電接続状態に係わら
ず、導体50及びその近辺の電位はほぼ一様になるの
で、光導波路20における導体50の下方の部分には電
界が生じない。すなわち、電界は、各電極指31とそれ
らと対向する他方の電極との間に集中する。
When the conductor 50 exists between the electrode fingers 31, the potentials of the conductor 50 and its vicinity are substantially uniform regardless of the conductive connection state including the floating state, so that the conductor 50 below the conductor 50 in the optical waveguide 20. An electric field is not generated in the area. That is, the electric field is concentrated between each electrode finger 31 and the other electrode facing them.

【0013】このため、光導波路20における光伝播方
向の電界強度の周期変化が極端になり、電極指31の配
列周期Λ毎の電気光学効果が顕著となることから、印加
電界がより有効に作用してモード変換効率が高まる。
Therefore, the periodical change of the electric field strength in the light propagation direction in the optical waveguide 20 becomes extreme, and the electro-optical effect becomes remarkable for each array period Λ of the electrode fingers 31, so that the applied electric field acts more effectively. The mode conversion efficiency is improved.

【0014】これに対して、電極指31の間に導体が無
い場合は、電極指31の配列方向に電界が拡がる。その
結果、図中の鎖線で示されるように、光導波路20にお
ける電界強度の周期変化が緩慢になる。
On the other hand, when there is no conductor between the electrode fingers 31, the electric field spreads in the arrangement direction of the electrode fingers 31. As a result, as indicated by the chain line in the figure, the periodic change in the electric field strength in the optical waveguide 20 becomes slow.

【0015】[0015]

【実施例】図2は第1実施例の波長フィルタ1の斜視図
であり、モード変換部分の構造を模式に示している。な
お、同図においては図1に対応する構成要素には同一の
符号が付されている。以下の各図も同様である。
FIG. 2 is a perspective view of the wavelength filter 1 of the first embodiment, schematically showing the structure of the mode conversion portion. In the figure, the same reference numerals are given to the components corresponding to those in FIG. The following figures are also the same.

【0016】波長フィルタ1の基体(基板)10は、Z
カットのニオブ酸リチウム結晶であり、外形寸法が5m
m(X)×30mm(Y)×1mm(Z)の板状体であ
る。基板10のZ方向の表層部には、チタン(Ti)の
熱拡散によって、Y方向に沿って全長にわたって延びる
光導波路20が形成されている。光導波路20の幅は約
7μmである。基板10の上面は、光導波路20を含め
て二酸化珪素(SiO2 )からなる透明誘電体層(バッ
ファ層)25で被覆され、これによって電極金属と光導
波路20とが接したときに生じる光吸収が防止されてい
る。バッファ層25の厚さは0.5μmである。
The base (substrate) 10 of the wavelength filter 1 is Z
It is a cut lithium niobate crystal with an outer dimension of 5 m.
It is a plate-like body of m (X) × 30 mm (Y) × 1 mm (Z). An optical waveguide 20 extending over the entire length in the Y direction is formed in the surface layer portion of the substrate 10 in the Z direction by thermal diffusion of titanium (Ti). The width of the optical waveguide 20 is about 7 μm. The upper surface of the substrate 10 including the optical waveguide 20 is covered with a transparent dielectric layer (buffer layer) 25 made of silicon dioxide (SiO 2 ), which absorbs light generated when the electrode metal and the optical waveguide 20 are in contact with each other. Is prevented. The thickness of the buffer layer 25 is 0.5 μm.

【0017】バッファ層25の上に、光導波路20に対
してその伝播方向に沿って周期的に電界を加えるため
に、一対の櫛形電極30が設けられている。各櫛形電極
30は金(Au)を真空蒸着法によって堆積した厚さ
0.1μmの金属膜であり、それぞれの電極指(櫛歯
部)31が光導波路20を挟んで対向するようにパター
ニングされている。電極指31の幅wは約5.3μmで
あり、電極間距離(櫛形電極対の対向間隙)は7μmで
ある。
A pair of comb-shaped electrodes 30 are provided on the buffer layer 25 in order to periodically apply an electric field to the optical waveguide 20 along the propagation direction thereof. Each comb-shaped electrode 30 is a metal film having a thickness of 0.1 μm formed by vacuum deposition of gold (Au), and each electrode finger (comb-tooth portion) 31 is patterned so as to face each other with the optical waveguide 20 in between. ing. The width w of the electrode finger 31 is about 5.3 μm, and the distance between the electrodes (the facing gap of the comb-shaped electrode pair) is 7 μm.

【0018】また、本実施例では、電極指31の配列の
周期Λは21.1μmである。すなわち、選択波長λは
1.5μmに設定されている。また、印加電圧VMCを規
定する櫛形電極30の長さLは5mmである。
Further, in this embodiment, the period Λ of the array of the electrode fingers 31 is 21.1 μm. That is, the selection wavelength λ is set to 1.5 μm. Further, the length L of the comb-shaped electrode 30 that defines the applied voltage V MC is 5 mm.

【0019】以上の基本構成要素に加えて、波長フィル
タ1においては、櫛形電極30を構成する各電極指31
の間の中央部に、平面視配置の上で光導波路20を横切
り且つ櫛形電極30と離れた短冊状の導体50が設けら
れている。導体50は、櫛形電極30と同時にパターニ
ング形成され、その幅は約5.3μmであり、長さは約
30μmである。
In addition to the basic components described above, in the wavelength filter 1, each electrode finger 31 that constitutes the comb-shaped electrode 30.
A strip-shaped conductor 50 that crosses the optical waveguide 20 and is separated from the comb-shaped electrode 30 in a plan view is provided in the central portion between the two. The conductor 50 is patterned at the same time as the comb-shaped electrode 30 and has a width of about 5.3 μm and a length of about 30 μm.

【0020】波長フィルタ1の使用に際しては、各櫛形
電極30を直流電源に接続する。導体50はフローティ
ング状態とする。実際に30Vの電圧VMCを印加する
と、波長λが1.536μmの光が選択的にモード変換
され、その変換効率(入出力強度比)は50%であっ
た。
When using the wavelength filter 1, each comb electrode 30 is connected to a DC power source. The conductor 50 is in a floating state. When a voltage V MC of 30 V was actually applied, the light having a wavelength λ of 1.536 μm was selectively mode-converted, and its conversion efficiency (input / output intensity ratio) was 50%.

【0021】なお、比較例として、導体50を設けず、
その他について波長フィルタ1と同一構成とした試料を
作製し、同様に30Vの電圧VMCを印加したところ、波
長1.536μmの光におけるモード変換効率は、波長
フィルタ1のほぼ1/2であった。このことから、導体
50によって電界の拡がりが抑制されて変換効率が高ま
ることを確認できた。
As a comparative example, without providing the conductor 50,
When a sample having the same structure as the wavelength filter 1 was produced for the others and a voltage V MC of 30 V was applied in the same manner, the mode conversion efficiency for light having a wavelength of 1.536 μm was almost half that of the wavelength filter 1. . From this, it was confirmed that the conductor 50 suppresses the spread of the electric field and enhances the conversion efficiency.

【0022】図3は第2実施例の波長フィルタ2の構造
を示す模式図である。波長フィルタ2は、Y伝播形式の
光導波路20が形成されたZカットのニオブ酸リチウム
結晶からなる基板10、等間隔に並ぶ電極指31を有し
た櫛形電極30、光導波路20と部分的に重なる直線状
電極35、直線状電極35と平行なチューニング電極3
6、及び各電極指31の間に配置された短冊状の導体5
0などから構成されている。
FIG. 3 is a schematic diagram showing the structure of the wavelength filter 2 of the second embodiment. The wavelength filter 2 partially overlaps the substrate 10 made of Z-cut lithium niobate crystal in which the Y-propagation type optical waveguide 20 is formed, the comb-shaped electrode 30 having the electrode fingers 31 arranged at equal intervals, and the optical waveguide 20. Linear electrode 35, tuning electrode 3 parallel to linear electrode 35
6 and the strip-shaped conductor 5 arranged between the electrode fingers 31
It is composed of 0 and the like.

【0023】櫛形電極30と直線状電極35との間に電
圧VMCを印加することにより、光導波路20に対してそ
の延長方向に沿って周期的にX方向の電界を加え、電極
指31の配列周期に依存する波長の光をモード変換する
ことができる。
By applying a voltage V MC between the comb-shaped electrode 30 and the linear electrode 35, an electric field in the X direction is periodically applied to the optical waveguide 20 along the extension direction thereof, and the electrode finger 31 moves. It is possible to perform mode conversion of light having a wavelength that depends on the array period.

【0024】また、直線状電極35とチューニング電極
36との間に適当な電圧VT を印加することにより、光
導波路20に対してZ方向の電界を加えて複屈折率(|
TE−NTM|)を変化させ、モード変換の選択波長λを
調節することができる。
By applying an appropriate voltage V T between the linear electrode 35 and the tuning electrode 36, an electric field in the Z direction is applied to the optical waveguide 20 so that the birefringence (|
N TE −N TM |) can be changed to adjust the selected wavelength λ for mode conversion.

【0025】各導体50は、櫛形電極30とは離れてい
るが、一端側が直線状電極35とつながっている。そし
て、このように一体である導体50及び直線状電極35
は、例えばITO又はNESAなどの透明導電材料から
なる。したがって、導体50及び直線状電極35による
光吸収がないことから、波長フィルタ2ではバッファ層
が設けられず、基板10の表面に直に各電極30,3
5,36及び導体50が成膜されている。バッファ層を
省くことにより、電界を安定化することができ、モード
変換特性の変動を抑えることができる。
Although each conductor 50 is separated from the comb-shaped electrode 30, one end side thereof is connected to the linear electrode 35. Then, the conductor 50 and the linear electrode 35 which are integrated in this way.
Is made of a transparent conductive material such as ITO or NESA. Therefore, since there is no light absorption by the conductor 50 and the linear electrode 35, the buffer layer is not provided in the wavelength filter 2, and the electrodes 30, 3 are directly provided on the surface of the substrate 10.
5, 36 and the conductor 50 are deposited. By omitting the buffer layer, it is possible to stabilize the electric field and suppress variations in mode conversion characteristics.

【0026】波長フィルタ2においては、導体50は直
線状電極35と同電位に保たれ、これによって上述の実
施例と同様に電界の光伝播方向の拡がりが抑制され、モ
ード変換効率が高まる。
In the wavelength filter 2, the conductor 50 is kept at the same potential as the linear electrode 35, which suppresses the spread of the electric field in the light propagation direction and enhances the mode conversion efficiency as in the above-described embodiment.

【0027】図4は第3実施例の波長フィルタ3の構造
を示す模式図である。波長フィルタ3は、Y伝播形式の
光導波路20が形成されたZカットのニオブ酸リチウム
結晶からなる基板10、等間隔に並ぶ電極指31を有し
た櫛形電極30、光導波路20を挟んで櫛形電極30と
対向する直線状の加熱電極38、及び各電極指31の間
に配置された短冊状の導体50などから構成されてい
る。
FIG. 4 is a schematic diagram showing the structure of the wavelength filter 3 of the third embodiment. The wavelength filter 3 includes a substrate 10 made of Z-cut lithium niobate crystal in which a Y-propagation type optical waveguide 20 is formed, a comb-shaped electrode 30 having electrode fingers 31 arranged at equal intervals, and a comb-shaped electrode sandwiching the optical waveguide 20. It is composed of a linear heating electrode 38 opposed to 30, a strip-shaped conductor 50 arranged between each electrode finger 31, and the like.

【0028】櫛形電極30と加熱電極38との間に電圧
MCを印加することにより、光導波路20に対して周期
的に電界を加え、電極指31の配列周期に依存する波長
の光をモード変換することができる。
By applying a voltage V MC between the comb-shaped electrode 30 and the heating electrode 38, an electric field is periodically applied to the optical waveguide 20, and the light having a wavelength depending on the arrangement period of the electrode fingers 31 is changed into a mode. Can be converted.

【0029】また、加熱電極38の両端に適当な加熱電
圧VH を印加することにより、熱光学効果を利用して複
屈折率(|NTE−NTM|)を変化させ、モード変換の選
択波長λを調節することができる。
Further, by applying an appropriate heating voltage V H to both ends of the heating electrode 38, the birefringence (| N TE −N TM |) is changed by utilizing the thermo-optic effect to select the mode conversion. The wavelength λ can be adjusted.

【0030】各導体50は、櫛形電極30とは離れてい
るが、一端側が加熱電極38とつながっている。そし
て、このように一体である導体50及び直線状電極35
は、櫛形電極30とともに、金薄膜のパターニングによ
って形成される。なお、加熱電極38は、パターニング
された金属膜を下地として、金をめっきしたものであ
る。加熱電極38の長さを5mmとし、金めっきの厚さ
を3μmとした場合、両端間の電気抵抗は10Ωであ
る。
Although each conductor 50 is separated from the comb-shaped electrode 30, one end side is connected to the heating electrode 38. Then, the conductor 50 and the linear electrode 35 which are integrated in this way.
Together with the comb-shaped electrode 30 are formed by patterning a gold thin film. The heating electrode 38 is formed by plating gold with a patterned metal film as a base. When the length of the heating electrode 38 is 5 mm and the thickness of the gold plating is 3 μm, the electric resistance between both ends is 10Ω.

【0031】波長フィルタ3においては、導体50は加
熱電極38の各部と同電位に保たれ、これによって上述
の実施例と同様に電界の光伝播方向の拡がりが抑制さ
れ、モード変換効率が高まる。
In the wavelength filter 3, the conductor 50 is kept at the same potential as that of each part of the heating electrode 38, so that the spread of the electric field in the light propagation direction is suppressed and the mode conversion efficiency is enhanced as in the above-described embodiment.

【0032】上述の実施例によれば、電気光学材料とし
てZカットのニオブ酸リチウム結晶を用いる場合におい
て、挿入損失(光ファイバなどで構成される光伝送路内
に挿入したときの損失)が小さいというZカット−Y伝
播方式の優位性を生かし、且つ低い印加電圧で高効率の
モード変換を実現することができる。
According to the above-mentioned embodiment, when the Z-cut lithium niobate crystal is used as the electro-optical material, the insertion loss (the loss when it is inserted into the optical transmission line constituted by the optical fiber) is small. By utilizing the advantage of the Z-cut-Y propagation method, it is possible to realize highly efficient mode conversion with a low applied voltage.

【0033】上述の実施例において、導体50の平面視
形状は例示の短冊状に限定されず、櫛形電極30の形状
に合わせて各種の変更が可能である。例えば、正方形、
円形、楕円形、三角形、菱形、及びこれら形状を縁取っ
た枠形であってもよい。ただし、絶縁のために櫛形電極
30とは所定の距離だけ離す必要がある。なお、導体5
0を四角形などにする場合には、角の部分に丸みをつけ
ることにより、耐電圧を高めることができる。
In the above-described embodiment, the shape of the conductor 50 in plan view is not limited to the illustrated strip shape, but various modifications can be made according to the shape of the comb-shaped electrode 30. For example, a square,
The shape may be a circle, an ellipse, a triangle, a rhombus, or a frame shape with these shapes being framed. However, it is necessary to be separated from the comb-shaped electrode 30 by a predetermined distance for insulation. The conductor 5
When 0 is a quadrangle or the like, the withstand voltage can be increased by rounding the corners.

【0034】上述の実施例において、電極指31の周期
(配列ピッチ)Λ、及び櫛形電極30の光伝播方向の長
さLは、用途に応じて適宜選定すればよい。その他、各
要素の材質、形状、寸法、配置構造、形成方法などは本
発明の主旨に沿った範囲内で種々の変更が可能である。
特にバッファ層25と各種電極との間にシリコン層を設
けた構造は、温度変化に対する電界の安定化に寄与し、
温度安定性を向上するのに有効である。
In the above-described embodiment, the period (arrangement pitch) Λ of the electrode fingers 31 and the length L of the comb-shaped electrode 30 in the light propagation direction may be appropriately selected according to the application. In addition, the material, shape, size, arrangement structure, forming method, etc. of each element can be variously modified within the scope of the gist of the present invention.
In particular, the structure in which the silicon layer is provided between the buffer layer 25 and various electrodes contributes to the stabilization of the electric field against temperature changes,
It is effective for improving temperature stability.

【0035】[0035]

【発明の効果】請求項1乃至請求項3の発明によれば、
モード変換のための印加電圧を低減することができ、絶
縁破壊の防止及び駆動の容易化を図ることができる。
According to the inventions of claims 1 to 3,
The applied voltage for mode conversion can be reduced, dielectric breakdown can be prevented, and driving can be facilitated.

【0036】特に請求項3の発明によれば、光吸収を防
止するための透明誘電体層であるバッファ層を省略する
ことができ、誘電体の介在に起因する電界の経時変化を
なくして特性の安定性を高めることができる。
In particular, according to the invention of claim 3, the buffer layer, which is a transparent dielectric layer for preventing light absorption, can be omitted, and the change of the electric field due to the interposition of the dielectric can be eliminated and the characteristics can be eliminated. The stability of can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】第1実施例の波長フィルタの斜視図である。FIG. 2 is a perspective view of the wavelength filter according to the first embodiment.

【図3】第2実施例の波長フィルタの構成を示す模式図
である。
FIG. 3 is a schematic diagram showing a configuration of a wavelength filter according to a second embodiment.

【図4】第3実施例の波長フィルタの構成を示す模式図
である。
FIG. 4 is a schematic diagram showing a configuration of a wavelength filter according to a third embodiment.

【符号の説明】[Explanation of symbols]

1,2,3 波長フィルタ(光機能デバイス) 10 基板 20 光導波路 30 櫛形電極 31 電極指 35 直線状電極 38 加熱電極(直線状電極) 50 導体 1, 2 and 3 wavelength filter (optical functional device) 10 substrate 20 optical waveguide 30 comb-shaped electrode 31 electrode finger 35 linear electrode 38 heating electrode (linear electrode) 50 conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表層部に光導波路が形成された電気光学材
料からなる基板の表面上に、前記光導波路に対してその
延長方向に沿って周期的に電界を加えるための櫛形電極
を有した光機能デバイスであって、 前記櫛形電極を構成する各電極指の間に、平面視配置の
上で前記光導波路と部分的に重なり且つ前記櫛形電極と
離れた導体が設けられてなることを特徴とする光機能デ
バイス。
1. A comb-shaped electrode for periodically applying an electric field to the optical waveguide along its extension direction is provided on the surface of a substrate made of an electro-optical material having an optical waveguide formed in the surface layer portion. An optical functional device, characterized in that a conductor, which partially overlaps with the optical waveguide in a plan view arrangement and is separated from the comb-shaped electrode, is provided between each electrode finger forming the comb-shaped electrode. Optical function device.
【請求項2】前記櫛形電極と対をなす電極が前記電極指
の配列方向に延びる直線状電極であり、前記導体が前記
直線状電極と電気的に一体化されてなることを特徴とす
る請求項1記載の光機能デバイス。
2. The electrode paired with the comb-shaped electrode is a linear electrode extending in the arrangement direction of the electrode fingers, and the conductor is electrically integrated with the linear electrode. Item 2. The optical functional device according to Item 1.
【請求項3】前記導体が、前記光導波路の導波光に対し
て透光性を有した透明導電材料からなることを特徴とす
る請求項1又は請求項2記載の光機能デバイス。
3. The optical functional device according to claim 1, wherein the conductor is made of a transparent conductive material having a light-transmitting property with respect to the guided light of the optical waveguide.
JP20169194A 1994-08-26 1994-08-26 Optical function device Expired - Fee Related JP3490150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20169194A JP3490150B2 (en) 1994-08-26 1994-08-26 Optical function device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20169194A JP3490150B2 (en) 1994-08-26 1994-08-26 Optical function device

Publications (2)

Publication Number Publication Date
JPH0862555A true JPH0862555A (en) 1996-03-08
JP3490150B2 JP3490150B2 (en) 2004-01-26

Family

ID=16445312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20169194A Expired - Fee Related JP3490150B2 (en) 1994-08-26 1994-08-26 Optical function device

Country Status (1)

Country Link
JP (1) JP3490150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016717A (en) * 2018-07-24 2020-01-30 住友大阪セメント株式会社 Optical waveguide element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016717A (en) * 2018-07-24 2020-01-30 住友大阪セメント株式会社 Optical waveguide element
US11500264B2 (en) 2018-07-24 2022-11-15 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device with reinforcement member for optical fiber and waveguide portion

Also Published As

Publication number Publication date
JP3490150B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JP5233983B2 (en) Optical phase modulation element and optical modulator using the same
US20050175271A1 (en) Optical modulator
JPH1184328A (en) Integrated optical light intensity modulator and manufacture thereof
CA2207715A1 (en) Optical modulator with optical waveguide and traveling-wave type electrodes
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JP3490150B2 (en) Optical function device
JPH08194196A (en) Production of optical waveguide device
US6363189B1 (en) Directional coupler
EP1403692A1 (en) Electro-optic devices
JPH05173099A (en) Optical control element
JP3449645B2 (en) Optical function device and driving method thereof
JPS5911086B2 (en) light modulator
JPS63261219A (en) Optical modulator element
JP3492034B2 (en) Optical function device
JPH05341243A (en) Mode converter and optical filter
JPS5993431A (en) Optical switch
JP3019278B2 (en) Waveguide type optical device
JP3487664B2 (en) Optical function device and driving method thereof
JPS63261220A (en) Light modulating element
JPH06222403A (en) Directional coupling type optical waveguide
Eknoyan et al. Guided-wave electrooptic devices utilizing static strain induced effects in ferroelectrics
JPH0215245A (en) Optical waveguide type device
JPH0352612B2 (en)
JPH05346560A (en) Optical modulator
JPH08254674A (en) Optical function device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees