JPH086159B2 - Heat treatment method for aluminum alloy - Google Patents

Heat treatment method for aluminum alloy

Info

Publication number
JPH086159B2
JPH086159B2 JP62196164A JP19616487A JPH086159B2 JP H086159 B2 JPH086159 B2 JP H086159B2 JP 62196164 A JP62196164 A JP 62196164A JP 19616487 A JP19616487 A JP 19616487A JP H086159 B2 JPH086159 B2 JP H086159B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat treatment
temperature
casting
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62196164A
Other languages
Japanese (ja)
Other versions
JPS6442559A (en
Inventor
恭弘 小川
正 植木
英樹 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62196164A priority Critical patent/JPH086159B2/en
Publication of JPS6442559A publication Critical patent/JPS6442559A/en
Publication of JPH086159B2 publication Critical patent/JPH086159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本方法は、自動車部品、舶用原動機部品およびそれら
の保安部品用に幅広く使用される、例えば、ダイカスト
や溶湯鋳造(高圧鋳造)などの加圧鋳造法で成形した後
のアルミニウム合金を対象とする熱処理方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present method is widely used for automobile parts, marine prime mover parts and their safety parts, for example, pressurization such as die casting and molten metal casting (high pressure casting). The present invention relates to a heat treatment method for an aluminum alloy after being formed by a casting method.

[従来の技術] アルミニウム合金を大別すれば、展伸材用合金と鋳物
用合金とになるが、アルミニウム合金の特性から分けれ
ば、非熱処理型合金と熱処理型合金とな大別することも
できる。熱処理型合金とは、時効硬化性合金のことであ
り、固溶限以上の温度で加熱後急冷して均質状態を常温
に持込む処理、すなわち、焼入処理を行なった後、常温
に報放置して自然時効によって硬化するもの(T4処理)
と、更に100〜200℃の適当な温度で適当時間焼もどしし
て高い強さを得るもの(T6処理)とがある。
[Prior Art] Aluminum alloys can be roughly classified into wrought alloys and casting alloys. However, according to the characteristics of aluminum alloys, non-heat treatment type alloys and heat treatment type alloys can be roughly divided. it can. Heat-treatable alloys are age-hardenable alloys that are heated to a temperature above the solid solubility limit and then rapidly cooled to bring the homogeneous state to room temperature, that is, after quenching, let them stand for normal temperature at room temperature. And then hardened by natural aging (T4 treatment)
In addition, there are those that obtain high strength by tempering at a suitable temperature of 100 to 200 ° C for a suitable time (T6 treatment).

そして、アルミニウム合金の鋳物製造において合金に
高い強度と靭性を得るには、鋳造後の鋳物を溶体化処理
をした後、焼入れを実施し、然る後人工時効を施工する
ことが要求される。それと全く同様に、加圧鋳造法で得
られた鋳物についても、溶体化処理は500〜550℃の温度
で数時間、人工時効処理は100〜200℃の温度で数時間、
各々必要とされていた。
Then, in order to obtain high strength and toughness of the alloy in the production of cast aluminum alloy, it is required to subject the cast product after the solution treatment to a solution treatment, then perform quenching, and then carry out artificial aging. Exactly the same, for castings obtained by the pressure casting method, solution heat treatment at a temperature of 500 to 550 ° C for several hours, artificial aging treatment at a temperature of 100 to 200 ° C for several hours,
Each was needed.

[発明が解決しようとする問題点] 加圧鋳造されたアルミニウム合金からなる鋳物の一般
的な熱処理方法は、鋳造後、室温まで降下した後、500
〜550℃の温度で3〜6時間、空気循環式加熱炉に保持
した後、冷水または温水に焼入れし、その後室温に適当
な時間放置し、再度空気循環式加熱炉により100〜200℃
の温度で2〜8時間保持した後、空冷する(以下、従来
法と呼ぶ)。
[Problems to be Solved by the Invention] A general heat treatment method for a casting made of a pressure cast aluminum alloy is as follows:
After holding it in an air circulation type heating furnace at a temperature of ~ 550 ° C for 3 ~ 6 hours, quench it in cold water or warm water, and then leave it at room temperature for an appropriate time, and again in an air circulation type heating furnace to 100 ~ 200 ° C.
After maintaining at the temperature of 2 to 8 hours, it is air-cooled (hereinafter referred to as a conventional method).

このような従来の熱処理法では、正味の処理時間に昇
温時間等を加算すると、全熱処理工程に要する時間は少
なくとも20時間、長い場合には40時間にも及ぶため、生
産効率が悪く、また熱経済上好ましくなかった。
In such a conventional heat treatment method, if the temperature rise time and the like are added to the net treatment time, the total heat treatment step requires at least 20 hours, and in the long case, 40 hours. It was not preferable in terms of heat economy.

[問題を解決するための手段] 以上の問題点を解決するため、本発明は、アルミニウ
ム合金の溶湯を金型内に加圧鋳造した後、金型より取り
出した成形品が300℃まで降温しないうちに、400〜550
℃の溶融液、または加熱炉に約5〜30分間浸漬した後、
冷水または温水中に入れて焼入れする熱処理方法(以
下、迅速溶体化法と呼ぶ)が有益であることを見い出し
た。
[Means for Solving Problems] In order to solve the above problems, according to the present invention, a molded product taken out of the mold does not cool down to 300 ° C. after the molten aluminum alloy is pressure-cast into the mold. At 400-550
After immersing in the melt at ℃ for about 5 to 30 minutes,
It has been found that a heat treatment method of immersing in cold water or warm water and quenching (hereinafter referred to as rapid solution heat treatment method) is beneficial.

そして、この迅速溶体化法の処理後、通常の人工時効
処理を施工した成形品は従来の熱処理法で得られる鋳物
が持つ機械的性質に十分匹敵する品質を確保できる上、
処理時間も短かくて済む。
And, after the treatment of this rapid solution treatment method, the molded article that has been subjected to the usual artificial aging treatment can secure a quality that is sufficiently comparable to the mechanical properties of the casting obtained by the conventional heat treatment method.
The processing time is short.

[作用] 本発明における迅速溶体化法が、アルミニウム合金の
成形品に対して、その熱処理工程に要する時間が極めて
短時間で、しかも、品質面において従来品と同等もしく
はそれ以上である理由は、加圧鋳造法により得られた成
形品が高品質であるため、従来の重力鋳造法や低圧鋳造
法に比較して鋳造欠陥が著しく少ない上、その凝固組織
が微細であるので、溶体化に要する時間を著しく短縮す
ることができるものと考えられる。
[Operation] The reason why the rapid solution treatment method of the present invention is that the time required for the heat treatment step for an aluminum alloy molded product is extremely short, and the quality is equivalent to or higher than that of the conventional product. Since the molded product obtained by the pressure casting method is of high quality, it has significantly less casting defects than the conventional gravity casting method and low pressure casting method, and its solidification structure is fine, so it is necessary for solution treatment. It is considered that the time can be significantly shortened.

また、溶体化の温度範囲を400〜550℃とした理由は、
Al−Mg系およびAl−Mg−Zn系合金の平均溶体化温度が42
0〜430℃であり、Al−Si−Mg系合金では、その温度が52
0〜540℃であるため、それらの温度範囲から溶体化の温
度範囲を400〜550℃とした。
Moreover, the reason why the solution temperature range is 400 to 550 ° C.
The average solution temperature of Al-Mg and Al-Mg-Zn alloys is 42
The temperature is 0 to 430 ° C., and the temperature of the Al--Si--Mg alloy is 52
Since the temperature was 0 to 540 ° C, the temperature range for solution treatment was set to 400 to 550 ° C from those temperature ranges.

なお、溶体化をたとえば塩浴などの溶融液中で行なう
場合、溶融液の熱容量が大きく、そのために成形品の急
速加熱が容易であり、また液体化前の温度が常に300℃
以上であることも成形品の急速加熱を容易かつ円滑なら
しめている。
When solution treatment is carried out in a melt such as a salt bath, the heat capacity of the melt is large, which facilitates rapid heating of the molded product, and the temperature before liquefaction is always 300 ° C.
The above is also what makes rapid heating of the molded product easy and smooth.

[実施例] アルミニウム合金鋳物(JIS規格AC4CH、化学成分Si7.
05%、Mg0.30%、Ti0.15%、Fe0.11%)を溶解し、肉厚
10mm、外径約100mm、高さ120mmのカップ型の金型に射出
圧力1000Kg/cm2で加圧鋳造した後、本発明の迅速溶体化
処理(塩浴使用)を施し、100〜200℃の適当な温度によ
る焼もどし処理をした鋳物と、従来の熱処理法による鋳
物との機械的性質を調べ、その結果を第1図(a),
(b)に示した。
[Example] Aluminum alloy casting (JIS standard AC4CH, chemical composition Si7.
05%, Mg0.30%, Ti0.15%, Fe0.11%)
After pressure casting in a cup-shaped mold of 10 mm, outer diameter of about 100 mm, and height of 120 mm at an injection pressure of 1000 Kg / cm 2 , the rapid solution treatment of the present invention (using a salt bath) is applied, The mechanical properties of the cast product that has been tempered at an appropriate temperature and the cast product that has been subjected to the conventional heat treatment method are investigated, and the results are shown in FIG. 1 (a),
It is shown in (b).

第1図(a)は、引張強さおよび降伏点に関する、本
発明による方法と従来法との比較を示し、第1図(b)
は、伸びに関する両者の比較を示す。このグラフから明
らかなように、熱処理法の相違により強度に大きな差異
が生じ、本発明による熱処理法では溶体化処理時間が5
〜30分という、極めて短時間にも拘らず、引張強さは30
Kg/mm2、降伏点は22Kg/mm2程度保持できる。一方、従来
法では、それらと同等の強度に達するには約2時間の溶
体化が必要となる。したがって、本発明による迅速溶体
化法を適用すれば、その処理時間を大きく短縮でき、約
5分間の溶体化により、従来法に匹敵する機械的性質を
得ることができる。
FIG. 1 (a) shows a comparison between the method according to the invention and the conventional method in terms of tensile strength and yield point, FIG. 1 (b).
Shows a comparison between the two regarding elongation. As is clear from this graph, there is a large difference in strength due to the difference in the heat treatment method, and in the heat treatment method according to the present invention, the solution treatment time is 5
Despite the extremely short time of ~ 30 minutes, the tensile strength is 30
Kg / mm 2, yield point can hold about 22 Kg / mm 2. On the other hand, in the conventional method, solutionizing for about 2 hours is required to reach the same strength as those. Therefore, when the rapid solution treatment method according to the present invention is applied, the treatment time can be greatly shortened, and mechanical properties comparable to those of the conventional method can be obtained by solution treatment for about 5 minutes.

次に、同様に前記カップ型の金型に射出圧力1000Kg/c
m2で加圧鋳造した後、本発明の迅速溶体化処理後に、常
温に放置して自然時効によって硬化させる、いわゆるT4
処理をした鋳物と、従来の熱処理法による鋳物との機械
的性質を調べた結果を第2図(a),(b)に示す。
Next, in the same manner, the injection pressure of 1000 Kg / c was applied to the cup-shaped mold.
After pressure casting at m 2 , after the rapid solution treatment of the present invention, it is left at room temperature to be hardened by natural aging, so-called T4
2 (a) and 2 (b) show the results of examining the mechanical properties of the treated casting and the conventional heat treatment casting.

第2図(a)は、引張強さおよび降伏点に関する比
較、第2図(b)は、伸びに関する比較を示す。第2図
(a),(b)から、熱処理法の相違による強度の差異
はほとんどなく、ほぼ同等であるのに対して、伸びにお
ける差異は歴然としており、従来法にくらべて本発明に
よる方法がはるかに短時間の溶体化処理で、伸びを大き
く向上できることが明らかである。
FIG. 2 (a) shows a comparison regarding tensile strength and yield point, and FIG. 2 (b) shows a comparison regarding elongation. From FIGS. 2 (a) and 2 (b), there is almost no difference in the strength due to the difference in the heat treatment method, and the strengths are almost the same, but the difference in elongation is clear, and the method according to the present invention is different from the conventional method. However, it is clear that the elongation can be greatly improved by the solution treatment in a much shorter time.

第3図(a),(b)は、溶体化直前の鋳物温度とT6
処理後の、引張強さ、降伏点および伸びの相関を示した
もので、このグラフからも明らかなように、本発明の迅
速溶体化法で、加圧鋳造後の鋳物に溶体化処理をすると
きの、直前の鋳物の温度を300℃以下にならないように
設定した理由は、全ての機械的性質は溶体化直前の鋳物
温度に影響され、引張温度および降伏点を高く保つには
300℃以上、伸びにおいては200℃以上必要という事実に
基づくものである。
Figures 3 (a) and 3 (b) show the casting temperature and T6 immediately before solution heat treatment.
After treatment, it shows the correlation of tensile strength, yield point and elongation, and as is clear from this graph, the rapid solution treatment method of the present invention performs solution treatment on the casting after pressure casting. At this time, the reason why the temperature of the casting immediately before was set not to fall below 300 ° C was that all mechanical properties were affected by the casting temperature immediately before solution treatment, and to keep the tensile temperature and yield point high.
This is based on the fact that 300 ° C or higher and 200 ° C or higher are required for elongation.

なお、熱処理条件は第1図においては、溶体化温度52
0℃、人工時効170℃×2Hr、第2図においては、溶体化
温度520℃、その後自然時効、第3図においては、溶体
化温度520℃×5min水冷、人工時効170℃×2Hrである。
The heat treatment conditions are shown in FIG.
0 ° C., artificial aging 170 ° C. × 2 Hr, solution temperature 520 ° C. in FIG. 2, then natural aging, solution temperature 520 ° C. × 5 min water cooling, artificial aging 170 ° C. × 2 Hr in FIG.

以上の結果により、本発明における溶体化直前の鋳物
温度は300℃以上と決定した。
From the above results, the casting temperature immediately before solution heat treatment in the present invention was determined to be 300 ° C or higher.

以上は、アルミニウム合金鋳物(JIS規格AC4CH)につ
いての実施例であるが、アルミニウム合金鋳物(JIS規
格AC7B、化学成分Si0.3%以下、Mg9.5〜11.0%、Fe0.4
%以下、溶体化温度430℃)についても実施したとこ
ろ、上記とほぼ同様に良好な結果が得られた。
The above are examples of aluminum alloy castings (JIS standard AC4CH), but aluminum alloy castings (JIS standard AC7B, chemical composition Si 0.3% or less, Mg9.5-11.0%, Fe0.4
%, The solution temperature was 430 ° C.), and good results were obtained almost in the same manner as above.

[発明の効果] 本発明による迅速溶体化の後、通常の人工時効を施こ
した鋳物は、従来法で得られた鋳物に十分匹敵する機械
的性質を有する。
[Effects of the Invention] The castings that have been subjected to normal artificial aging after rapid solution treatment according to the present invention have mechanical properties sufficiently comparable to those of castings obtained by conventional methods.

また、迅速溶体化処理を施工するのみで、その後の人
工時効を省略する場合、靭性を大きく向上させるが、強
度の上昇は望めない。しかし、加圧鋳造により、鋳放し
状態でもある程度の強度があるので、用途によっては十
分使用に耐えるので、処理時間は更に短縮される。
In addition, if only the rapid solution treatment is applied and the subsequent artificial aging is omitted, the toughness is greatly improved, but the strength cannot be expected to increase. However, since the pressure casting has a certain strength even in the as-cast state, it can withstand sufficient use depending on the application, and the processing time is further shortened.

以上のことから、本発明によれば、アルミニウム合金
の加圧鋳造後の熱処理時間を大幅に短縮できるため、従
来にくらべて生産性,熱経済性を大きく改善することが
可能である。
From the above, according to the present invention, the heat treatment time after pressure casting of the aluminum alloy can be greatly shortened, and thus it is possible to greatly improve the productivity and the thermoeconomical efficiency as compared with the conventional case.

また、本発明の迅速溶体化処理によると、加圧時間が
非常に短かくて済むため、熱処理による変形やひずみが
著しく小さく、また、ブリスターが発生しにくい。
Further, according to the rapid solution treatment of the present invention, the pressing time is extremely short, so that the deformation and strain due to the heat treatment are remarkably small, and blisters are unlikely to occur.

なお、塩浴炉を用いて溶融液に浸漬する方法に比べ
て、加熱炉で温度保持する方法は、炉の設置に際して公
害抑制上の規制もなく簡便である。
It should be noted that the method of maintaining the temperature in the heating furnace is simpler than the method of immersing the molten solution in the molten solution using a salt bath furnace, without restrictions on pollution control when installing the furnace.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)および第2図(a),(b)は、
本発明の塩浴炉による方法および従来法におけるそれぞ
れ異なるアルミニウム合金鋳物の、溶体化処理時間と機
械的性質との関係を示す線図で、第1図(a)と第2図
(a)は引張強さと降伏点に関するもの、第1図(b)
と第2図(b)は伸びに関するものを示す。第3図
(a),(b)は、本発明の塩浴炉による方法で、アル
ミニウム合金の鋳物の、溶体化処理直前の温度と熱処理
後の機械的性質との関係を示す線図で、第3図(a)は
引張強さと降伏点に関するもの、第3図(b)は伸びに
関するものを示す。第4図(a),(b)および第5図
(a),(b)は、本発明の加熱炉による方法および従
来法におけるそれぞれ異なるアルミニウム合金鋳物の、
溶体化処理時間と機械的性質との関係を示す線図で、第
4図(a)と第5図(a)は引張強さと降伏点に関する
もの、第4図(b)と第5図(b)は伸びに関するもの
を示す。第6図(a),(b)は、本発明の加熱炉によ
る方法で、アルミニウム合金の鋳物の、溶体化処理直前
の温度と熱処理後の機械的性質との関係を示す線図で、
第6図(a)は引張強さと降伏点に関するもの、第6図
(b)は伸びに関するものを示す。
1 (a), (b) and 2 (a), (b),
FIG. 1 (a) and FIG. 2 (a) are diagrams showing the relationship between solution treatment time and mechanical properties of different aluminum alloy castings in the salt bath furnace method of the present invention and in the conventional method. Regarding tensile strength and yield point, Fig. 1 (b)
2 and FIG. 2 (b) show those relating to elongation. FIGS. 3 (a) and 3 (b) are diagrams showing the relationship between the temperature immediately before solution treatment and the mechanical properties after heat treatment of a cast aluminum alloy by the method using the salt bath furnace of the present invention. FIG. 3 (a) shows tensile strength and yield point, and FIG. 3 (b) shows elongation. FIGS. 4 (a) and (b) and FIGS. 5 (a) and (b) show different aluminum alloy castings in the method using the heating furnace of the present invention and the conventional method, respectively.
FIG. 4 is a diagram showing the relationship between solution treatment time and mechanical properties, FIGS. 4 (a) and 5 (a) relating to tensile strength and yield point, and FIGS. 4 (b) and 5 ( b) is related to elongation. FIGS. 6 (a) and 6 (b) are diagrams showing the relationship between the temperature immediately before the solution treatment and the mechanical properties after the heat treatment of the cast aluminum alloy by the method using the heating furnace of the present invention.
FIG. 6 (a) shows tensile strength and yield point, and FIG. 6 (b) shows elongation.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋳造可能なアルミニウム合金の溶湯を金型
内で加圧鋳造した後、金型より取り出した成形品が300
℃まで降温しないうちに、400〜500℃に保持された溶融
液に5〜30分間浸漬した後、または、加熱炉で400〜550
℃に5〜30分間保持した後、さらに水中に焼入れること
を特徴とするアルミニウム合金の熱処理方法。
1. A molded product obtained by press-casting a castable aluminum alloy melt in a mold and then taking it out of the mold is 300 pieces.
After immersing in the melt held at 400-500 ° C for 5-30 minutes before cooling to 400 ° C, or in a heating furnace at 400-550
A method for heat treating an aluminum alloy, which comprises holding at 5 ° C for 5 to 30 minutes and then quenching in water.
【請求項2】鋳造可能なアルミニウム合金の溶湯を金型
内で加圧鋳造した後、金型より取り出した成形品が300
℃まで降温しないうちに、400〜500℃に保持された溶融
液に5〜30分間浸漬した後、または、加熱炉で400〜550
℃に5〜30分間保持した後、さらに水中に焼入れた上
で、人工時効処理を実施することを特徴とするアルミニ
ウム合金の熱処理方法。
2. A molded product taken out of a mold after press-casting a castable aluminum alloy melt in a mold is 300 pieces.
After immersing in the melt held at 400-500 ° C for 5-30 minutes before cooling to 400 ° C, or in a heating furnace at 400-550
A method for heat treating an aluminum alloy, which comprises holding at 5 ° C for 5 to 30 minutes, further quenching in water, and then performing an artificial aging treatment.
JP62196164A 1987-08-07 1987-08-07 Heat treatment method for aluminum alloy Expired - Lifetime JPH086159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62196164A JPH086159B2 (en) 1987-08-07 1987-08-07 Heat treatment method for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62196164A JPH086159B2 (en) 1987-08-07 1987-08-07 Heat treatment method for aluminum alloy

Publications (2)

Publication Number Publication Date
JPS6442559A JPS6442559A (en) 1989-02-14
JPH086159B2 true JPH086159B2 (en) 1996-01-24

Family

ID=16353271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62196164A Expired - Lifetime JPH086159B2 (en) 1987-08-07 1987-08-07 Heat treatment method for aluminum alloy

Country Status (1)

Country Link
JP (1) JPH086159B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432152B2 (en) * 2014-04-15 2018-12-05 日産自動車株式会社 Heat treatment method for aluminum alloy die-casting member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149772A (en) * 1979-05-11 1980-11-21 Nikkei Giken:Kk Production of aluminum alloy casting
JPS55161056A (en) * 1979-06-04 1980-12-15 Ryobi Ltd Manufacture of die casting hydroalloy
JPS5651864A (en) * 1979-10-02 1981-05-09 Sharp Corp Semiconductor switching element
JPS56163246A (en) * 1980-05-15 1981-12-15 Furukawa Chuzo Kk Manufacture of heat treated die casting

Also Published As

Publication number Publication date
JPS6442559A (en) 1989-02-14

Similar Documents

Publication Publication Date Title
US8636855B2 (en) Methods of enhancing mechanical properties of aluminum alloy high pressure die castings
US8168015B2 (en) Direct quench heat treatment for aluminum alloy castings
CN100370053C (en) Heat treatment of age-hardenable aluminium Alloys
US4419143A (en) Method for manufacture of aluminum alloy casting
US5194102A (en) Method for increasing the strength of aluminum alloy products through warm working
US6869490B2 (en) High strength aluminum alloy
KR100415270B1 (en) Copper Base Alloy, and Methods for Producing Casting and Forging Employing Copper Base Alloy
US4047980A (en) Processing chromium-containing precipitation hardenable copper base alloys
EP1065292B1 (en) Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures
JP3485577B2 (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
JPS6246621B2 (en)
US6569271B2 (en) Aluminum alloys and methods of making the same
EP0157711A1 (en) Process for the manufacture of objects from Al-Li-Mg-Cu alloys with high ductibility and isotropy properties
US7503986B2 (en) Method for shortening production time of heat treated aluminum alloys
KR100566359B1 (en) Process for treating an aluminium alloy containing magnesium and silicon
JPH086159B2 (en) Heat treatment method for aluminum alloy
US6322647B1 (en) Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom
US3732128A (en) Heat treatments of die castings under pressure
US20040140026A1 (en) Method for shortening production time of heat treated aluminum alloy castings
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP2002144018A (en) Method for producing light weight and high strength member
JPS62207848A (en) Heat treatment of aluminum alloy
JPS633020B2 (en)
RU2033468C1 (en) Method of manufacture of semifinished items from aluminium wrought alloys containing iron and zirconium
JPH08225903A (en) Production of high-pressure cast aluminum alloy casting