JPH0860210A - Production of fe-cr-al-rem based alloy powder - Google Patents
Production of fe-cr-al-rem based alloy powderInfo
- Publication number
- JPH0860210A JPH0860210A JP21814694A JP21814694A JPH0860210A JP H0860210 A JPH0860210 A JP H0860210A JP 21814694 A JP21814694 A JP 21814694A JP 21814694 A JP21814694 A JP 21814694A JP H0860210 A JPH0860210 A JP H0860210A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- alloy powder
- nozzle
- content
- rem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アトマイズによるFe
−Cr−Al−REM系合金粉末の製造方法に関する。FIELD OF THE INVENTION The present invention relates to Fe by atomization.
The present invention relates to a method for producing a -Cr-Al-REM alloy powder.
【0002】[0002]
【従来の技術】近年、Alを含むFe基合金(Fe−1
5〜40%Cr−3〜10%Al合金)は、耐熱性,耐
酸化性に優れていることから、ヒータ電熱線用,溶射
用,PTA(肉盛り溶接)用,あるいは自動車の排気ガ
ス浄化用触媒の担体用材料として広く利用されている。
これは合金粉末の原料が、材料送給性,組織制御性,薄
板化の面で特性向上に寄与しているからである。2. Description of the Related Art In recent years, Fe-based alloys containing Al (Fe-1
5-40% Cr-3-10% Al alloy) has excellent heat resistance and oxidation resistance, so it can be used for heater heating wire, thermal spraying, PTA (build-up welding), or automobile exhaust gas purification. It is widely used as a carrier material for catalysts.
This is because the raw material of the alloy powder contributes to the improvement of characteristics in terms of material feeding property, structure controllability, and thinning.
【0003】上記Fe−Cr−Al系合金粉末を工業的
規模で製造する場合、製造コストの点から大気溶解又は
真空溶解と、水又はガス噴射との組み合わせによるアト
マイズ法が採用されている。なお、上記真空溶解は高純
度粉末の製造のみに限定されている。このアトマイズ法
は、ノズル径2〜10mmφの溶湯ノズルから溶融金属
を細く流下させ、これに高圧ガス又は高圧水を噴射する
ことにより合金粉末を製造する方法である。この場合、
上記溶湯ノズル部分の温度が低下すると溶融金属が凝固
してノズルを閉塞する場合があることから、上記溶融金
属の温度,タンディッシュ及び溶湯ノズルの予熱温度を
制御してノズルの閉塞を制御するのが一般的である。In the case of producing the above Fe-Cr-Al alloy powder on an industrial scale, an atomizing method is adopted from the viewpoint of production cost, which is a combination of air melting or vacuum melting and water or gas injection. The vacuum melting is limited to the production of high-purity powder. This atomizing method is a method of producing alloy powder by finely flowing molten metal from a molten metal nozzle having a nozzle diameter of 2 to 10 mmφ and injecting high pressure gas or high pressure water into the molten metal. in this case,
When the temperature of the molten metal nozzle portion decreases, the molten metal may solidify and block the nozzle. Therefore, it is necessary to control the temperature of the molten metal, the tundish, and the preheating temperature of the molten metal nozzle to control the blockage of the nozzle. Is common.
【0004】また、例えば上記Alのような活性金属元
素を含む合金粉末を製造する場合、溶融金属中に、大
気,耐火物等が酸素,窒素の供給源となって酸化物,窒
化物が生成し易く、これらが溶湯ノズルの内壁に生成,
成長し、アトマイズの途中で溶融金属が流下しなくな
り、その結果ノズルを閉塞する場合がある。これは、溶
湯ノズル内壁の温度が溶融金属の温度より低下すること
により、過飽和状態となった溶融金属中の酸素,窒素が
酸化物,窒化物となるためであり、これらの酸化物等は
熱力学的に安定したものとなる。これらの酸化物,窒化
物は、温度が低くなった溶湯ノズルの内壁から溶融金属
中に生成,成長する。そしてこの晶出物の融点が溶融金
属の温度より高い場合、あるいは晶出物がクラスター状
に成長した場合、溶融金属が流下し難くなり、その結果
ノズルの閉塞に至ることとなる。In the case of producing an alloy powder containing an active metal element such as Al, the atmosphere, refractory, etc. serve as a source of oxygen and nitrogen in the molten metal to form oxides and nitrides. Easily, these are generated on the inner wall of the melt nozzle,
In some cases, the molten metal does not flow down during the atomizing process, resulting in clogging of the nozzle. This is because the temperature of the inner wall of the molten metal nozzle becomes lower than the temperature of the molten metal, so that oxygen and nitrogen in the supersaturated molten metal become oxides and nitrides. It will be mechanically stable. These oxides and nitrides are generated and grown in the molten metal from the inner wall of the molten metal nozzle whose temperature has decreased. When the melting point of the crystallized product is higher than the temperature of the molten metal, or when the crystallized product grows in a cluster shape, the molten metal becomes difficult to flow down, resulting in clogging of the nozzle.
【0005】このような晶出物の生成による溶湯ノズル
の閉塞を防止するために、従来、ノズルの径を大きくし
たり,溶融金属の温度を晶出物の融点より高くしたりす
る方法がある。またノズルの壁面からガス等をバブリン
グさせて晶出物の生成を抑制したり,上記ノズルを加熱
したりする方法も試みられている。In order to prevent clogging of the molten metal nozzle due to the formation of such crystallized substances, conventionally, there has been a method of increasing the diameter of the nozzle or making the temperature of the molten metal higher than the melting point of the crystallized substance. . Further, a method of bubbling gas or the like from the wall surface of the nozzle to suppress the formation of crystallized substances or to heat the nozzle has been attempted.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上記従来
のノズル径を大きくしたり、溶湯温度を高くしたりする
方法は、合金粉末の粒度分布が大きくなり、溶融金属中
の酸素が増大することから限界がある。また、溶湯ノズ
ルにガス等をバブリングさせる方法では、その構造が複
雑となり、製造コストがアップするという問題がある。However, the above conventional methods of increasing the nozzle diameter and raising the temperature of the molten metal are limited because the particle size distribution of the alloy powder becomes large and the oxygen in the molten metal increases. There is. Further, the method of bubbling gas or the like through the molten metal nozzle has a problem that the structure is complicated and the manufacturing cost is increased.
【0007】本発明は、上記従来の状況に鑑みてなされ
たもので、合金粉末粒のばらつきや溶融金属中の酸素増
大を回避しながら、かつ製造コストを上昇させることな
く溶湯ノズルの閉塞を防止できるFe−Cr−Al−R
EM系合金粉末の製造方法を提供することを目的として
いる。The present invention has been made in view of the above conventional circumstances, and prevents clogging of the melt nozzle while avoiding variations in alloy powder particles and increase in oxygen in the molten metal, and at the same time without increasing the manufacturing cost. Fe-Cr-Al-R capable
It is an object of the present invention to provide a method for producing EM alloy powder.
【0008】[0008]
【課題を解決するための手段】ここで、上述のノズル内
壁に生成する晶出物に含まれる組成を分析したところ、
窒素とAlとの反応による多量のAlNが形成されてお
り、このAlNがノズル閉塞の原因となっていることが
わかった。そこで本件出願人は、先にこのAlNの生成
を抑制するために、溶融金属中の窒素含有量を300p
pm以下に保持した状態でアトマイズを行う方法を提案
した。When the composition contained in the crystallized substance formed on the inner wall of the nozzle is analyzed,
It was found that a large amount of AlN was formed by the reaction between nitrogen and Al, and this AlN was the cause of nozzle clogging. Therefore, in order to suppress the formation of this AlN, the applicant of the present invention first set the nitrogen content in the molten metal to 300 p
A method of performing atomization in the state of being kept at pm or less was proposed.
【0009】一方、近年のFe−Cr−Al系合金粉末
では、耐酸化性の改善を図るためにLa,Ce,Y等の
希土類元素(以下、REと称する)を添加することが注
目されている。このREを添加することによって、合金
の耐酸化性を始め、耐硫化性,熱間加工性等の各種の特
性を向上できる(日本金属学会会報 第18巻 第3号
(1979)「RE添加による耐熱合金の性能向上」参
照)。On the other hand, in recent Fe-Cr-Al alloy powders, attention has been paid to the addition of rare earth elements such as La, Ce and Y (hereinafter referred to as RE) in order to improve the oxidation resistance. There is. By adding this RE, it is possible to improve various properties such as oxidation resistance, sulfuration resistance, hot workability, etc. of the alloy (Japan Institute of Metals, Vol. 18, No. 3 (1979)) Improving the performance of heat resistant alloys ").
【0010】ところで、上記Fe−Cr−Al系溶融金
属にREを添加し、かつ該溶融金属中の窒素含有量を3
00ppm以下に保持した状態でアトマイズを実施した
ところ、上記窒素量を制御しても溶湯ノズルの内壁に晶
出物がクラスター状に成長し、その結果ノズルが閉塞す
る場合のあることが判明した。図1は、溶湯ノズル内壁
の顕微鏡写真を示す。同写真からも明らかなように、ノ
ズル内壁に晶出物が生成,成長していることがわかる。By the way, RE is added to the Fe-Cr-Al-based molten metal, and the nitrogen content in the molten metal is adjusted to 3%.
When atomization was carried out in a state where the amount was kept at 00 ppm or less, it was found that crystallized substances grow in clusters on the inner wall of the molten metal nozzle even if the nitrogen amount is controlled, and as a result, the nozzle is clogged. FIG. 1 shows a micrograph of the inner wall of the melt nozzle. As is clear from the same photograph, it can be seen that crystallized substances are generated and grow on the inner wall of the nozzle.
【0011】本件発明者は、上記REを添加した場合の
晶出物について調査,分析を行ったところ、硫化物が多
量に堆積していることがわかった。図2〜図5は、それ
ぞれX線マイクロアナライザー(EPMA)により上記
晶出物に含まれる組成を分析した分析写真を示す。The inventor of the present invention investigated and analyzed the crystallized substance when the above RE was added, and found that a large amount of sulfide was deposited. 2 to 5 each show an analysis photograph obtained by analyzing the composition contained in the crystallized substance by an X-ray microanalyzer (EPMA).
【0012】各写真からも明らかなように、上記晶出物
には酸化物はほとんど含まれておらず(図3参照)、Y
とSを多量に含有しており、これにより上記晶出物は
Y,Sの化合物であることがわかる(図4,5参照)。
このことから溶融金属中のS量を制御することによって
RE添加によるノズルの閉塞を防止できることに想到
し、本発明を成したものである。As is clear from each photograph, the above crystallized substance contains almost no oxide (see FIG. 3), and Y
And S are contained in a large amount, which shows that the above crystallized substance is a compound of Y and S (see FIGS. 4 and 5).
From this, it was conceived that the nozzle clogging due to the addition of RE can be prevented by controlling the amount of S in the molten metal, and the present invention was achieved.
【0013】請求項1の発明は、Alを含むFe系溶融
金属を溶湯ノズルから流下させ、該溶融金属に高圧ガス
又は高圧水を吹きつけて合金粉末を製造する方法におい
て、上記溶融金属中の硫黄含有量を10ppm以下にし
た後、希土類元素を添加し、次いでアトマイズを行うこ
とを特徴としている。According to a first aspect of the present invention, there is provided a method for producing an alloy powder by flowing a Fe-based molten metal containing Al from a molten metal nozzle and blowing a high-pressure gas or high-pressure water onto the molten metal to produce an alloy powder. A feature is that after the sulfur content is set to 10 ppm or less, a rare earth element is added, and then atomization is performed.
【0014】請求項2の発明は、請求項1と同様の合金
粉末の製造方法において、上記溶融金属中の硫黄含有量
を10ppm以下、かつ窒素含有量を300ppm以下
にした後、希土類元素を添加し、次いでアトマイズを行
うことを特徴としている。According to a second aspect of the present invention, in the same method for producing the alloy powder as the first aspect, the rare earth element is added after the sulfur content in the molten metal is 10 ppm or less and the nitrogen content is 300 ppm or less. And then atomize.
【0015】請求項3の発明は、上記Fe系溶融金属
が、Cr15〜40wt%、Al3〜10wt%,酸素0.
10wt%以下,窒素0.03wt%以下,希土類0.00
05〜0.1wt%,残部が実質的にFeからなることを
特徴としている。According to a third aspect of the present invention, the Fe-based molten metal contains Cr 15 to 40 wt%, Al 3 to 10 wt%, and oxygen 0.
10 wt% or less, nitrogen 0.03 wt% or less, rare earth 0.00
It is characterized in that the balance is 05 to 0.1 wt% and the balance is substantially Fe.
【0016】[0016]
【作用】請求項1の発明に係るFe−Cr−Al−RE
M系合金粉末の製造方法によれば、S含有量を10pp
m以下に保持した状態で希土類元素を添加したので、該
希土類とSとの硫化物の生成を抑制でき、該硫化物の堆
積による溶湯ノズルの閉塞を防止でき、ひいては合金粉
末の回収量を増大して歩留まりを向上できる。その結
果、上述した従来のノズル径を大きくしたり,溶融温度
を高くしたりする場合の粉末の粒度分布ばらつきや酸素
増大の問題を回避できるとともに、製造コストの上昇を
抑制できる。The Fe-Cr-Al-RE according to the invention of claim 1
According to the method for producing the M-based alloy powder, the S content is 10 pp
Since the rare earth element is added in a state of being maintained at m or less, the formation of sulfide of the rare earth and S can be suppressed, the clogging of the melt nozzle due to the accumulation of the sulfide can be prevented, and the recovery amount of the alloy powder can be increased. The yield can be improved. As a result, it is possible to avoid the problems of the variation in the particle size distribution of the powder and the increase in oxygen when the conventional nozzle diameter is increased or the melting temperature is increased, and it is possible to suppress an increase in manufacturing cost.
【0017】請求項2の発明では、S含有量を規制する
とともにN含有量を規制した状態で希土類元素を添加し
たので、硫化物,AlN両方の生成を抑制でき、粉末回
収量をさらに向上できる。In the invention of claim 2, since the rare earth element is added while the S content is regulated and the N content is regulated, the generation of both sulfide and AlN can be suppressed, and the powder recovery amount can be further improved. .
【0018】[0018]
【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明の製造方法の効果を確認するために行った
実験結果について説明する。Embodiments of the present invention will be described below. In this example, the result of an experiment conducted to confirm the effect of the manufacturing method of the present invention will be described.
【0019】[0019]
【表1】 [Table 1]
【0020】この実験は、表1に示すように、Fe−2
3%Cr−5%Al−0.03%Y合金(試料No. 1,
5)、Fe−23%Cr−5%Al−0.03%Hf合
金(試料No. 2,6)、Fe−27%Cr−7%Al−
0.03%Y合金(試料No.3,7)、Fe−27%C
r−7%Al−0.03%Hf合金(試料No. 4,8)
を採用した。As shown in Table 1, this experiment was conducted with Fe-2.
3% Cr-5% Al-0.03% Y alloy (Sample No. 1,
5), Fe-23% Cr-5% Al-0.03% Hf alloy (Sample No. 2,6), Fe-27% Cr-7% Al-
0.03% Y alloy (Sample No. 3, 7), Fe-27% C
r-7% Al-0.03% Hf alloy (Sample No. 4, 8)
It was adopted.
【0021】そして、S含有量に関しては、原材料の
配合段階でS含有量を5,及び7ppm以下に調整した
もの(本発明試料No. 2,3)、原材料の配合段階で
はS含有量が25,30ppmと若干高いものを、溶解
時にNi−Caを用いて脱硫処理を行い、これによりS
量を3,及び5ppm以下に調整したもの(本発明試料
No. 1,4)、配合段階でS量が15〜40ppm
で、かつ脱硫処理を行うことなくそのまま溶解したもの
(従来試料No. 5〜8)、この3種類の溶鋼をそれぞれ
500Kg溶製した。また、本実験では溶鋼中の窒素含
有量を300ppm以下にした後、希土類元素を添加し
た。Regarding the S content, the S content was adjusted to 5 and 7 ppm or less in the raw material blending stage (Sample Nos. 2 and 3 of the present invention), and the S content was 25 in the raw material blending stage. , 30 ppm, which is slightly high, is subjected to desulfurization treatment using Ni-Ca at the time of melting, and S
The amount was adjusted to 3 and 5 ppm or less (the sample of the present invention
No. 1, 4), S amount is 15-40ppm at the compounding stage
In addition, 500 kg of each of these three types of molten steel were melted as they were without melting desulfurization (conventional sample Nos. 5 to 8). In this experiment, the rare earth element was added after the nitrogen content in the molten steel was set to 300 ppm or less.
【0022】次に、直径8mmφのアルミナノズルから
上記溶鋼を流下させ、該溶鋼流に高圧窒素を噴射して合
金粉末を製造した。なお、今回の実験では、ノズル閉塞
の起こらない場合でもノロなどの混入を防止するため、
溶鋼をタンディッシュ内に約40kg残した状態でスト
ッパを用いアトマイズを完了した。そしてこれにより得
られた合金粉末の回収量を調べた。Next, the molten steel was flown down from an alumina nozzle having a diameter of 8 mm and high-pressure nitrogen was injected into the molten steel flow to produce an alloy powder. In addition, in this experiment, in order to prevent contamination such as slag even when the nozzle is not clogged,
Atomization was completed using a stopper while leaving about 40 kg of molten steel in the tundish. Then, the recovery amount of the alloy powder thus obtained was investigated.
【0023】表1からも明らかなように、Hf(希土
類)添加前のS含有量が42ppmと最も高い従来試料
No. 6の場合、投入原料500Kgに対して合金粉末は
230Kgと46%しか回収できておらず、硫化物の生
成による溶湯ノズルの閉塞が著しい。As is clear from Table 1, the conventional sample having the highest S content of 42 ppm before Hf (rare earth) addition
In the case of No. 6, 230 kg of alloy powder could be collected with respect to 500 kg of input raw material, which was only 46%, and clogging of the melt nozzle due to the formation of sulfide was remarkable.
【0024】また、S含有量を15〜30ppmと比較
的低く抑えた従来試料No. 5,7,8の場合は、S量の
低減に比例して粉末回収量も53〜75%と上昇してい
る。これはS量の低減によってY,Hf等の晶出物の生
成が少なくなったからである。しかし工業的規模から見
ると回収率75%でも満足できない。Further, in the case of the conventional sample Nos. 5, 7, and 8 in which the S content was kept relatively low at 15 to 30 ppm, the powder recovery amount was increased to 53 to 75% in proportion to the reduction of the S amount. ing. This is because the production of crystallized substances such as Y and Hf decreased due to the reduction of the amount of S. However, from an industrial scale, a recovery rate of 75% is not satisfactory.
【0025】これに対して、Y,Hfの添加前にS含有
量を3〜7ppm以下に制御した本発明試料No. 1〜4
の場合はノズル閉塞することなくアトマイズでき、何れ
も粉末回収量は460〜465Kgと大幅に向上してお
り、92〜93%の回収率となっている。On the other hand, sample Nos. 1 to 4 of the present invention in which the S content was controlled to 3 to 7 ppm or less before adding Y and Hf.
In the case of No. 3, the atomization can be performed without blocking the nozzle, and in all cases, the powder recovery amount is significantly improved to 460 to 465 Kg, and the recovery rate is 92 to 93%.
【0026】このように本実施例によれば、溶融金属中
のS量を10ppm以下にした状態で、Y,Hf等の希
土類元素を添加することによって、硫化物の生成,堆積
を抑制してノズルの閉塞を防止でき、ひいては合金粉末
の回収率を大幅に向上でき、歩留まりを向上できる。As described above, according to this embodiment, by adding rare earth elements such as Y and Hf in a state where the amount of S in the molten metal is 10 ppm or less, generation and deposition of sulfide are suppressed. It is possible to prevent clogging of the nozzle, and thus to greatly improve the recovery rate of the alloy powder and improve the yield.
【0027】また上記実施例では、希土類元素として
Y,Hfを採用したが、本発明はこれに限られるもので
はなく、例えばLa,Ce等を添加しても同様の効果が
得られる。Although Y and Hf are used as the rare earth element in the above embodiment, the present invention is not limited to this, and the same effect can be obtained by adding La or Ce, for example.
【0028】[0028]
【発明の効果】以上のように請求項1の発明に係るFe
−Cr−Al−REM系合金粉末の製造方法によれば、
S含有量を10ppm以下に保持した状態で希土類元素
を添加し、この後アトマイズを行うようにしたので、硫
化物の生成を抑制して溶湯ノズルの閉塞を防止でき、ひ
いては合金粉末の回収率を向上できる効果がある。As described above, Fe according to the invention of claim 1
According to the method for producing the -Cr-Al-REM alloy powder,
Since the rare earth element was added while keeping the S content at 10 ppm or less and atomization was performed after this, it was possible to suppress the formation of sulfides and prevent clogging of the molten metal nozzle, and thus the recovery rate of the alloy powder. There is an effect that can be improved.
【0029】請求項2の発明では、S含有量を10pp
m以下に保持するとともにN含有量を300ppm以下
に保持した状態で希土類元素を添加したので、硫化物,
AlN両方の生成を抑制でき、合金粉末の回収率をさら
に向上できる効果がある。In the invention of claim 2, the S content is 10 pp.
Since the rare earth element was added while the N content was maintained at 300 ppm or less while the m
It is possible to suppress the generation of both AlN and to further improve the recovery rate of the alloy powder.
【図1】本発明の成立過程を説明するための溶湯ノズル
内壁に堆積した晶出物の金属組織を示す顕微鏡写真であ
る。FIG. 1 is a micrograph showing a metallographic structure of crystallized substances deposited on an inner wall of a molten metal nozzle for explaining a formation process of the present invention.
【図2】上記晶出物の金属組織を示す2次電子線像写真
である。FIG. 2 is a secondary electron beam image photograph showing a metallographic structure of the crystallized substance.
【図3】上記晶出物の金属組織(Oの分布状態)を示す
EPMA分析写真である。FIG. 3 is an EPMA analysis photograph showing the metal structure (distribution state of O) of the crystallized substance.
【図4】上記晶出物の金属組織(Sの分布状態)を示す
EPMA分析写真である。FIG. 4 is an EPMA analysis photograph showing the metallographic structure (S distribution state) of the crystallized substance.
【図5】上記晶出物の金属組織(Yの分布状態)を示す
EPMA分析写真である。FIG. 5 is an EPMA analysis photograph showing a metal structure (distributed state of Y) of the crystallized substance.
Claims (3)
から流下させ、該溶融金属に高圧ガス又は高圧水を吹き
つけて合金粉末を製造する方法において、上記溶融金属
中の硫黄含有量を10ppm以下にした後、希土類元素
を添加し、次いでアトマイズを行うことを特徴とするF
e−Cr−Al−REM系合金粉末の製造方法。1. A method for producing an alloy powder by flowing down an Fe-based molten metal containing Al from a molten metal nozzle and blowing a high-pressure gas or high-pressure water to the molten metal, wherein the sulfur content in the molten metal is 10 ppm. After the following, F is characterized by adding a rare earth element and then performing atomization.
Method for producing e-Cr-Al-REM alloy powder.
から流下させ、該溶融金属に高圧ガス又は高圧水を吹き
つけて合金粉末を製造する方法において、上記溶融金属
中の硫黄含有量を10ppm以下、かつ窒素含有量を3
00ppm以下にした後、希土類元素を添加し、次いで
アトマイズを行うことを特徴とするFe−Cr−Al−
REM系合金粉末の製造方法。2. A method for producing an alloy powder by flowing an Fe-based molten metal containing Al from a molten metal nozzle and blowing a high-pressure gas or high-pressure water onto the molten metal, wherein the content of sulfur in the molten metal is 10 ppm. Below, and nitrogen content 3
Fe-Cr-Al-characterized in that after adjusting the content to 00 ppm or less, a rare earth element is added, and then atomization is performed.
Method for producing REM alloy powder.
融金属が、Cr15〜40wt%、Al3〜10wt%,酸
素0.10wt%以下,窒素0.03wt%以下,希土類
0.0005〜0.1wt%,残部が実質的にFeからな
ることを特徴とするFe−Cr−Al−REM系合金粉
末の製造方法。3. The Fe-based molten metal according to claim 1, wherein Cr is 15 to 40 wt%, Al 3 to 10 wt%, oxygen is 0.10 wt% or less, nitrogen is 0.03 wt% or less, and rare earth is 0.0005 to 0. A method for producing an Fe-Cr-Al-REM alloy powder, characterized in that 1 wt% and the balance substantially consist of Fe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21814694A JP2749267B2 (en) | 1994-08-18 | 1994-08-18 | Method for producing Fe-Cr-Al-REM alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21814694A JP2749267B2 (en) | 1994-08-18 | 1994-08-18 | Method for producing Fe-Cr-Al-REM alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0860210A true JPH0860210A (en) | 1996-03-05 |
JP2749267B2 JP2749267B2 (en) | 1998-05-13 |
Family
ID=16715370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21814694A Expired - Fee Related JP2749267B2 (en) | 1994-08-18 | 1994-08-18 | Method for producing Fe-Cr-Al-REM alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2749267B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049441A1 (en) * | 2000-01-01 | 2001-07-12 | Sandvik Ab | Method of making a fecral material and such material |
JP2005060739A (en) * | 2003-08-18 | 2005-03-10 | Nippon Steel Corp | Method for producing molten steel enabling to prevent nozzle clogging |
CN115198168A (en) * | 2021-04-09 | 2022-10-18 | 安泰科技股份有限公司 | FeCrAl alloy powder and preparation method thereof |
-
1994
- 1994-08-18 JP JP21814694A patent/JP2749267B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001049441A1 (en) * | 2000-01-01 | 2001-07-12 | Sandvik Ab | Method of making a fecral material and such material |
US6761751B2 (en) | 2000-01-01 | 2004-07-13 | Sandvik Ab | Method of making a FeCrAl material and such material |
JP2005060739A (en) * | 2003-08-18 | 2005-03-10 | Nippon Steel Corp | Method for producing molten steel enabling to prevent nozzle clogging |
CN115198168A (en) * | 2021-04-09 | 2022-10-18 | 安泰科技股份有限公司 | FeCrAl alloy powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2749267B2 (en) | 1998-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2245762C2 (en) | METHOD FOR PRODUCING FeCrAl ALLOY BASE POWDER MATERIAL AND SUCH MATERIAL | |
JP5340924B2 (en) | Grain refiner for steel, production method and use thereof | |
Litz et al. | Selective carbide oxidation and internal nitridation of the Ni-base superalloys IN 738 LC and IN 939 in air | |
RU2195386C2 (en) | Powder of stainless steel and method for making it | |
US20100272889A1 (en) | Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof | |
CN109877311A (en) | A kind of MIM is injection moulded high-end cutter, metal powder and preparation method thereof | |
WO2022213590A1 (en) | Fecral alloy powder, preparation method therefor, blank ingot, and electric heating element | |
SE520561C2 (en) | Process for preparing a dispersion curing alloy | |
US9481917B2 (en) | Gaseous based desulfurization of alloys | |
JPH0860210A (en) | Production of fe-cr-al-rem based alloy powder | |
KR930007857B1 (en) | Production method of zinc-oxide whisker | |
US6410154B2 (en) | Tial-based alloys with excellent oxidation resistance, and method for producing the same | |
CN1250107A (en) | Melting-casting process of preparing metal-base composite material through in-situ reaction and spray formation | |
JP3121901B2 (en) | Manufacturing method of alloy powder | |
JPH06279811A (en) | Production of fe-cr-al alloy powder | |
WO2014149932A1 (en) | Powder metal compositions for wear and temperature resistance applications and method of producing same | |
JP2550097B2 (en) | Composite fine powder of cobalt and tungsten carbide for cemented carbide | |
JP2745372B2 (en) | Method for producing deformed ultrafine particles and aggregates thereof | |
JPS5983701A (en) | Preparation of high carbon alloyed steel powder having excellent sintering property | |
CN109689897A (en) | The method of smelting of steel | |
JPH01184204A (en) | Method for pretreating injecting molded body for producing sintered member | |
JP2010018868A (en) | Member provided with surface layer and method for producing the same | |
JPH0559481A (en) | Sintered hard alloy having high hardness | |
JP2000355704A (en) | METHOD FOR CONTROLLING CARBON CONTENT AND OXYGEN CONTENT IN DEGREASED MOLDING IN INJECTION MOLDING METHOD OF Ti-Al ALLOY | |
JP3151677B2 (en) | Nozzle and melting crucible for Ti-Ni alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |