JPH06279811A - Production of fe-cr-al alloy powder - Google Patents

Production of fe-cr-al alloy powder

Info

Publication number
JPH06279811A
JPH06279811A JP9207893A JP9207893A JPH06279811A JP H06279811 A JPH06279811 A JP H06279811A JP 9207893 A JP9207893 A JP 9207893A JP 9207893 A JP9207893 A JP 9207893A JP H06279811 A JPH06279811 A JP H06279811A
Authority
JP
Japan
Prior art keywords
molten metal
alloy powder
nozzle
nitrogen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9207893A
Other languages
Japanese (ja)
Inventor
Kanji Notomi
完至 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9207893A priority Critical patent/JPH06279811A/en
Publication of JPH06279811A publication Critical patent/JPH06279811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently produce a Fe-Cr-Al alloy powder having a high quality by allowing molten metal of an Fe base contg. Al to flow from a molten metal nozzle in a low-nitrogen content state and blowing a high-pressure gas or high- pressure water. CONSTITUTION:The alloy powder is obtd. by allowing the molten metal of the Fe base contg. the A1 to flow down from the molten metal nozzle and blowing the high-pressure gas or high-pressure water to this molten metal. The molten metal is atomized the state of maintaining the nitrogen content in the molten metal at <= 300ppm at that time. Consequently, the formation of AIN in the molten metal is suppressed. As a result, the clogging of the molten metal nozzle is prevented and the Fe-Cr-Al alloy powder is produced at a high yield without increasing the production cost while variations in the alloy powder grains and an increase in the oxygen in the molten metal are averted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アトマイズ法によるF
e−Cr−Al系合金粉末の製造方法に関し、詳細には
合金粉末の粒度分布のばらつきや製造コストの上昇を回
避しながら溶湯ノズルが閉塞するのを防止できるように
した製造方法に関する。
FIELD OF THE INVENTION The present invention relates to F by the atomizing method.
The present invention relates to a method for producing an e-Cr-Al alloy powder, and more particularly, to a method for preventing clogging of a melt nozzle while avoiding variation in particle size distribution of alloy powder and increase in production cost.

【0002】[0002]

【従来の技術】近年、Alを含むFe基合金(Fe−20
〜40%Cr−3〜10%Al合金)は耐熱性, 耐酸化性に
優れており、ヒータ用電熱線用,溶射用,PTA(肉盛
り溶接)用,あるいは自動車の排気ガス浄化用触媒の担
体用材料として広く利用されている。これは合金粉末の
原料が、材料送給性,組織制御,薄板化の面で特性向上
に寄与しているからである。このFe−Cr−Al系合
金粉末を工業的規模で製造する場合、従来、製造コスト
の点から大気溶解又は真空溶解と、水又はガス噴射との
組み合わせによるアトマイズ法が採用されている。な
お、上記真空溶解は高純度粉末の製造のみに限定されて
いる。このアトマイズ法は、ノズル径2〜10mmφの溶湯
ノズルから溶融金属を細く流下させ、これに高圧ガス又
は高圧水を噴射することにより合金粉末を製造する方法
である。この場合、上記溶湯ノズル部分の温度が低下す
ると溶融金属が凝固してノズルを閉塞する場合があるこ
とから、上記溶融金属の温度,タンディッシュ,及び溶
湯ノズルの予熱温度を制御してノズルの閉塞を防止する
のが一般的である。
2. Description of the Related Art In recent years, Fe-based alloys containing Al (Fe-20
〜40% Cr-3〜10% Al alloy) has excellent heat resistance and oxidation resistance, and is suitable for heater heating wire, thermal spraying, PTA (build-up welding), or as a catalyst for automobile exhaust gas purification. Widely used as a carrier material. This is because the raw material of the alloy powder contributes to the improvement of characteristics in terms of material feedability, structure control, and thinning. In the case of producing this Fe-Cr-Al alloy powder on an industrial scale, conventionally, an atomizing method using a combination of air melting or vacuum melting and water or gas injection has been adopted from the viewpoint of manufacturing cost. The vacuum melting is limited to the production of high-purity powder. The atomizing method is a method of producing alloy powder by finely flowing molten metal from a molten metal nozzle having a nozzle diameter of 2 to 10 mmφ and injecting high pressure gas or high pressure water into the molten metal. In this case, when the temperature of the molten metal nozzle portion decreases, the molten metal may solidify and block the nozzle. Therefore, the temperature of the molten metal, the tundish, and the preheating temperature of the molten metal nozzle are controlled to block the nozzle. Is generally prevented.

【0003】また、例えば上記Alのような活性金属元
素を含む合金粉末を製造する場合、溶融金属成分,大
気,耐火物等が酸素,窒素の供給源となって酸化物,窒
化物が生成し易く、これらが上記溶湯ノズルの内壁に生
成,成長し、アトマイズの途中で溶融金属が流下しなく
なり、その結果ノズルを閉塞する場合がある。これは、
溶湯ノズル内壁の温度が溶融金属の温度より低下するこ
とにより、過飽和状態となった溶融金属中の酸素,窒素
が酸化物,窒化物となるためであり、これらの酸化物等
は熱力学的に安定したものとなる。これらの酸化物,窒
化物は、温度が低くなった溶湯ノズルの内壁から溶融金
属中に生成,成長する。この晶出物の融点が溶融金属の
温度より高い場合、あるいは晶出物がクラスター状に成
長した場合、溶融金属が流下し難くなり、この結果ノズ
ルの閉塞に至ることとなる。
Further, in the case of producing an alloy powder containing an active metal element such as Al, the molten metal component, the atmosphere, the refractory, etc. serve as a source of oxygen and nitrogen to form oxides and nitrides. In some cases, these may be generated and grown on the inner wall of the molten metal nozzle, and the molten metal may not flow down during atomization, resulting in clogging of the nozzle. this is,
This is because the temperature of the inner wall of the molten metal nozzle becomes lower than the temperature of the molten metal, so that oxygen and nitrogen in the supersaturated molten metal become oxides and nitrides. It will be stable. These oxides and nitrides are generated and grown in the molten metal from the inner wall of the molten metal nozzle whose temperature has decreased. If the melting point of the crystallized product is higher than the temperature of the molten metal, or if the crystallized product grows in clusters, it becomes difficult for the molten metal to flow down, resulting in clogging of the nozzle.

【0004】このような晶出物の生成による溶湯ノズル
の閉塞を防止するために、従来、溶湯ノズルの内径を大
きくしたり,溶融金属の温度を晶出物の融点より高くし
たりする方法がある。また溶湯ノズルの壁面からガス等
をバブリングさせて晶出物の生成を防止したり,溶湯ノ
ズルを加熱したりする方法が試みられている。
In order to prevent clogging of the melt nozzle due to the formation of such crystallized substances, conventionally, there has been a method of increasing the inner diameter of the melted nozzle or making the temperature of the molten metal higher than the melting point of the crystallized substance. is there. Further, a method of bubbling gas or the like from the wall surface of the melt nozzle to prevent the formation of crystallized substances or to heat the melt nozzle has been attempted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の製造方法において、ノズル径を大きくしたり,溶湯温
度を高くしたりする方法では、合金粉末の粒度分布のば
らつきが大きくなり、また溶融金属中の酸素が増大する
ことから限界がある。また、上記溶湯ノズルを加熱した
り,該ノズル内にガス等をバブリングさせるには、その
構造が複雑となることから製造コストが上昇するという
問題がある。
However, in the above-mentioned conventional manufacturing method, when the nozzle diameter is increased or the molten metal temperature is increased, the variation in the particle size distribution of the alloy powder becomes large, and in addition, in the molten metal, There is a limit due to the increase in oxygen. Further, heating the molten metal nozzle or bubbling gas or the like into the nozzle has a problem that the manufacturing cost increases because the structure becomes complicated.

【0006】本発明は上記従来の状況に鑑みてなされた
もので、合金粉末粒のばらつきや溶融金属中の酸素増大
を回避しながら、かつ製造コストを上昇させることなく
溶湯ノズルの閉塞を防止できるFe−Cr−Al系合金
粉末の製造方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to prevent clogging of the melt nozzle while avoiding variations in alloy powder particles and increase in oxygen in the molten metal, and without increasing manufacturing costs. It is an object of the present invention to provide a method for producing an Fe-Cr-Al alloy powder.

【0007】[0007]

【課題を解決するための手段】本件発明者は、上述のよ
うにAlを含むFe基合金をアトマイズする場合、酸化
物,窒化物が溶湯ノズルの内壁に生成し易いという観点
から、ノズル閉塞部の晶出物について調査,分析を行っ
た。図1は溶湯ノズル内壁に生成した晶出物の顕微鏡写
真を示し、図2ないし図5はX線マイクロアナライザー
(EPMA)により上記晶出物の組成を分析した写真を
示す。各図から明らかなように、上記晶出物には酸素は
ほとんど含まれておらず(図5参照)、窒素が大量に含
有していることがわかる(図4参照)。その結果、この
窒素がAlと反応して多量のAlNを形成しており(図
2,図3参照)、このAlNがノズル閉塞の原因となっ
ている。ちなみに、上記AlNの融点は2230℃であり、
上記溶融金属の温度、例えば1700℃より高くなってい
る。本件発明者は、このことから溶融金属中の窒素含有
量を積極的に低減することによってAlNの生成を抑制
でき、ひいては溶湯ノズルの閉塞を防止できることに想
到し、本発明を成したものである。
The present inventors have found that when atomizing a Fe-based alloy containing Al as described above, it is easy to form oxides and nitrides on the inner wall of the molten metal nozzle, so that the nozzle clogging part The crystallized substances of the above were investigated and analyzed. FIG. 1 shows micrographs of the crystallized substances formed on the inner wall of the melt nozzle, and FIGS. 2 to 5 show photographs of the composition of the crystallized substances analyzed by an X-ray microanalyzer (EPMA). As is clear from each figure, the crystallized substance contains almost no oxygen (see FIG. 5) and contains a large amount of nitrogen (see FIG. 4). As a result, this nitrogen reacts with Al to form a large amount of AlN (see FIGS. 2 and 3), and this AlN causes nozzle clogging. By the way, the melting point of AlN is 2230 ° C.,
The temperature of the molten metal is higher than, for example, 1700 ° C. From this, the inventor of the present invention has conceived that the production of AlN can be suppressed by positively reducing the nitrogen content in the molten metal, and that the clogging of the molten metal nozzle can be prevented, and the present invention has been accomplished. .

【0008】そこで本発明は、Alを含むFe系溶融金
属を溶湯ノズルから流下させ、該溶融金属に高圧ガス又
は高圧水を吹きつけて合金粉末を製造する方法におい
て、上記溶融金属中の窒素含有量を300ppm以下に
保持した状態でアトマイズを行うことを特徴としてい
る。
Therefore, the present invention provides a method for producing an alloy powder by flowing an Fe-based molten metal containing Al from a molten metal nozzle and blowing a high-pressure gas or high-pressure water to the molten metal to produce an alloy powder. The feature is that atomization is performed in a state where the amount is kept at 300 ppm or less.

【0009】ここで、上記窒素含有量を300ppm以
下に保持するには、例えば溶解原料に窒素含有量の低い
材料を用い、また溶融金属の湯面をフラックスで覆った
り,さらには溶解炉をArガスでシールし、これにより
空気中の窒素の吸収を抑制する方法が採用できる。
Here, in order to maintain the above nitrogen content at 300 ppm or less, for example, a material having a low nitrogen content is used as a melting raw material, the molten metal surface is covered with flux, and further the melting furnace is set to Ar. A method of sealing with gas and thereby suppressing absorption of nitrogen in the air can be adopted.

【0010】[0010]

【作用】本発明のFe−Cr−Al系合金粉末の製造方
法によれば、溶融金属中の窒素量を300ppm以下に
規制したので、この窒素量を低減した分だけ溶融金属中
のAlNの生成,成長を抑制でき、ひいては該AlNの
堆積による溶湯ノズルの閉塞を防止できる。その結果、
合金粉末の回収量を増大して歩留まりを向上できる。ま
た本発明では、フラックスで湯面を覆ったり,Arガス
を吹きつけてシールしたりすることにより窒素含有量を
上述の範囲に保持できるので、従来のノズル径を大きく
したり,溶融温度を高くしたりすることによる合金粉末
粒のばらつきや酸素増大を回避でき、かつ製造コストの
上昇を抑制できる。
According to the method for producing the Fe-Cr-Al alloy powder of the present invention, the amount of nitrogen in the molten metal is regulated to 300 ppm or less. Therefore, the amount of the reduced amount of nitrogen produces AlN in the molten metal. Therefore, the growth can be suppressed, and consequently the clogging of the melt nozzle due to the deposition of the AlN can be prevented. as a result,
The yield can be improved by increasing the recovery amount of alloy powder. Further, in the present invention, the nitrogen content can be maintained within the above range by covering the molten metal surface with flux or by sealing by blowing Ar gas, so that the conventional nozzle diameter can be increased and the melting temperature can be increased. It is possible to avoid variations in the alloy powder grain and increase in oxygen due to the above-mentioned changes, and to suppress an increase in manufacturing cost.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明の製造方法の効果を確認するために行った
実験について説明する。
EXAMPLES Examples of the present invention will be described below. In this example, an experiment conducted to confirm the effect of the manufacturing method of the present invention will be described.

【0012】[0012]

【表1】 [Table 1]

【0013】この実験は、表1に示すように、原材料と
してFe−23%Cr−5%Al合金,及びFe−27%C
r−7%Al合金を採用し、この各原材料中の窒素含有
量が55〜200ppmとなるように配合して本発明試料を作成
した(試料No. 1〜4)。次に、溶解炉に上記各試料を
500Kg 投入し、該試料の表面をフラックスでシールする
とともに、溶解炉をArガスでシールして空気中からの
窒素の吸収を防止しながら、1700℃で大気溶解した。こ
れにより溶融金属中の窒素含有量を90〜260ppmに保持し
た。そしてこの状態で上記溶融金属をアルミナ溶湯ノズ
ルから流下させ、該溶融流に高圧窒素を噴射して合金粉
末を製造した。これにより得られた合金粉末の回収量を
調べた。
In this experiment, as shown in Table 1, Fe-23% Cr-5% Al alloy and Fe-27% C were used as raw materials.
The r-7% Al alloy was adopted and compounded so that the nitrogen content in each raw material would be 55 to 200 ppm to prepare samples of the present invention (Sample Nos. 1 to 4). Next, put each of the above samples in the melting furnace.
Injecting 500 kg, the surface of the sample was sealed with flux, and the melting furnace was sealed with Ar gas to prevent absorption of nitrogen from the air, and was melted in the atmosphere at 1700 ° C. This kept the nitrogen content in the molten metal at 90 to 260 ppm. Then, in this state, the molten metal was flown down from a molten alumina nozzle, and high-pressure nitrogen was injected into the molten stream to produce an alloy powder. The recovery amount of the alloy powder thus obtained was investigated.

【0014】また、比較するために、上記原材料中の窒
素量が45〜320ppmとなるよう配合して比較試料(試料N
o. 5〜8)を作成した。そしてこの各比較試料うち試
料No.5,7はフラックス,Arガスでシールしながら
アトマイズを行い、試料No. 6,8は従来どおりシール
なしでアトマイズを行って合金粉末を製造し、同様に回
収量を調べた。
For comparison, a comparative sample (Sample N) was prepared by blending the raw materials so that the amount of nitrogen was 45 to 320 ppm.
o. 5-8) was created. Of these comparative samples, sample Nos. 5 and 7 were atomized while sealing with flux and Ar gas, and sample Nos. 6 and 8 were atomized without sealing as before to produce alloy powder, and recovered in the same manner. I checked the quantity.

【0015】表1からも明らかなように、原材料中の窒
素量が310PPmと高い状態で、かつフラックス,Arガス
シールなしでアトマイズを行った比較試料No. 8の場
合、溶鋼中の窒素量は630ppmと増大しており、このため
回収量は70Kgと極めて少なく、AlNの堆積による溶湯
ノズルの閉塞が著しい。また原材料中の窒素量が45ppm
と低い状態で、かつ上記シールなしでアトマイズを行っ
た比較試料No. 6の場合、アトマイズ中に窒素量が増大
しており、このため回収量は250kg と不満足な結果とな
っている。
As is clear from Table 1, in the case of Comparative Sample No. 8 in which the amount of nitrogen in the raw material was as high as 310 PPm and atomization was performed without flux and Ar gas seal, the amount of nitrogen in the molten steel was The amount increased to 630 ppm, and therefore the recovery amount was extremely small at 70 kg, and clogging of the melt nozzle due to AlN deposition was remarkable. Also, the amount of nitrogen in the raw materials is 45 ppm
In the case of Comparative Sample No. 6 which was atomized in a low state and without the above-mentioned seal, the amount of nitrogen increased during atomization, and therefore the recovery amount was 250 kg, which was an unsatisfactory result.

【0016】また、原材料中の窒素量が295ppm,320ppm
と高い状態で、フラックス, Arガスでシールしながら
アトマイズを行った比較試料No. 5,7の場合は、回収
量がそれぞれ340Kg,230Kg となっている。これはアトマ
イズ中の窒素の吸収を抑制したことにより、AlNの析
出量が少なくなったからである。
Also, the amount of nitrogen in the raw material is 295ppm, 320ppm
In the case of Comparative Sample Nos. 5 and 7 which were atomized while being sealed with flux and Ar gas in a high state, the recovery amounts were 340 kg and 230 kg, respectively. This is because the amount of AlN deposited was reduced by suppressing the absorption of nitrogen during atomization.

【0017】これに対して、原料中の窒素量を62〜200p
pmとし、かつフラックス, Arガスでシールしながらア
トマイズを行った本発明試料No. 1〜4の場合、何れの
試料においても溶融金属中の窒素量は90〜260ppmと低
い。その結果、各試料No. 1〜4の回収量は435 〜470K
g と大幅に向上しており、87%以上の回収率となってい
る。
On the other hand, the amount of nitrogen in the raw material is 62 to 200 p
In the case of Sample Nos. 1 to 4 of the present invention, which was atomized while being set to pm and sealed with flux and Ar gas, the nitrogen content in the molten metal was as low as 90 to 260 ppm in all the samples. As a result, the recovery amount of each sample No. 1-4 is 435-470K.
It is significantly improved to g and the recovery rate is 87% or more.

【0018】このように本実施例によれば、溶融金属中
の窒素量を300ppm以下に制御した状態でアトマイズを行
うことによって、AlNの生成,成長を抑制して溶湯ノ
ズルの閉塞を防止でき、合金粉末の回収率を大幅に向上
でき、ひいては生産性を向上できる。
As described above, according to this embodiment, by performing atomization while controlling the amount of nitrogen in the molten metal to 300 ppm or less, it is possible to suppress the generation and growth of AlN and prevent clogging of the molten metal nozzle. The recovery rate of the alloy powder can be significantly improved, which in turn can improve the productivity.

【0019】[0019]

【発明の効果】以上のように本発明に係るFe−Cr−
Al系合金粉末の製造方法によれば、溶融金属中の窒素
含有量を300ppm以下に保持した状態でアトマイズを行っ
たので、晶出物の生成,成長を抑制して溶湯ノズルの閉
塞を防止できる効果があり、合金粉末の回収率を向上で
きる効果がある。
As described above, Fe-Cr- according to the present invention
According to the method for producing an Al-based alloy powder, atomization was performed in a state where the nitrogen content in the molten metal was kept at 300 ppm or less, so it is possible to suppress the formation and growth of crystallized substances and prevent clogging of the melt nozzle. There is an effect, and there is an effect that the recovery rate of the alloy powder can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成立過程を説明するための溶湯ノズル
内に析出した晶出物の結晶構造を示す顕微鏡写真であ
る。
FIG. 1 is a micrograph showing a crystal structure of a crystallized substance deposited in a molten metal nozzle for explaining a formation process of the present invention.

【図2】上記晶出物の結晶構造を示す二次電子線像写真
である。
FIG. 2 is a secondary electron beam image photograph showing a crystal structure of the crystallized product.

【図3】上記晶出物の結晶構造を示すAl線像写真であ
る。
FIG. 3 is an Al line image photograph showing a crystal structure of the crystallized product.

【図4】上記晶出物の結晶構造を示すN線像写真であ
る。
FIG. 4 is an N-ray image photograph showing the crystal structure of the crystallized product.

【図5】上記晶出物の結晶構造を示すO線像写真であ
る。
FIG. 5 is an O-ray image photograph showing the crystal structure of the crystallized product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Alを含むFe系溶融金属を溶湯ノズル
から流下させ、該溶融金属に高圧ガス又は高圧水を吹き
つけて合金粉末を製造する方法において、上記溶融金属
中の窒素含有量を300ppm以下に保持した状態でア
トマイズを行うことを特徴とするFe−Cr−Al系合
金粉末の製造方法。
1. A method for producing an alloy powder by flowing an Fe-based molten metal containing Al from a molten metal nozzle and blowing a high-pressure gas or high-pressure water to the molten metal, wherein the nitrogen content in the molten metal is 300 ppm. A method for producing Fe-Cr-Al based alloy powder, characterized in that atomization is carried out in a state of being held below.
JP9207893A 1993-03-25 1993-03-25 Production of fe-cr-al alloy powder Pending JPH06279811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9207893A JPH06279811A (en) 1993-03-25 1993-03-25 Production of fe-cr-al alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9207893A JPH06279811A (en) 1993-03-25 1993-03-25 Production of fe-cr-al alloy powder

Publications (1)

Publication Number Publication Date
JPH06279811A true JPH06279811A (en) 1994-10-04

Family

ID=14044419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9207893A Pending JPH06279811A (en) 1993-03-25 1993-03-25 Production of fe-cr-al alloy powder

Country Status (1)

Country Link
JP (1) JPH06279811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049441A1 (en) * 2000-01-01 2001-07-12 Sandvik Ab Method of making a fecral material and such material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543976A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Production of fe-cr-al powder alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543976A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Production of fe-cr-al powder alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049441A1 (en) * 2000-01-01 2001-07-12 Sandvik Ab Method of making a fecral material and such material
US6761751B2 (en) 2000-01-01 2004-07-13 Sandvik Ab Method of making a FeCrAl material and such material

Similar Documents

Publication Publication Date Title
RU2245762C2 (en) METHOD FOR PRODUCING FeCrAl ALLOY BASE POWDER MATERIAL AND SUCH MATERIAL
EP2701869B1 (en) LOW COST PROCESSING TO PRODUCE SPHERICAL TITANIUM ALLOY POWDER Ti6Al4V
EP0834585B1 (en) A method for producing a chromium carbide-nickel chromium atomized powder
ES2034881A1 (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings.
US6039920A (en) Process for making rhenium-containing alloys
US11219948B2 (en) Method allowing the removal of oxides present on the surface of nodules of a metal powder before using same in an industrial method
IL158531A (en) Metalothermic reduction of refractory metal oxides
CN114149263B (en) Spherical casting tungsten carbide powder and preparation method thereof
EP4139071A1 (en) Additive manufacturing powders for use in additive manufacturing processes resulting in improved stability of steel melt-track
JPH06279811A (en) Production of fe-cr-al alloy powder
KR930007857B1 (en) Production method of zinc-oxide whisker
CN108687356A (en) Prepare the method for iron powder and iron powder prepared therefrom
US5173108A (en) Method for controlling the oxygen content in agglomerated molybdenum powders
JPH0860210A (en) Production of fe-cr-al-rem based alloy powder
JP3121901B2 (en) Manufacturing method of alloy powder
JP3281019B2 (en) Method and apparatus for producing zinc particles
CN1250107A (en) Melting-casting process of preparing metal-base composite material through in-situ reaction and spray formation
JPH04266475A (en) Production of composite material
US4684400A (en) Method for controlling the oxygen content in agglomerated molybdenum powders
JP3454890B2 (en) Method for producing metal or alloy powder
US3395030A (en) Carbide flame spray material
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPS6357755A (en) Ni-base alloy powder for thermal spraying and its production
US5667717A (en) Method of producing cast magnetic soft ferrite
JPH0257623A (en) Production of fine copper powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971104