JPH085979B2 - Method for producing cation exchanger - Google Patents

Method for producing cation exchanger

Info

Publication number
JPH085979B2
JPH085979B2 JP62174959A JP17495987A JPH085979B2 JP H085979 B2 JPH085979 B2 JP H085979B2 JP 62174959 A JP62174959 A JP 62174959A JP 17495987 A JP17495987 A JP 17495987A JP H085979 B2 JPH085979 B2 JP H085979B2
Authority
JP
Japan
Prior art keywords
group
polymer
cation exchange
exchange group
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62174959A
Other languages
Japanese (ja)
Other versions
JPS6420237A (en
Inventor
俊勝 佐田
久彦 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP62174959A priority Critical patent/JPH085979B2/en
Publication of JPS6420237A publication Critical patent/JPS6420237A/en
Publication of JPH085979B2 publication Critical patent/JPH085979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改良された陽イオン交換体の製造方法に関
する。即ち、従来の陽イオン交換体が用いられる産業分
野、例えば、電気透析、電極反応若しくは拡散透析など
の陽イオン交換基を結合した隔膜としての利用、又はイ
オン交換樹脂のようなイオン交換反応を行わせる物質と
して、或いは固体酸触媒としての分野に利用できる。
TECHNICAL FIELD The present invention relates to an improved method for producing a cation exchanger. That is, in the industrial field where a conventional cation exchanger is used, for example, use as a membrane that binds a cation exchange group such as electrodialysis, electrode reaction or diffusion dialysis, or ion exchange reaction such as an ion exchange resin. It can be used in the field as a substance to be added or as a solid acid catalyst.

〔従来技術〕[Prior art]

陽イオン交換体は形状としては膜状、球状、管状、繊
維状等様々のものが目的に応じて利用されており、形状
に応じてそれに用いられる材質、製法も異なる。今日、
イオン交換体として広く利用されているのはイオン交換
樹脂とイオン交換膜である。これらは殆んどがエチレン
−ジビニルベンゼンの共重合体を骨格としたものにイオ
ン交換基が導入されたものである。これらのイオン交換
樹脂及びイオン交換膜は性能的に極めて優れたものであ
るが、三次元架橋構造を有すること、重合工程を必要と
すること等のために限られた形状のイオン交換体しか得
られないなどの問題がある。更に新しい変った特性をイ
オン交換体に賦与し、且つ成型性を容易にするには全く
違った発想に基づいてイオン交換体を作る必要がある。
As the cation exchanger, various shapes such as a membrane shape, a spherical shape, a tubular shape, and a fibrous shape are used according to the purpose, and the material and manufacturing method used for the cation exchanger are different depending on the shape. today,
Ion exchange resins and ion exchange membranes are widely used as ion exchangers. Most of these have an ion-exchange group introduced into a skeleton of an ethylene-divinylbenzene copolymer. Although these ion exchange resins and ion exchange membranes are extremely excellent in performance, they have only a limited shape of ion exchanger because they have a three-dimensional crosslinked structure and require a polymerization process. There are problems such as not being able to. In order to impart new and changed characteristics to the ion exchanger and to facilitate moldability, it is necessary to make the ion exchanger based on a completely different idea.

そこで、耐薬品性、耐熱性が優れ、エンジニヤリング
プラスチックスとして知られている芳香族縮合系高分子
が注目され、これからイオン交換体を作ることが研究さ
れている。例えば、ポリスルホン,ポリエーテルスルホ
ンをスルホン化処理してスルホン酸基を導入し、溶媒に
溶解して流延し、膜状物とするものが数多く提案されて
いる。
Therefore, an aromatic condensation polymer, which has excellent chemical resistance and heat resistance and is known as engineering plastics, has been attracting attention, and research has been conducted on making an ion exchanger from this. For example, many proposals have been made in which a polysulfone or a polyethersulfone is subjected to a sulfonation treatment to introduce a sulfonic acid group, dissolved in a solvent and cast to form a film.

しかし、芳香族縮合系高分子は、重縮合により得られ
た高分子であることもあり、高分子量のものを取得する
ことが難しく、分子量は数万程度にすぎない。その上、
スルホン化試薬のような陽イオン交換基導入試薬として
接触させて陽イオン交換基と導入することによって、芳
香族縮合系高分子の分子量の低減が生じる。このため、
陽イオン交換基を大量に導入すると機械的に弱い陽イオ
ン交換体となり、更には溶媒に可溶な高分子となってし
まう。従って、例えば、特開昭60−25100号公報に示さ
れているような極めて交換容量の小さい陽イオン交換膜
しか製造することができなかった。
However, since the aromatic condensation polymer may be a polymer obtained by polycondensation, it is difficult to obtain a polymer having a high molecular weight, and the molecular weight is only about tens of thousands. Moreover,
By bringing the cation exchange group into contact with a cation exchange group-introducing reagent such as a sulfonation reagent and introducing the cation exchange group, the molecular weight of the aromatic condensation polymer is reduced. For this reason,
If a large amount of cation exchange groups is introduced, it becomes a mechanically weak cation exchanger, and further becomes a polymer soluble in a solvent. Therefore, for example, only a cation exchange membrane having an extremely small exchange capacity as shown in JP-A-60-25100 can be produced.

そこで、陽イオン交換基を導入する方法としておだや
かな方法を採用する方法が考えられる。例えばトリエチ
ルホスフェートとSO3の錯体などを用いる方法である。
この方法によると、芳香族縮合系高分子の分子量の低減
は少なく、ある程度までスルホン酸基を導入することが
できる。しかしながら、この方法によっても市販の陽イ
オン交換程度のイオン交換容量、例えば、1.0ミリ当量
/グラム−乾燥膜まで陽イオン交換基を導入することは
困難であった。
Therefore, a method of adopting a gentle method can be considered as a method of introducing a cation exchange group. For example, it is a method using a complex of triethyl phosphate and SO 3 .
According to this method, the reduction of the molecular weight of the aromatic condensation polymer is small, and the sulfonic acid group can be introduced to some extent. However, even by this method, it was difficult to introduce a cation exchange group up to a commercially available cation exchange capacity, for example, 1.0 meq / g-dry membrane.

このため、機械的強度の低減が無く、且つ充分な量の
陽イオン交換基を導入する方法が望まれていた。
For this reason, there has been a demand for a method of introducing a sufficient amount of cation exchange groups without reducing mechanical strength.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題に鑑み、本発明者らは芳香族縮合系高分子
に、一旦ハロメチル基を導入し、次いで、これを、ルイ
ス酸存在下、陽イオン交換基又は陽イオン交換基に変換
可能な基を有する化合物と接触させると、該芳香族縮合
系高分子に陽イオン交換基又は陽イオン交換基に変換可
能な基が導入されると同時に該芳香族縮合系高分子の分
子量が増大することを見いだし、本願発明を完成するに
至った。即ち、本発明は、ハロアルキル基を有し、且つ
イミド結合、アミド結合及びエステル結合を有さない芳
香族縮合系高分子を、ルイス酸存在下、陽イオン交換基
又は陽イオン交換基に変換可能な基を有する化合物と接
触させて、該芳香族縮合系高分子に該陽イオン交換基又
は該陽イオン交換基に変換可能な基が導入した後、その
まま或いは、該陽イオン交換基に変換可能な基を陽イオ
ン交換基に変換することを特徴とする陽イオン交換体の
製造方法である。
In view of the above problems, the present inventors have once introduced a halomethyl group into an aromatic condensed polymer, and then converted this into a cation exchange group or a cation exchange group in the presence of a Lewis acid. When contacted with a compound having a cation exchange group, a cation exchange group or a group convertible to a cation exchange group is introduced into the aromatic condensation polymer, and at the same time, the molecular weight of the aromatic condensation polymer is increased. The present invention has been completed and the present invention has been completed. That is, according to the present invention, an aromatic condensed polymer having a haloalkyl group and not having an imide bond, an amide bond and an ester bond can be converted into a cation exchange group or a cation exchange group in the presence of a Lewis acid. After introducing the cation exchange group or a group that can be converted into the cation exchange group into the aromatic condensed polymer by contact with a compound having such a group, it can be converted into the cation exchange group as it is or after the introduction. The method is a method for producing a cation exchanger, which comprises converting such a group into a cation exchange group.

本発明で用いられる芳香族縮合系高分子は、イミド結
合、アミド結合及びエステル結合を有さない公知のもの
が何ら制限されず使用し得る。イミド結合、アミド結合
及びエステル結合を有する芳香族縮合系高分子は、後述
する陽イオン交換基導入試薬によって加水分解するため
に好ましくない。本発明に於いて好適に使用される芳香
族縮合系高分子は、一般には、フェニレン基、同志が直
接結合するか、又はオキシ基、チオ基、カルボニル基、
スルホニル基、アルキリデン基若しくはアルキレン基を
介して結合した芳香族縮合系高分子が好適である。この
ような芳香族縮合系高分子を一般式で示すと次のとおり
である。
As the aromatic condensation polymer used in the present invention, known polymers having no imide bond, amide bond or ester bond can be used without any limitation. An aromatic condensed polymer having an imide bond, an amide bond and an ester bond is not preferable because it is hydrolyzed by a cation exchange group-introducing reagent described later. The aromatic condensation polymer preferably used in the present invention is generally a phenylene group, directly bonded to each other, or an oxy group, a thio group, a carbonyl group,
Aromatic condensed polymer linked via a sulfonyl group, an alkylidene group or an alkylene group is preferable. A general formula for such an aromatic condensation polymer is as follows.

本発明に於いて好適に使用し得る芳香族縮合系高分子
を具体的に例示すると、ポリフェニレン、ポリフェニレ
ンオキサイド、ポリスルホン、ポリエーテルスルホン、
ポリフェニレンサルファイド、ポリエーテルエーテルケ
トン等の各樹脂並びにこれら相互の共重合体及びブレン
ド物等が挙げられる。特に、本発明に於いて好ましく用
いられる芳香族縮合系高分子は、ポリスルホン、ポリエ
ーテルスルホン及びポリフェニレンオキサイドである。
分子量は特に制限されず、5000〜10万の広い範囲から採
用することができる。
Specific examples of the aromatic condensation polymer that can be preferably used in the present invention include polyphenylene, polyphenylene oxide, polysulfone, polyether sulfone,
Examples thereof include resins such as polyphenylene sulfide and polyether ether ketone, and copolymers and blends of these resins. In particular, the aromatic condensation polymer preferably used in the present invention is polysulfone, polyether sulfone and polyphenylene oxide.
The molecular weight is not particularly limited and can be adopted from a wide range of 5,000 to 100,000.

上記した芳香族縮合系高分子にハロアルキル基が導入
されるが、ハロアルキル基の導入は特に限定的ではな
く、従来公知の手段が用いられる。具体的にはクロルメ
チルメチルエーテル,クロルメチルエチルエーテル,ク
ロルメチルプロピルエーテル等のハロアルキルエーテル
とSnCl4,TiCl4,AlCl3,ZnO2,ZnCl2などのルイス酸と接触
させることによって導入される。これにはハロアルキル
基を導入するための従来公知の方法が何ら制限なく用い
られる。即ち、芳香族縮合系高分子をハロゲン系の有機
溶媒に溶解し、これにハロアルキルエーテル及び触媒で
あるルイス酸を添加する。この際該高分子溶液があまり
に濃厚であり、ハロアルキルエーテル及び触媒の添加が
急激に行われると該高分子のゲル化が生じる惧れがあ
る。従って該高分子の含ハロゲン系溶媒、例えば四塩化
炭素、エチレンジクロライド、1,1,2−トリクロロトリ
フルオロエタンなどの濃度は40%以下であることが好ま
しい。ハロアルキルエーテルの量は、該芳香族縮合系高
分子の1繰返し単位を1当量とした場合に1/10〜5倍当
量の範囲で、また、触媒量はハロアルキルエーテルの量
と当量乃至5倍当量以下とすることが好ましい。一般に
温度を上昇すると反応の進行が早く、該芳香族縮合系高
分子はゲル化する可能性があるので、60℃未満で実施す
ることが好ましい。一般に該芳香族縮合系高分子のハロ
アルキルエーテルが導入されうる芳香環に1/2〜1/1000
の割合でハロアルキル基が導入される場合が好適であ
る。ここでいうハロアルキル基とはCH2 nX(nは1
以上の整数,Xはハロゲン)で示されるが、n=1〜12、
さらにはn=1であり、Xは塩素であることが好まし
い。ここで得られたハロアルキル基を有する芳香族縮合
系高分子に陽イオン交換基を導入するために陽イオン交
換基導入試薬と反応させる場合、ハロアルキル基を有す
る該芳香族縮合系高分子が存在していれば、他にハロア
ルキル基を有さない芳香族縮合系高分子が同時に存在し
ていてもよく、特にハロアルキル基を有する該芳香族縮
合系高分子が多くのハロアルキル基を含有する場合、具
体的には該芳香族縮合系高分子のハロアルキルエーテル
が導入されうる芳香環に1/10以上ハロアルキル基が導入
されている場合は他の芳香族縮合系高分子が共存してい
る場合が望ましい。この場合共存させる芳香族縮合系高
分子は陽イオン交換基導入試薬に対して安定なものであ
れば、ハロアルキル基が導入されている芳香族縮合系高
分子と同種のもの、同じ分子量のものであることが望ま
しいが、相溶性の良好な異種のもの、或いは同種で分子
量の違うものであってもよい。
A haloalkyl group is introduced into the above aromatic condensed polymer, but the introduction of the haloalkyl group is not particularly limited, and a conventionally known means is used. Specifically, it is introduced by contacting a haloalkyl ether such as chloromethyl methyl ether, chloromethyl ethyl ether or chloromethyl propyl ether with a Lewis acid such as SnCl 4 , TiCl 4 , AlCl 3 , ZnO 2 or ZnCl 2 . For this, a conventionally known method for introducing a haloalkyl group can be used without any limitation. That is, the aromatic condensation polymer is dissolved in a halogen-based organic solvent, and a haloalkyl ether and a Lewis acid as a catalyst are added thereto. At this time, the polymer solution is too concentrated, and when the haloalkyl ether and the catalyst are rapidly added, the gelation of the polymer may occur. Therefore, the concentration of the halogen-containing solvent of the polymer, such as carbon tetrachloride, ethylene dichloride, 1,1,2-trichlorotrifluoroethane, is preferably 40% or less. The amount of the haloalkyl ether is in the range of 1/10 to 5 times the equivalent amount when 1 equivalent of one repeating unit of the aromatic condensation polymer is used, and the catalyst amount is the equivalent to 5 times the equivalent amount of the haloalkyl ether. The following is preferable. Generally, when the temperature is raised, the reaction proceeds rapidly and the aromatic condensation polymer may gel, so it is preferable to carry out the reaction at less than 60 ° C. Generally, 1/2 to 1/1000 in the aromatic ring into which the haloalkyl ether of the aromatic condensed polymer can be introduced.
It is preferable that the haloalkyl group is introduced at a ratio of. The haloalkyl group referred to here is CH 2 n X (n is 1
The above integer, X is a halogen), n = 1 to 12,
Further, it is preferable that n = 1 and X is chlorine. When the haloalkyl group-containing aromatic condensation polymer obtained here is reacted with a cation exchange group-introducing reagent to introduce a cation exchange group, the haloalkyl group-containing aromatic condensation polymer is present. If so, an aromatic condensed polymer having no other haloalkyl group may be present at the same time, and particularly when the aromatic condensed polymer having a haloalkyl group contains many haloalkyl groups, Specifically, when a haloalkyl group of 1/10 or more is introduced into the aromatic ring to which the haloalkyl ether of the aromatic condensed polymer can be introduced, it is desirable that another aromatic condensed polymer coexists. In this case, if the aromatic condensation polymer to be coexisted is stable to the cation exchange group-introducing reagent, it may be of the same type or the same molecular weight as the aromatic condensation polymer in which the haloalkyl group is introduced. It is desirable that they are present, but they may be different types having good compatibility, or may be the same type but different in molecular weight.

さて、陽イオン交換体の導入方法は、前記のハロアル
キル基を有する芳香族縮合系高分子を、ルイス酸存在
下、陽イオン交換基を有する化合物と接触させるか、該
芳香族縮合系高分子を、ルイス酸存在下、陽イオン交換
基に変換可能な基を有する化合物と接触させた後、該陽
イオン交換基に変換可能な基を陽イオン交換基に変換す
ることによって行われる。ここで、上記のルイス酸と
は、ハロアルキル基を有する芳香族縮合系高分子に作用
して該高分子の分子量を増大させるものであれば特に制
限されず、陽イオン交換基等の導入時に使用されるルイ
ス酸触媒ばかりでなく、ルイス酸性を示す陽イオン交換
基を有する化合物自体をも含む概念である。
Now, the method for introducing the cation exchanger is to bring the aromatic condensation polymer having a haloalkyl group into contact with a compound having a cation exchange group in the presence of a Lewis acid, or After contacting with a compound having a group capable of converting into a cation exchange group in the presence of a Lewis acid, the group capable of converting into the cation exchange group is converted into a cation exchange group. Here, the Lewis acid is not particularly limited as long as it acts on the aromatic condensed polymer having a haloalkyl group to increase the molecular weight of the polymer, and is used when introducing a cation exchange group or the like. It is a concept including not only the Lewis acid catalyst described above but also the compound itself having a cation exchange group exhibiting Lewis acidity.

本発明で好適に採用される陽イオン交換基の導入方法
を例示すれば、例えば、スルホン酸基を導入するために
は、90%以上の硫酸;クロルスルホン酸などのハロスル
ホン酸;SO3;ジオキサン−SO3;トリアルキルアミン,ピ
リジン等の三級アミンとSO3の錯体などのスルホン酸基
導入試薬を用いる方法が採用される。また、リン酸基、
亜リン酸基を導入するためには、PCl3,POCl3,PCl5等と
ルイス酸であるAlCl3,SnCl4,TiCl4等の触媒が用いら
れ、後処理によって該陽イオン交換基を導入する方法が
採用される。さらに、カルボキシル基を導入するために
は、X−R−COR′,X−R−CN〔Xはハロゲン,Rは鎖
状,分岐状のアルキレン基,環状のアルキレン基又はア
リール基であり、R′はハロゲン原子、−OR″(R″は
炭素数が1〜12のアルキル基である。)又は−OM(Mは
水素イオン,金属イオン又は有機アミンである。)〕な
どをAlCl3,FeCl3,SnCl4等の触媒の存在下にフリーデル
クラフト反応を実施して導入し、後処理によってCOOH基
を導入する方法などが挙げられる。
As an example of the method for introducing a cation exchange group suitably used in the present invention, for example, in order to introduce a sulfonic acid group, 90% or more of sulfuric acid; halosulfonic acid such as chlorosulfonic acid; SO 3 ; dioxane -SO 3 ; A method using a sulfonic acid group-introducing reagent such as a complex of a tertiary amine such as trialkylamine or pyridine and SO 3 is adopted. Also, a phosphate group,
In order to introduce a phosphite group, PCl 3 , POCl 3 , PCl 5, etc. and a Lewis acid catalyst such as AlCl 3 , SnCl 4 , TiCl 4 are used, and the cation exchange group is introduced by post-treatment. The method of doing is adopted. Further, in order to introduce a carboxyl group, X—R—COR ′, X—R—CN [X is a halogen, R is a chain or branched alkylene group, a cyclic alkylene group or an aryl group, and R 'Is a halogen atom, -OR "(R" is an alkyl group having 1 to 12 carbon atoms) or -OM (M is a hydrogen ion, a metal ion or an organic amine.)], AlCl 3 , FeCl Examples include a method in which the Friedel-Crafts reaction is carried out in the presence of a catalyst such as 3 , SnCl 4 and the like, and a COOH group is introduced by post-treatment.

本願発明の方法に於いては、ルイス酸の働きによっ
て、陽イオン交換基又は陽イオン交換基に変換可能な基
がハロアルキル基を有する芳香族縮合系高分子に導入さ
れると同時に、該芳香族縮合系高分子の分子量の増大が
起こる。この時の分子量の増加率は特に限定されない
が、製膜等の賦形後の強度を勘案すると、好適には、原
料として用いた高分子の分子量の3〜数百倍、さらに好
適には3〜数10倍である。本願発明の方法に於いて、分
子量の増加率は、ハロアルキル基の芳香族縮合系高分子
への導入割合、使用する溶媒の量、用いる陽イオン交換
基導入試薬やルイス酸触媒の種類及び量などの影響を受
けるので、分子量増加率が上記範囲となるように、これ
ら各条件を制御するのが好ましい。
In the method of the present invention, by the action of a Lewis acid, a cation exchange group or a group convertible to a cation exchange group is introduced into an aromatic condensed polymer having a haloalkyl group, and at the same time, the aromatic An increase in the molecular weight of the condensation polymer occurs. The rate of increase of the molecular weight at this time is not particularly limited, but considering the strength after shaping such as film formation, the molecular weight of the polymer used as a raw material is preferably 3 to several hundred times, and more preferably 3 times. ~ It is several tens of times. In the method of the present invention, the rate of increase of the molecular weight, the introduction ratio of the haloalkyl group into the aromatic condensation polymer, the amount of the solvent used, the type and amount of the cation exchange group introduction reagent and Lewis acid catalyst used, etc. Therefore, it is preferable to control each of these conditions so that the molecular weight increase rate falls within the above range.

さて、陽イオン交換基の該芳香族縮合系高分子への導
入割合は特に限定的ではないが、陽イオン交換体として
有効に作用する範囲であればよく、また使用目的によっ
て異なってくるが、通常、0.3〜3.0ミリ当量/グラム乾
燥樹脂までの範囲で導入しても本発明の製造方法に従う
かぎり、機械的強度に優れたものが得られる。
Now, the introduction ratio of the cation exchange group to the aromatic condensation polymer is not particularly limited, as long as it is a range that effectively acts as a cation exchanger, and also depends on the purpose of use, Usually, even if it is introduced in a range of from 0.3 to 3.0 meq / g dry resin, one having excellent mechanical strength can be obtained as long as the production method of the present invention is followed.

〔作用〕[Action]

本発明の方法により製造された陽イオン交換体の機械
的強度が低下しない原因は、陽イオン交換基導入試薬が
陽イオン交換基導入と同時にルイス酸として作用して予
め導入したハロアルキル基が高分子間,高分子内の縮合
反応,架橋反応を生じるためと思われる。そのため陽イ
オン交換基導入反応によって芳香族縮合系高分子は分子
切断による分子量低減反応よりも、分子量増大反応が並
行して進行し、高いイオン交換容量を導入したにも拘ら
ず、イオン交換体としたとき含水量が少なく、機械的に
強い膜となるものと思われる。具体的にはハロメチル基
の該高分子への導入割合、陽イオン交換基導入試薬反応
条件等によって異なってくるし、陽イオン交換基を導入
したときの高分子の正確な分子量は決め難いが原料とし
て用いた高分子の分子量の3倍乃至数10倍の分子量、場
合によっては数百倍のものとなっている。他方、従来の
芳香族縮合系高分子をそのままスルホン化試薬と反応さ
せた場合には、スルホン化されたものの分子量の原料の
高分子と同一か低下しており、明らかに相違が認められ
る。
The reason why the mechanical strength of the cation exchanger manufactured by the method of the present invention does not decrease is that the cation-exchange group-introducing reagent acts as a Lewis acid at the same time as the cation-exchange group-introducing agent and the haloalkyl group introduced in advance is a polymer It seems that the condensation reaction and cross-linking reaction occur in the polymer during the period. Therefore, the cation exchange group-introducing reaction causes the aromatic polycondensation polymer to react with the ion-exchanger in spite of the introduction of a high ion-exchange capacity, as the molecular-weight increasing reaction proceeds in parallel with the molecular-weight decreasing reaction by molecular cleavage. When this is done, the water content will be low and it will be a mechanically strong membrane. Specifically, it depends on the introduction ratio of the halomethyl group to the polymer, the reaction conditions of the cation-exchange group-introducing reagent, etc., and it is difficult to determine the exact molecular weight of the polymer when the cation-exchange group is introduced. The molecular weight is 3 to several tens times the molecular weight of the polymer used, and in some cases several hundred times. On the other hand, when a conventional aromatic condensation polymer is directly reacted with a sulfonation reagent, the molecular weight of the sulfonated polymer is the same as or lower than that of the raw material polymer, and a clear difference is recognized.

〔効果〕〔effect〕

本発明のイオン交換体の製造方法によってイオン交換
容量が大きく、含水量が小さく、且つ機械的強度に優れ
た陽イオン交換体を作ることが出来た。これは膜状物、
管状物、球状、繊維状物等々各種の陽イオン交換体とし
たとき、或いは電気透析、電極反応の隔膜としたときは
膜の電気抵抗の低下を招き、異符号イオン間選択性が向
上し、濃度勾配によってイオン透過させるときは透過量
の増大をもたらした。更に機械的に強くなったことは工
業設備に於いて極めて安定して操業を連続して続けるこ
とを可能にした。
According to the method for producing an ion exchanger of the present invention, a cation exchanger having a large ion exchange capacity, a small water content and excellent mechanical strength could be produced. This is a film,
When used as various cation exchangers such as tubular materials, spheres, fibrous materials, etc., or when used as a diaphragm for electrodialysis and electrode reaction, the electrical resistance of the membrane is reduced, and the selectivity between different-sign ions improves. When the ions were permeated by a concentration gradient, the permeation amount was increased. Furthermore, the mechanical strength has made it possible to continue the operation in an extremely stable manner in industrial equipment.

実施例1 で示される繰返し単位よりなるポリエーテルスルホン
を10%となるようにエチレンジクロライドに溶解した。
この溶液1000重量部に対して50重量部のClCH2OCH3を加
えて均一としたのちに、これに18重量部の無水のSnCl4
を加えて30℃に5時間保った。次いで、これを大量のメ
チルアルコール中に注ぎ、ゴム状のポリマーをとり出し
た。充分にエタノール,次いで水で洗浄したのち減圧乾
燥して元素分析及び赤外吸収スペクトルを測定したとこ
ろ、上記の繰返し単位3単位あたり1ケのクロルメチル
基が導入されていることが分った。次いで、このポリマ
ー10重量部を90重量部のエチレンジクロライドに溶解し
て後、4℃に冷却して純度約90%のクロルスルホン酸を
滴下した。ポリマーの単位当量数あたり3倍量のクロル
スルホン酸を添加したのち3時間放置し、下方に析出し
たゴム状のポリマーをとり出し、氷冷した水中に入れて
過剰のクロルスルホン酸を除いた。
Example 1 Polyether sulfone consisting of the repeating unit represented by the formula (1) was dissolved in ethylene dichloride so as to be 10%.
After adding 50 parts by weight of ClCH 2 OCH 3 to 1000 parts by weight of this solution and homogenizing it, 18 parts by weight of anhydrous SnCl 4 was added thereto.
Was added and the mixture was kept at 30 ° C. for 5 hours. Then, this was poured into a large amount of methyl alcohol to take out a rubbery polymer. After thoroughly washing with ethanol and then with water, drying under reduced pressure and elemental analysis and infrared absorption spectrum were measured, and it was found that one chloromethyl group was introduced per three units of the above repeating unit. Next, 10 parts by weight of this polymer was dissolved in 90 parts by weight of ethylene dichloride, cooled to 4 ° C., and chlorosulfonic acid having a purity of about 90% was added dropwise. After adding 3 times the amount of chlorosulfonic acid per unit equivalent number of the polymer, the mixture was allowed to stand for 3 hours, the rubbery polymer precipitated below was taken out, and put in ice-cooled water to remove excess chlorosulfonic acid.

得られたスルホン酸基とクロルスルホン酸基を併せ有
するポリマーをN−メチルピロリドンに溶解して30%の
粘稠な溶液とした。これを水平にしたガラス板上に薄層
クロマトグラフィーの装置によって厚み0.2mmにコーテ
ィングして空気中に10分間放置後、水中に投入した。充
分に水を交換したのち、ガラス板からフイルムをはぎと
り、0.5規定のNaOH中に5時間浸漬し、0.5N NaClと1N H
Clでコンディショニング後、性質の測定をした。0.5N N
aCl中で1000サイクル交流で測定した電気抵抗は0.5Ω−
cm2であり、膜の一方に2mの水圧をかけたときの透水量
は測定出来なかった。これを用いて海水の電気透析濃縮
をしたところ(陰イオン交換膜は徳山曹達(株)製NEOS
EPTA ACSを用いた)、3A/d m2の電流密度,25℃で、3.5
規定の濃縮液が電流効率92%で得られた。尚、この膜の
交換容量は1.20ミリ当量/グラム乾燥膜であった。
The obtained polymer having both sulfonic acid group and chlorosulfonic acid group was dissolved in N-methylpyrrolidone to give a 30% viscous solution. This was coated on a horizontal glass plate to a thickness of 0.2 mm by a thin layer chromatography apparatus, left in the air for 10 minutes, and then put into water. After exchanging water sufficiently, peel off the film from the glass plate and immerse it in 0.5N NaOH for 5 hours to obtain 0.5N NaCl and 1N H
Properties were measured after conditioning with Cl. 0.5NN
The electrical resistance measured in aCl for 1000 cycles of alternating current is 0.5 Ω −
It was cm 2 , and the amount of water permeation when a water pressure of 2 m was applied to one side of the membrane could not be measured. Electrodialysis concentration of seawater using this (Anion exchange membrane is NEOS manufactured by Tokuyama Soda Co., Ltd.)
EPTA ACS), 3A / dm 2 current density, 25 ° C, 3.5
The specified concentrate was obtained with a current efficiency of 92%. The exchange capacity of this membrane was 1.20 meq / g dry membrane.

他方、同一のポリマーをクロルメチル化反応すること
なく、そのままで10重量部を90重量部のエチレンジクロ
ライドに溶解して、これに同様にして冷却下にクロルス
ルホン酸を滴下して、同様にしてポリマーをとり出し、
N−メチルピロリドン溶液から流延法によって製膜し
た。得られた膜の交換容量は1.18ミリ当量/グラム乾燥
膜であった。膜の電気抵抗は同様にして測定し0.5Ω−c
m2であったが、2mの水圧下で5cc/minの透水量があっ
た。これを用いて同様に海水濃縮を実施したところ、2.
6規定の濃縮液が電流効率70%で得られたが、機械的に
非常に弱いフイルムであった。本発明の膜を破裂強度測
定装置で測定したところ2kg/cm2であったが、比較のた
めに作った膜は0.5kg/cm2以下であった。
On the other hand, 10 parts by weight of the same polymer was dissolved in 90 parts by weight of ethylene dichloride as it was without chloromethylation reaction, and chlorosulfonic acid was added dropwise under cooling in the same manner, and the polymer was similarly prepared. Take out the
A film was formed from an N-methylpyrrolidone solution by a casting method. The exchange capacity of the resulting membrane was 1.18 meq / gram dry membrane. The electric resistance of the film was measured in the same way and was 0.5 Ω-c.
Although it was m 2 , there was a water permeability of 5 cc / min under a water pressure of 2 m. When seawater was concentrated in the same way using this, 2.
A 6N concentrated solution was obtained with a current efficiency of 70%, but the film was mechanically very weak. When the film of the present invention was measured with a burst strength measuring device, it was 2 kg / cm 2 , but the film made for comparison was 0.5 kg / cm 2 or less.

実施例2 の繰返し単位よりなるポリスルホン100重量部を、エチ
レンジクロライド1000重量部に溶解した。次いでこれに
約20重量部のClCH2OCH3を加え、更にZnOを約7.4重量部
加えて均一にして30℃で6時間撹拌下に反応させた。反
応中に次第に粘度が上昇した、これを大量のメタノール
中に投入し得られたゴム状のポリマーを分け、更に充分
にメタノール及び水で洗浄した。このポリマーを減圧乾
燥後元素分析し、更に赤外吸収スペクトルを測定したと
ころ、上記式の繰返し単位3.5個に1個の割合でクロル
メチル基が導入されていた。
Example 2 100 parts by weight of polysulfone consisting of the repeating unit of was dissolved in 1000 parts by weight of ethylene dichloride. Then, about 20 parts by weight of ClCH 2 OCH 3 was added thereto, and about 7.4 parts by weight of ZnO was further added to homogenize the mixture, and the mixture was reacted at 30 ° C. for 6 hours with stirring. The viscosity gradually increased during the reaction, and this was poured into a large amount of methanol to obtain a rubber-like polymer, which was separated and further thoroughly washed with methanol and water. This polymer was dried under reduced pressure, subjected to elemental analysis, and further measured by infrared absorption spectrum. As a result, one chloromethyl group was introduced in every 3.5 repeating units of the above formula.

次いで、このポリマーをエチレンジクロライドに溶解
した。他方、(C2H53P=0をエチレンジクロライドに
溶解した中にSO3を吹き込んで(C2H53P=0とSO3の錯
体を形成し、これを溶解したクロルメチル基が導入され
たポリマーの繰返し単位一つに対して2倍量となるよう
に溶解した。先に調整したポリマー溶液と錯体溶液を混
合し、スルホン化反応を行った。8時間混合溶液を放置
して沈降したゴム状のポリマーをとり出した。充分に水
洗,メタノール洗浄,水洗を繰返し過剰のSO3を除いた
あと減圧乾燥してスルホン酸基のあるポリマーを得た。
The polymer was then dissolved in ethylene dichloride. On the other hand, when (C 2 H 5 ) 3 P = 0 is dissolved in ethylene dichloride, SO 3 is blown into it to form a complex of (C 2 H 5 ) 3 P = 0 and SO 3 , and this is dissolved in a chloromethyl group. Was dissolved in a double amount with respect to one repeating unit of the introduced polymer. The polymer solution prepared previously and the complex solution were mixed to carry out a sulfonation reaction. The mixed solution was allowed to stand for 8 hours, and the precipitated rubbery polymer was taken out. The polymer was thoroughly washed with water, washed with methanol, and washed with water to remove excess SO 3, and then dried under reduced pressure to obtain a polymer having a sulfonic acid group.

次いで、このポリマーをN−メチルピロリドンに溶解
し、30%溶液としたのち、これを実施例1と同様にして
厚さ0.2mmのフィルムとした。これの電気抵抗を測定し
たところ0.6Ω−cm2であり、2mの水圧下で透水量は全く
認められなかった。この膜を用いて25℃で海水の濃縮実
験をしたところ得られた濃縮液濃度は3.6規定であり、
電流効率92%であった。尚、このとき陰イオン交換膜と
して徳山曹達(株)製NEOSEPTA ACSを用いた。また得ら
れた膜は表層部に緻密層があり、内部は多孔質であっ
た。陽イオン交換膜の交換容量は1.35ミリ当量/グラム
乾燥膜であった。本発明の膜の破裂強度は3.5kg/cm2
あった。
Next, this polymer was dissolved in N-methylpyrrolidone to prepare a 30% solution, which was then processed into a film having a thickness of 0.2 mm in the same manner as in Example 1. The electric resistance of this was measured and found to be 0.6 Ω-cm 2 , and no water permeation was observed under a water pressure of 2 m. The concentration of the concentrated liquid obtained by conducting a seawater concentration experiment at 25 ° C using this membrane is 3.6 N,
The current efficiency was 92%. At this time, NEOSEPTA ACS manufactured by Tokuyama Soda Co., Ltd. was used as the anion exchange membrane. The obtained film had a dense layer in the surface layer and had a porous inside. The exchange capacity of the cation exchange membrane was 1.35 meq / g dry membrane. The burst strength of the membrane of the present invention was 3.5 kg / cm 2 .

他方、上記のポリスルホンをクロルメチル化すること
なく、そのままエチレンジクロライドに溶解し、(C
H33P=0とSO3の錯体で同じ条件でスルホン化処理し
た後、得られたポリマーをN−メチルピロリドンに溶解
して同様に製膜したところ、交換容量は1.35ミリ当量/
グラム乾燥膜であり、膜の電気抵抗は0.6Ω−cm2で、2m
の水圧下での透水量は3cc/mmであり、海水濃縮を実施し
たところ2.7規定の濃縮液が電流効率65%で得られた。
また、本発明の膜に比較して著しく機械的に弱く、機械
的強度は0.3kg/cm2であった。尚、海水濃縮にあたって
は得られた膜は非対称構造を有しており、表層部の緻密
層のある部分を海水側に向けて電気透析濃縮した。
On the other hand, the above polysulfone was directly dissolved in ethylene dichloride without chloromethylation, and (C
H 3 ) 3 P = 0 and SO 3 were subjected to sulfonation under the same conditions, and the resulting polymer was dissolved in N-methylpyrrolidone to form a film in the same manner. The exchange capacity was 1.35 meq /
Gram dry film, the electrical resistance of the membrane is 0.6 ohm-cm 2, 2m
The water permeation rate under water pressure was 3 cc / mm, and when seawater was concentrated, a 2.7 N concentrated liquid was obtained with a current efficiency of 65%.
Further, it was significantly mechanically weaker than the membrane of the present invention and had a mechanical strength of 0.3 kg / cm 2 . Incidentally, in concentrating seawater, the obtained membrane had an asymmetric structure, and was electrodialyzed and concentrated with the dense layer of the surface layer facing the seawater.

実施例3 実施例2で得たスルホン酸基が導入されたポリマーを
40%のN−メチルピロリドンに溶解し、内径3mmのガラ
ス管より水中に滴下していき球状の多孔質の粒子を得
た。これの陽イオン交換容量は1.35ミリ当量/グラム−
乾燥樹脂であり、通常の陽イオン交換樹脂に使用出来、
且つ比重はスチレン−ジビニルベンゼン共重合体をスル
ホン化したものより軽量であった。
Example 3 The polymer obtained by introducing the sulfonic acid group in Example 2 was used.
It was dissolved in 40% N-methylpyrrolidone and dropped into water through a glass tube having an inner diameter of 3 mm to obtain spherical porous particles. The cation exchange capacity of this is 1.35 meq / g-
It is a dry resin and can be used for ordinary cation exchange resins,
Moreover, the specific gravity was lighter than that of sulfonated styrene-divinylbenzene copolymer.

実施例4 実施例1で得たクロルメチル基を導入したポリエーテ
ルスルホンをエチレンジクロライド中に20重量部になる
ように溶解した。他方、エチレンジクロライド100重量
部にPCl3を20重量部を溶解し、更に無水の塩化アルミニ
ウムを5重量部溶解した。この両方の液を均一に混合し
て反応を実施した。30℃で5時間反応させた。反応が進
行して析出して来たポリマーをとり出して後、エチレン
ジクロライドで充分に洗浄した。得られたポリマーは減
圧乾燥して塊状のポリマーを得た。これを元素分析して
リンの分析をしたところ芳香環4ケに1ケの割合で−PC
l2が導入されていた。
Example 4 The chloromethyl group-introduced polyethersulfone obtained in Example 1 was dissolved in ethylene dichloride in an amount of 20 parts by weight. On the other hand, 20 parts by weight of PCl 3 was dissolved in 100 parts by weight of ethylene dichloride, and further 5 parts by weight of anhydrous aluminum chloride was dissolved. The reaction was carried out by uniformly mixing both solutions. The reaction was carried out at 30 ° C for 5 hours. After the reaction proceeded and the precipitated polymer was taken out, it was thoroughly washed with ethylene dichloride. The obtained polymer was dried under reduced pressure to obtain a lump polymer. Elemental analysis of this and phosphorus analysis showed that one per four aromatic rings had -PC
l 2 was introduced.

このポリマーをN−メチルピロリドンに30%となるよ
うに溶解し、実施例1と同様にして0.2mmの厚みのフイ
ルムとした。得られたフイルムは1.0N NaOHの水とメタ
ノールの1:1の混合溶液に5時間浸漬して−PCl2を−(O
H)に加水分解し、更に1Nの硝酸中に16時間して とした。この膜の電気抵抗は0.5N NaCl中で測定して1.2
Ω−cm2,0.5規定と2.5規定の食塩水の間で測定した膜電
位から計算した輸率は0.86であった。
This polymer was dissolved in N-methylpyrrolidone to a concentration of 30%, and a film having a thickness of 0.2 mm was prepared in the same manner as in Example 1. The obtained film was dipped in a 1: 1 mixed solution of 1.0 N NaOH water and methanol for 5 hours to add -PCl 2- (O
H) hydrolyzed to 2 and then in 1N nitric acid for 16 hours And The electrical resistance of this film is 1.2 measured in 0.5N NaCl.
The transport number calculated from the membrane potential measured between Ω-cm 2 , 0.5 normal and 2.5 normal saline was 0.86.

他方、クロルメチル基を導入していない同一のポリエ
ーテルスルホンを用いて同様の方法によってリン酸基の
導入を試みたが、得られた高分子は水溶性となった。
尚、本発明の陽イオン交換膜の機械的は2.5kg/cm2であ
った。
On the other hand, when an attempt was made to introduce a phosphate group by the same method using the same polyether sulfone having no chloromethyl group introduced, the obtained polymer became water-soluble.
The cation exchange membrane of the present invention had a mechanical strength of 2.5 kg / cm 2 .

実施例5 ポリパラフェニレンオキサイド, を溶媒に10%となるように溶解し、次いでこれに常法に
よってクロルメチルメチルエーテル,無水四塩化スズを
加えてクロルメチル化反応を実施した。次いで、これを
大量のメチルアルコール中に注ぎ、析出したゴム状のポ
リマーをとり出し、水で充分に洗浄したのち減圧乾燥し
て元素分析及び赤外吸収スペクトルを測定し、クロルメ
チル基がフェニレン基の20ケに1ケの割合で導入されて
いることが分った。次いで、このポリマーを溶媒に溶解
してガラス板上に実施例1と同様に流延した後、10分後
水中に浸漬した。ガラス板からはぎとったフイルムは0.
2mmで表面のみ緻密構造を有した多孔膜であった。これ
をクロルスルホン酸2部、四塩化炭素1部の液に10時
間、4℃で浸漬したのち、10%の苛性ソーダ水溶液中に
浸漬してスルホニルクロライド基を加水分解したとこ
ろ、イオン交換容量が1.9ミリ当量/グラム乾燥膜の陽
イオン交換膜となり、膜の電気抵抗0.3Ω−cm2(0.5規
定食塩水中,25.0℃)で膜電位から求めた輸率は0.88で
あった。また機械的強度は破裂強度を求めたところ4.2k
g/cm2であった。
Example 5 Polyparaphenylene oxide, Was dissolved in a solvent to a concentration of 10%, and then chloromethyl methyl ether and anhydrous tin tetrachloride were added thereto by a conventional method to carry out a chloromethylation reaction. Then, this was poured into a large amount of methyl alcohol, the precipitated rubber-like polymer was taken out, thoroughly washed with water and dried under reduced pressure to measure elemental analysis and infrared absorption spectrum, and the chloromethyl group was converted to a phenylene group. It was found that 1 in 20 was introduced. Next, this polymer was dissolved in a solvent, cast on a glass plate in the same manner as in Example 1, and after 10 minutes, immersed in water. The film stripped from the glass plate is 0.
It was a porous film having a dense structure only on the surface at 2 mm. This was immersed in a solution of 2 parts of chlorosulfonic acid and 1 part of carbon tetrachloride for 10 hours at 4 ° C. and then immersed in a 10% aqueous sodium hydroxide solution to hydrolyze the sulfonyl chloride group. It became a cation exchange membrane of a milliequivalent / gram dry membrane, and the transport number calculated from the membrane potential was 0.88 with the membrane electrical resistance of 0.3 Ω-cm 2 (0.5 normal saline, 25.0 ° C.). The mechanical strength was 4.2k when the burst strength was calculated.
It was g / cm 2 .

他方、クロルメチル基の導入をしていないフイルムを
同様にしてスルホン化処理してイオン交換容量を1.9ミ
リ当量/グラム乾燥膜まであげたところフイルムは溶解
した。
On the other hand, when the film having no chloromethyl group introduced was subjected to sulfonation treatment in the same manner and the ion exchange capacity was increased to 1.9 meq / g dry film, the film was dissolved.

実施例6 実施例2で得たクロルメチル基の導入されたポリスル
ホンをエチレンジクロライドに10%となるように溶解し
た、他方、エチレンジクロライド100部に を10部溶解し、これに無水ZnCl2を1部溶解したのち、
両方の液を混合した。40℃に6時間放置して、ポリマー
にニトリル基が導入されたことを赤外吸収スペクトルで
確認した。得られたポリマーは一但乾燥して固型のポリ
マーを取り出したのち、N−メチルピロリドンに溶解し
て実施例2と同様にして0.2mmのフイルムとした。これ
を濃塩酸中に浸漬し、24時間沸騰させてニトリル基を加
水分解して、カルボン酸基に変換した。この膜の電気抵
抗は0.5N HCl中で2.3Ω−cm2で、0.5N NaOHと2.5N NaOH
の間で発生した膜電位から求めた輸率は0.88であった。
この膜の機械的強度は4.3kg/cm2であった。
Example 6 The polysulfone having a chloromethyl group introduced therein obtained in Example 2 was dissolved in ethylene dichloride to a concentration of 10%, while 100 parts of ethylene dichloride was dissolved. Was dissolved in 10 parts, and 1 part of anhydrous ZnCl 2 was dissolved in
Both solutions were mixed. The mixture was allowed to stand at 40 ° C. for 6 hours, and it was confirmed by infrared absorption spectrum that a nitrile group was introduced into the polymer. The obtained polymer was dried for a while to take out a solid polymer, which was then dissolved in N-methylpyrrolidone to prepare a 0.2 mm film in the same manner as in Example 2. This was immersed in concentrated hydrochloric acid and boiled for 24 hours to hydrolyze the nitrile group to convert it into a carboxylic acid group. The electrical resistance of this film is 2.3Ω-cm 2 in 0.5N HCl, and 0.5N NaOH and 2.5N NaOH are used.
The transport number calculated from the membrane potential generated during the period was 0.88.
The mechanical strength of this film was 4.3 kg / cm 2 .

他方、クロルメチル基を導入していないポリスルホン
に同様の反応を実施したのち、同様にして製膜し、加水
分解処理したところ、機械的強度は1.1kg/cm2であっ
た。
On the other hand, a polysulfone having no chloromethyl group introduced therein was subjected to the same reaction, and then similarly formed into a film and subjected to a hydrolysis treatment. As a result, the mechanical strength was 1.1 kg / cm 2 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハロアルキル基を有し、且つイミド結合、
アミド結合及びエステル結合を有さない芳香族縮合系高
分子を、ルイス酸存在下、陽イオン交換基又は陽イオン
交換基に変換可能な基を有する化合物と接触させて、該
芳香族縮合系高分子に該陽イオン交換基又は該陽イオン
交換基に変換可能な基を導入した後、そのまま或いは、
該陽イオン交換基に変換可能な基を陽イオン交換基に変
換することを特徴とする陽イオン交換体の製造方法。
1. A haloalkyl group having an imide bond,
An aromatic condensed polymer having no amide bond or ester bond is brought into contact with a compound having a cation exchange group or a group capable of being converted into a cation exchange group in the presence of a Lewis acid to give the aromatic condensed system high polymer. After introducing the cation exchange group or a group convertible to the cation exchange group into the molecule, as it is, or
A method for producing a cation exchanger, which comprises converting a group capable of being converted into a cation exchange group into a cation exchange group.
JP62174959A 1987-07-15 1987-07-15 Method for producing cation exchanger Expired - Fee Related JPH085979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62174959A JPH085979B2 (en) 1987-07-15 1987-07-15 Method for producing cation exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62174959A JPH085979B2 (en) 1987-07-15 1987-07-15 Method for producing cation exchanger

Publications (2)

Publication Number Publication Date
JPS6420237A JPS6420237A (en) 1989-01-24
JPH085979B2 true JPH085979B2 (en) 1996-01-24

Family

ID=15987728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62174959A Expired - Fee Related JPH085979B2 (en) 1987-07-15 1987-07-15 Method for producing cation exchanger

Country Status (1)

Country Link
JP (1) JPH085979B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407719A1 (en) * 1984-03-02 1985-09-05 Basf Ag, 6700 Ludwigshafen MEMBRANE MADE FROM ESSENTIAL UNCROSSLINKED ORGANIC POLYMERS CONTAINING IONOGENIC GROUPS

Also Published As

Publication number Publication date
JPS6420237A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US7488559B2 (en) Solid electrolyte
JP2011026592A (en) Step-by-step alkylation of polymeric amine
Liu et al. Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis
Rusanov et al. Proton-conducting polymers and membranes carrying phosphonic acid groups
JPH08508758A (en) Ion-exchange membrane manufacturing method and ion-exchange membrane made by it
CN108159890B (en) Preparation and application of alkali-resistant anion exchange membrane
US10046319B2 (en) Water-insoluble anion exchanger materials
KR20180134869A (en) Bipolar membrane
JP5960763B2 (en) Anion exchange resin, electrolyte membrane for fuel cell, binder for electrode catalyst layer formation, battery electrode catalyst layer and fuel cell
CN104231294A (en) Inorganic nano-composite anion exchange membrane and preparation method thereof
CN108164723B (en) Preparation method of modified titanium dioxide nanotube doped anion exchange membrane
KR101670390B1 (en) Method of bi-polar membrane for producing sodium hypochlorite
KR20120006764A (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
KR20120060645A (en) Polyarylene ether copolymer having cation-exchange group, process of manufacturing the same, and use thereof
JPH085979B2 (en) Method for producing cation exchanger
JP2522356B2 (en) Anion exchanger having a novel crosslinked structure
CN108479436B (en) Side chain type homogeneous anion exchange membrane and preparation method thereof
WO2019198093A1 (en) Acid and oxidative resistant homogenous cation exchange membrane and its method of preparation thereof
CN111530311B (en) Preparation method of monolithic poly (arylene ether nitrile) bipolar membrane containing corrole water dissociation catalytic group
CN111530298B (en) Preparation method of monolithic polyarylethersulfone ketone bipolar membrane containing phthalocyanine water dissociation catalytic group
KR101728772B1 (en) Anion exchange electrolyte membrane, method for preparing the same, energy storage and water treating apparatus comprising the same
CN111495215A (en) Preparation method of monolithic polyarylethersulfone ketone bipolar membrane with side chain containing phthalocyanine water dissociation catalytic group
JPS63258930A (en) Aromatic polymer
KR101590917B1 (en) Bipolar Membrane and Preparation Method Thereof
CN105169977B (en) A kind of modified triblock copolymer dielectric film and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees