JPH0859025A - Detecting device for carrying medium - Google Patents

Detecting device for carrying medium

Info

Publication number
JPH0859025A
JPH0859025A JP19932494A JP19932494A JPH0859025A JP H0859025 A JPH0859025 A JP H0859025A JP 19932494 A JP19932494 A JP 19932494A JP 19932494 A JP19932494 A JP 19932494A JP H0859025 A JPH0859025 A JP H0859025A
Authority
JP
Japan
Prior art keywords
light
optical path
path
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19932494A
Other languages
Japanese (ja)
Other versions
JP3541062B2 (en
Inventor
Nobuhiro Motoi
信広 本井
Masashi Wakagimi
政司 若公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP19932494A priority Critical patent/JP3541062B2/en
Publication of JPH0859025A publication Critical patent/JPH0859025A/en
Application granted granted Critical
Publication of JP3541062B2 publication Critical patent/JP3541062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Controlling Sheets Or Webs (AREA)

Abstract

PURPOSE: To provide a detecting device which disuses a connection cord to connect a luminescent element and an optical receiving element, and is few in the number of parts and simple in structure. CONSTITUTION: A carrying path 4 for a carrier medium 1 is formed between an upper carrier guide 2 and a lower carrier guide 3, and optical pathes 5, 6 are formed in the carrier guide 2, and a reflecting plane 12 is formed at the end part of the optical path 5, and a reflecting plane 13 is formed in the optical path 6. A luminescent element 7 is attached to a base plate 9 so as to be opposite to the end of the optical path 5, and a luminescent element 8 is attached to a base plate 9 so as to be opposite to the end of the optical path 6, and an optical receiving element 19 is attached to the base plate 9. Light issued from the luminescent element 7 passes through the optical path 5, and is reflected on the reflecting plane 12 toward the carrying path 4 and the carrier guide 3. In addition, light issued from the luminescent element 8 passes through the optical path 6, and is reflected on the reflecting plane 13 toward the carrier path 4 and the carrier guide 3. A optical path is also formed in the lower carrier guide 3, and light reflected on the reflecting planes 12, 13 is led to the optical receiving element 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紙幣入出金装置や光学
式文字読取装置、カード/証書発行装置や複写機等のよ
うな、複数種の定型の媒体を搬送して処理する媒体取扱
い装置に関し、とくに該媒体取扱い装置内を搬送する媒
体の搬送状態を検出する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a media handling device for carrying and processing a plurality of types of standard media such as a bill depositing / dispensing device, an optical character reading device, a card / certificate issuing device and a copying machine. In particular, the present invention relates to a device for detecting a carrying state of a medium carried in the medium handling device.

【0002】[0002]

【従来の技術】従来より、紙幣入出金装置や複写機等の
ような媒体取扱い装置においては、紙幣や印刷用紙等の
媒体をある位置から他の位置へ搬送するための搬送路を
備えている。媒体の搬送については正確さが要求されて
おり、搬送路上における媒体の位置、外形あるいは斜向
状態さらに搬送速度等を監視している。監視手段として
は、搬送路の途中に発光素子と受光素子を配置し、発光
素子から出力される光を搬送する媒体が遮ることによる
受光素子からの光量の多少を検出することにより、搬送
状態を把握している。
2. Description of the Related Art Conventionally, a medium handling device such as a bill depositing / dispensing device or a copying machine is provided with a transport path for transporting a medium such as bills or printing paper from one position to another position. . Accuracy is required for the transportation of the medium, and the position, outer shape or oblique state of the medium on the transportation path, and the transportation speed are monitored. As the monitoring means, a light emitting element and a light receiving element are arranged in the middle of the conveying path, and the conveyance state is detected by detecting the amount of light from the light receiving element due to the medium that conveys the light output from the light emitting element being blocked. I have a grasp.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来
の、発光素子と受光素子とを使用する検出装置において
は、たとえば媒体の斜向を検出するためには、媒体の搬
送方向に対して直交する方向にすくなくとも2対の発光
素子と受光素子を並設する必要がある。つまり、媒体の
斜向を検出する場合は、媒体の先頭端を少なくとも2か
所で検出し、それぞれ検出の時間差により斜向かどうか
判断するようにしているので、少なくとも2対の発光、
受光素子が必要になるのである。
However, in the conventional detecting device using the light emitting element and the light receiving element, for example, in order to detect the oblique direction of the medium, a direction orthogonal to the medium conveying direction is detected. At least two pairs of light emitting element and light receiving element must be arranged in parallel. That is, when detecting the oblique direction of the medium, the leading end of the medium is detected at at least two places, and it is determined whether or not the oblique direction is due to the time difference between the detections. Therefore, at least two pairs of light emission,
A light receiving element is needed.

【0004】発光素子および受光素子はこれらを駆動す
る回路に接続コードにより接続されており、複数対の発
光、受光素子が配置されるとその分駆動回路および接続
コードが多くなり、結果として部品点数が多くなり、ま
た装置の構造が複雑になるという問題があった。
The light emitting element and the light receiving element are connected to a circuit for driving them by a connecting cord. When a plurality of pairs of light emitting and light receiving elements are arranged, the number of driving circuits and the connecting cords increases, resulting in the number of parts. However, there is a problem in that the structure of the device becomes complicated.

【0005】また、発光、受光素子の数量および素子の
数量の伴う回路や接続コードの数量が増えることによ
り、故障の発生率も増加し、保守性の低下並びに稼働率
の低下を招いていた。
Further, since the number of light-emitting and light-receiving elements and the number of circuits and connection cords accompanied by the number of elements increase, the failure occurrence rate also increases, leading to lower maintainability and lower operating rate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明が講じた手段は、搬送路上を搬送する搬送媒体
の搬送状態を光学的に検出する搬送媒体の検出装置にお
いて、前記搬送路を挟んで一方の側に配置された発光素
子と、前記搬送路を挟んで他方の側に配置された1個の
受光素子と、前記発光素子からの光を第1の位置で前記
一方の側から前記搬送路を通過させて前記他方の側へ導
き、さらに前記受光素子へ導く第1の光通路と、前記第
1の位置から所定の位置関係にある第2の位置で前記発
光素子からの光を前記一方の側から前記搬送路を通過さ
せて前記他方の側へ導き、さらに前記受光素子へ導く第
2の光通路と、前記受光素子の受光量に基づいて搬送媒
体の搬送状態を検出する検出回路とを設け、前記第1の
光通路から前記受光素子へ入る光の光量と前記第2の光
通路から前記受光素子へ入る光の光量と異なるようにし
たことである。
Means for Solving the Problems The means taken by the present invention to solve the above-mentioned problems are, in a carrier medium detecting device for optically detecting a carrier state of a carrier medium carried on a carrier path, said carrier path. A light-emitting element disposed on one side with the light-emitting element interposed therebetween, one light-receiving element disposed on the other side with the transport path interposed, and light from the light-emitting element at a first position on the one side. From the light emitting element at a second position that is in a predetermined positional relationship from the first position and a first optical path that leads to the other side through the transport path from the first optical path to the light receiving element. A second optical path that guides light from the one side to the other side through the transport path and further to the light receiving element, and detects the transport state of the transport medium based on the amount of light received by the light receiving element. And a detection circuit for controlling the reception from the first optical path. Is that the light intensity and the second optical path of light entering the element so as to differ from the amount of light entering the light receiving element.

【0007】前記第1の光通路は、前記一方の側に形成
され前記発光素子から出力される光を前記第1の位置へ
導く第1の光路と、前記他方の側に形成され前記第1の
位置から前記搬送路を通過して前記他方の側に導かれた
光を前記受光素子へ導く第2の光路とから成り、前記第
2の光通路は、前記一方の側に形成され前記発光素子か
ら出力される光を前記第2の位置へ導く第3の光路と、
前記他方の側に形成され前記第2の位置から前記搬送路
を通過して前記他方の側に導かれた光を前記受光素子へ
導く第4の光路とから成るようにし、前記第2の光路と
前記第4の光路は共通の光路を有するようにするか、ま
たはさらに前記第1の光路と前記第3の光路をも共通の
光路を有するようにするとよい。
The first optical path is formed on one side of the first optical path and guides the light output from the light emitting element to the first position, and the first optical path is formed on the other side of the first optical path. And a second optical path that guides the light, which has been guided to the other side through the transport path from the position, to the light receiving element, the second optical path being formed on the one side. A third optical path for guiding the light output from the element to the second position,
And a fourth optical path that is formed on the other side and that guides the light that has passed through the transport path from the second position and is guided to the other side to the light receiving element. And the fourth optical path may have a common optical path, or the first optical path and the third optical path may also have a common optical path.

【0008】[0008]

【作用】上記構成を有する本発明によれば、搬送路を搬
送される搬送媒体の搬送時において、発光素子から出力
された光は第1の位置で搬送路を通過するとともに、第
2の位置で搬送路を通過する。搬送媒体は、第1の位置
または第2の位置で、あるいは同時に両方の位置で光を
遮る。第1の位置で光が遮られると、第1の光通路から
受光素子へ光が入らなくなり、受光素子へは第2の光通
路からの光のみが入る。逆に第2の位置で媒体により光
が遮られると、受光素子へは第1の光通路からの光のみ
が入る。第1の光通路から受光素子へ入る光の光量と第
2の光通路から受光素子へ入る光の光量とは異なるよう
にしたので、検出回路では受光素子へ入る光の光量によ
り、第1の位置で光が遮られたのか、第2の位置で光が
遮られたのか検出できる。これにより搬送媒体の搬送状
態、例えば斜向状態を検出できる。第1の光通路および
第2の光通路を設けたことにより、発光素子および受光
素子を搬送路から離れた制御基板等に直接取付けること
が可能になり、接続コード等が不要になる。
According to the present invention having the above-described structure, when the transport medium transported through the transport path is transported, the light output from the light emitting element passes through the transport path at the first position and the second position. Passes through the transport path. The carrier medium blocks light at the first or second position, or both at the same time. When the light is blocked at the first position, the light does not enter the light receiving element from the first light passage, and only the light from the second light passage enters the light receiving element. On the contrary, when the light is blocked by the medium at the second position, only the light from the first optical path enters the light receiving element. Since the amount of light entering the light receiving element from the first optical path and the amount of light entering the light receiving element from the second optical path are made different, the detection circuit determines the first amount depending on the amount of light entering the light receiving element. Whether the light is blocked at the position or the light is blocked at the second position can be detected. This makes it possible to detect the conveyance state of the conveyance medium, for example, the oblique state. By providing the first optical path and the second optical path, it becomes possible to directly attach the light emitting element and the light receiving element to a control board or the like apart from the transport path, and a connection cord or the like becomes unnecessary.

【0009】前記第1の光通路を前記第1の光路と前記
第2の光路とで構成し、前記第2の光通路は、前記第3
の光路と前記第4の光路とで構成し、前記第2の光路と
前記第4の光路を共通の光路を有するようにし、さらに
前記第1の光路と前記第3の光路をも共通の光路を有す
るようにすることにより、第1、第2の光通路の構成が
簡単になる。
The first optical path is composed of the first optical path and the second optical path, and the second optical path is the third optical path.
Optical path and the fourth optical path, the second optical path and the fourth optical path have a common optical path, and the first optical path and the third optical path also have a common optical path. With the above structure, the configuration of the first and second optical paths is simplified.

【0010】[0010]

【実施例】以下、本発明に係る実施例を図面にしたがっ
て詳細に説明する。各図面に共通する要素には同一の符
号を付す。図1は本発明の第1実施例を示す斜視図、図
2は第1実施例の要部平面図、図3は図1のX−X断面
図、図4は第1実施例の要部底面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. The same reference numerals are given to elements common to each drawing. 1 is a perspective view showing a first embodiment of the present invention, FIG. 2 is a plan view of an essential part of the first embodiment, FIG. 3 is a sectional view taken along line XX of FIG. 1, and FIG. 4 is an essential part of the first embodiment. It is a bottom view.

【0011】図1〜図4において、搬送媒体1は紙幣や
用紙等で、図示しない搬送手段により搬送される。上側
の搬送ガイド2および下側の搬送ガイド3は、両者の間
に所定の間隙を確保して平行に支持されており、搬送媒
体1を搬送するための搬送路4を形成する。両搬送ガイ
ド2、3は、ともに光が透過する部材、例えば透明なプ
ラスチック樹脂材で形成される。上側の搬送ガイド2に
は、光路5および光路6が形成されている。図2に示す
ように、光路5は直線状に形成され、光路6は直線部6
a、6bとその中間の傾斜部6cから成り、直線部6b
と光路5は同一直線上に形成される。
1 to 4, the transport medium 1 is a bill, paper, or the like, and is transported by a transport means (not shown). The upper transport guide 2 and the lower transport guide 3 are supported in parallel with a predetermined gap between them to form a transport path 4 for transporting the transport medium 1. Both the transport guides 2 and 3 are formed of a member that allows light to pass through, for example, a transparent plastic resin material. An optical path 5 and an optical path 6 are formed in the upper transport guide 2. As shown in FIG. 2, the optical path 5 is formed in a linear shape, and the optical path 6 is formed in the linear portion 6
a, 6b and an inclined portion 6c in the middle thereof, and a straight portion 6b
And the optical path 5 are formed on the same straight line.

【0012】光路5の端部に対向して発光素子7が配設
され、光路6の端部に対向して発光素子8が配設されて
いる。発光素子7、8はともに制御基板9に直接半田付
けされており、電流が流されると光を出力する。発光素
子7、8が制御基板9に直接半田付けされることによ
り、接続コードおよびコネクタが不要になる。制御基板
9は搬送ガイド2、3の側部に配設され、装置の動作制
御に必要な回路が実装されている。発光素子7に対向す
る光路5の端部は、発光素子7からの光を取り込む取り
込み部10であり、発光素子8に対向する光路6の端部
11は、発光素子8からの光を取り込む取り込み部であ
る。取り込み部10および取り込み部11の端面は、発
光素子7、8に対して垂直で、一辺が発光素子7、8の
直径と同等かもしくは若干長い四角形の平面で形成され
ている。取り込み部10と反対側の光路5の端部12
は、光路5を通ってくる光を反射して搬送路4方向へ導
く反射面であり、また取り込み部11と反対側の光路6
の端部13は、光路6を通ってくる光を反射して搬送路
4方向へ導く反射面である。
A light emitting element 7 is arranged facing the end of the optical path 5, and a light emitting element 8 is arranged facing the end of the optical path 6. Both the light emitting elements 7 and 8 are directly soldered to the control board 9 and output light when a current is applied. Since the light emitting elements 7 and 8 are directly soldered to the control board 9, the connection cord and the connector are unnecessary. The control board 9 is disposed on the side of the transport guides 2 and 3, and the circuits necessary for controlling the operation of the apparatus are mounted. The end of the optical path 5 facing the light emitting element 7 is a capturing unit 10 that captures the light from the light emitting element 7, and the end 11 of the optical path 6 that faces the light emitting element 8 captures the light from the light emitting element 8. It is a department. The end faces of the capturing section 10 and the capturing section 11 are formed in a rectangular flat surface which is perpendicular to the light emitting elements 7 and 8 and whose one side is equal to or slightly longer than the diameter of the light emitting elements 7 and 8. The end portion 12 of the optical path 5 on the side opposite to the capturing portion 10
Is a reflecting surface that reflects the light passing through the optical path 5 and guides it in the direction of the transport path 4, and also the optical path 6 on the side opposite to the capturing section 11.
The end portion 13 is a reflecting surface that reflects the light passing through the optical path 6 and guides it toward the transport path 4.

【0013】下側の搬送ガイド3には、図3および図4
に示すように、光路14と光路15が一体的に形成され
ている。光路14と光路15は一体に形成され、光路1
4は反射面16から端部17までを成し、光路15は反
射面18から端部17までを成す。光路14(15)に
対向して、受光素子19が設けられている。受光素子1
9は、発光素子7、8と同様、制御基板9に直接半田付
けされている。端部17は、光路14および光路15の
片方または両方を通ってくる光を受光素子19へ送る取
り出し部であり、その端面は、受光素子19に対し垂直
で、一辺が受光素子19の直径と同等かもしくは若干長
い四角形の平面で形成されている。
The lower transport guide 3 has a structure shown in FIGS.
As shown in, the optical path 14 and the optical path 15 are integrally formed. The optical path 14 and the optical path 15 are integrally formed, and the optical path 1
Reference numeral 4 denotes the reflection surface 16 to the end portion 17, and the optical path 15 forms the reflection surface 18 to the end portion 17. A light receiving element 19 is provided so as to face the optical path 14 (15). Light receiving element 1
Like the light emitting elements 7 and 8, 9 is directly soldered to the control board 9. The end portion 17 is a take-out portion that sends the light passing through one or both of the optical paths 14 and 15 to the light receiving element 19, and its end face is perpendicular to the light receiving element 19 and one side is the diameter of the light receiving element 19. It is formed by a rectangular flat surface that is equal or slightly longer.

【0014】反射面16は、光路5の反射面12で反射
されて搬送路4を通過してくる光を受け、この光を取り
出し部17方向へ導く。また反射面18は、光路6の反
射面13で反射されて搬送路4を通過してくる光を受
け、この光を取り出し部17方向へ導く。
The reflecting surface 16 receives the light reflected by the reflecting surface 12 of the optical path 5 and passing through the transport path 4, and guides this light toward the extracting portion 17. Further, the reflecting surface 18 receives the light reflected by the reflecting surface 13 of the optical path 6 and passing through the transport path 4, and guides this light toward the extraction portion 17.

【0015】以上のように本実施例では、発光素子7か
ら出た光が光路5を通り、反射面12で反射し、搬送路
4を通過して光路14の反射面16に達し、さらに光路
14を通って受光素子19へ入る光通路(第1の光通
路)25と、発光素子8から出た光が光路6を通り、反
射面13で反射し、搬送路4を通過して光路15の反射
面18に達し、さらに光路15を通って受光素子19へ
入る光通路(第2の光通路)26が形成される。第1の
光通路25で光が搬送路4を通過する位置Aと、第2の
光通路26で光が搬送路4を通過する位置Bは、両位置
A、Bを結ぶ直線が搬送媒体1の搬送方向Cに直交する
関係になるように設定されている。しかしながらA、B
の位置関係は、必ずしも搬送方向Cに直交するように設
定する必要はなく、設計の都合に応じて例えば両方を結
ぶ直線が斜めになるように設定しても良い。
As described above, in this embodiment, the light emitted from the light emitting element 7 passes through the optical path 5, is reflected by the reflecting surface 12, passes through the conveying path 4, reaches the reflecting surface 16 of the optical path 14, and further the optical path. An optical path (first optical path) 25 entering the light receiving element 19 through 14 and light emitted from the light emitting element 8 passes through the optical path 6, is reflected by the reflecting surface 13, passes through the transport path 4, and passes through the optical path 15. An optical path (second optical path) 26 that reaches the reflection surface 18 of the optical path and enters the light receiving element 19 through the optical path 15 is formed. At the position A where the light passes through the transport path 4 in the first optical path 25 and the position B where the light passes through the transport path 4 in the second optical path 26, the straight line connecting both positions A and B is the transport medium 1. It is set so as to be orthogonal to the transport direction C of. However, A, B
The positional relationship of is not necessarily set to be orthogonal to the transport direction C, and may be set so that, for example, a straight line connecting both is oblique depending on design convenience.

【0016】本実施例においては、第1の光通路25の
長さと第2の光通路26の長さが異なっている。光の通
路が長いとそれだけ光は減衰するので、第2の光通路2
6を通る光の方が、第1の光通路25を通る光より多く
減衰する。したがって受光素子19へ入る光の量は、第
1の光通路25からの方が第2の光通路26からより多
くなる。
In this embodiment, the length of the first optical path 25 and the length of the second optical path 26 are different. Since the longer the light path is, the more light is attenuated, the second light path 2
The light passing through 6 is attenuated more than the light passing through the first light path 25. Therefore, the amount of light entering the light receiving element 19 is larger from the first light passage 25 than from the second light passage 26.

【0017】図5は第1実施例の検出回路を示す回路図
である。図5において、発光素子7または8は発光ダイ
オードから成り、負荷抵抗R1またはR2を介して電源
CCに接続され、また受光素子19は受光トランジスタ
から成り、抵抗R3を介して電源VCCに接続されてい
る。受光素子19のコレクタ端子はコンパレータ20、
21、22、23の各プラス端子に接続されている。コ
ンパレータ20のマイナス端子には抵抗R4が接続さ
れ、この抵抗R4の値は、基準電圧VS1が後述する受
光素子19の出力電圧V1と出力電圧V2の間になるよ
うに設定されている。コンパレータ21のマイナス端子
には抵抗R5が接続され、この抵抗R5の値は、同様
に、基準電圧VS2が受光素子19の出力電圧V2とV
3の間になるように設定されている。コンパレータ22
のマイナス端子には抵抗R6が接続され、この抵抗R6
の値は、同様に、基準電圧VS3が受光素子19の出力
電圧V3とV4の間になるように設定されている。コン
パレータ23のマイナス端子には抵抗R7が接続され、
この抵抗R7の値は、同様に、基準電圧VS4が受光素
子19の出力電圧V4未満になるように設定されてい
る。コンパレータ20、21、22、23はそれぞれ、
受光素子19の出力電圧VCEと各基準電圧VS1〜VS
4を比較し、VCEが大きい場合に信号“1”を、VCE
小さい場合に信号“0”をCPU24へ送る。CPU2
4では、各コンパレータ20、21、22、23から送
られてくる信号に基づいて、搬送媒体1の搬送状態を判
別する。
FIG. 5 is a circuit diagram showing the detection circuit of the first embodiment. In FIG. 5, the light emitting element 7 or 8 is formed of a light emitting diode and is connected to the power source V CC through the load resistor R1 or R2, and the light receiving element 19 is formed of a light receiving transistor and is connected to the power source V CC through the resistor R3. Has been done. The collector terminal of the light receiving element 19 is a comparator 20,
It is connected to each plus terminal of 21, 22, and 23. A resistor R4 is connected to the negative terminal of the comparator 20, and the value of the resistor R4 is set so that the reference voltage VS1 is between the output voltage V1 and the output voltage V2 of the light receiving element 19 described later. A resistor R5 is connected to the negative terminal of the comparator 21, and the value of the resistor R5 is the reference voltage VS2 similarly to the output voltages V2 and V2 of the light receiving element 19.
It is set to be in the range of 3. Comparator 22
A resistor R6 is connected to the negative terminal of
Similarly, the value of is set such that the reference voltage VS3 is between the output voltages V3 and V4 of the light receiving element 19. A resistor R7 is connected to the negative terminal of the comparator 23,
Similarly, the value of the resistor R7 is set so that the reference voltage VS4 becomes less than the output voltage V4 of the light receiving element 19. The comparators 20, 21, 22, and 23 are respectively
Output voltage V CE of light receiving element 19 and each reference voltage VS1 to VS
4 compares sends a signal "1" when V CE is high, a signal "0" when V CE is small to CPU 24. CPU2
In 4, the carrying state of the carrying medium 1 is determined based on the signals sent from the comparators 20, 21, 22, and 23.

【0018】次に第1実施例における搬送媒体の検出動
作を説明するが、動作説明の前に搬送媒体の搬送状態例
について図6および図7にしたがって説明する。図6は
搬送媒体の搬送状態例を示す説明図、図7は検出回路上
に発生する電圧と電流の関係を示すグラフである。なお
図7では、横軸に受光素子19のコレクタ−エミッタ間
電圧、即ち出力電圧VCEを表し、縦軸に受光素子19の
コレクタ電流IC を表す。
Next, the operation of detecting the carrying medium in the first embodiment will be described. Before explaining the operation, an example of the carrying state of the carrying medium will be described with reference to FIGS. 6 and 7. FIG. 6 is an explanatory view showing an example of the carrying state of the carrying medium, and FIG. 7 is a graph showing the relationship between the voltage and the current generated on the detection circuit. In FIG. 7, the horizontal axis represents the collector-emitter voltage of the light receiving element 19, that is, the output voltage V CE , and the vertical axis represents the collector current I C of the light receiving element 19.

【0019】図6において、光線5aは第1の光通路2
5を通る光が搬送路4を通過する際の光線であり、光線
26aは第2の光通路26を通る光が搬送路4を通過す
る際の光線である。搬送媒体1の搬送状態は以下のよう
な4つの状態が存在する。即ち、 (1)搬送媒体1の先頭端が一方の光線25aを遮り、
もう一方の光線26aを遮っていない状態。 (2)(1)とは反対に、搬送媒体1の先頭端が光線2
6aを遮り、光線25aを遮っていない状態。 (3)搬送媒体1がどちらの光線25a、26aをも遮
っていない状態。 (4)搬送媒体1が両方の光線25a、26aをともに
遮っている状態。
In FIG. 6, the light beam 5a is reflected by the first light path 2
The light passing through 5 is a light beam when passing through the transport path 4, and the light beam 26a is a light beam when passing through the second light path 26 through the transport path 4. The transport state of the transport medium 1 has the following four states. That is, (1) the leading end of the carrier medium 1 blocks one light beam 25a,
The state where the other ray 26a is not blocked. (2) Contrary to (1), the leading end of the carrier medium 1 is the ray 2
6a is blocked and the light beam 25a is not blocked. (3) The state in which the carrier medium 1 does not block either of the light rays 25a and 26a. (4) A state in which the carrier medium 1 blocks both the light rays 25a and 26a.

【0020】上記4つのそれぞれの状態により、検出回
路で検出される電圧および電流の値が異なってくる。即
ち、上記(1)の状態では、光線25aのみが遮られて
いるので、受光素子19へは、発光素子8から出力され
第2の光通路26を通過してきた光のみが入る。本実施
例では第1の光通路25を通る光の量が第2の光通路2
6を通る光の量よりも大きくなっており、量の多い方の
光が遮られるので、受光素子19へは図7に示す第3段
階の電流が流れ、受光素子19に発生する出力電圧VCE
は図7に示すV2となる。
The values of the voltage and current detected by the detection circuit differ depending on each of the above four states. That is, in the above state (1), only the light ray 25a is blocked, so that only the light output from the light emitting element 8 and passing through the second optical path 26 enters the light receiving element 19. In this embodiment, the amount of light passing through the first light path 25 is equal to that of the second light path 2.
Since the amount of light passing through 6 is larger and the larger amount of light is blocked, the third stage current shown in FIG. 7 flows to the light receiving element 19, and the output voltage V generated in the light receiving element 19 is increased. CE
Becomes V2 shown in FIG.

【0021】上記(2)の状態では、光線26aのみが
遮られているので、受光素子19に流れる電流は、同様
に、図7に示す第2段階の電流が流れ、電圧VCEはV3
となる。上記(3)の状態は、どちらの光線25a、2
6aも遮られていないので、受光素子19へは最も多い
第1段階の電流が流れ、電圧VCEはV4となる。また上
記(4)の状態は、両方の光線25a、26aとも遮ら
れているので、受光素子19へ流れる電流は最も少ない
第4段階となり、電圧VCEはV1となる。
In the above state (2), since only the light beam 26a is blocked, the current flowing through the light receiving element 19 is also the second stage current shown in FIG. 7, and the voltage V CE is V3.
Becomes In the state of (3) above, which of the rays 25a, 2
Since 6a is not blocked, the most first-stage current flows to the light receiving element 19, and the voltage V CE becomes V4. Further, in the state of (4), since both the light rays 25a and 26a are blocked, the fourth stage in which the current flowing to the light receiving element 19 is the smallest and the voltage V CE becomes V1.

【0022】次に本実施例の搬送媒体の検出動作を図8
および図9にしたがって説明する。図8は搬送媒体の搬
送状態を示す説明図、図9は受光素子の出力電圧の変化
を示すタイムチャートである。なお図9において、VS
1〜VS4は、図5で説明した基準電圧である。前述し
たように、VS1はV1とV2の間に設定され、VS2
はV2とV3の間に設定され、VS3はV3とV4の間
に設定され、VS4はV4より低く設定される。
Next, the operation of detecting the carrier medium of this embodiment will be described with reference to FIG.
And it demonstrates according to FIG. FIG. 8 is an explanatory view showing the carrying state of the carrying medium, and FIG. 9 is a time chart showing changes in the output voltage of the light receiving element. In FIG. 9, VS
1 to VS4 are the reference voltages described in FIG. As mentioned above, VS1 is set between V1 and V2, and VS2
Is set between V2 and V3, VS3 is set between V3 and V4, and VS4 is set lower than V4.

【0023】搬送媒体1は、図8に示す(a)の状態か
ら順次(e)の状態になるように搬送されていくものと
する。(a)の状態では、搬送媒体1はどちらの光線2
5a、26aも遮っていないので、受光素子19から出
力される電圧VCEは、第1段階の電圧V4になる(区間
1 )。このとき、検出回路のコンパレータ20、2
1、22、23から“0”“0”“0”“1”の信号が
CPU24に出力される。CPU24はこの信号に基づ
いて、搬送媒体1がないと判断する。この状態から媒体
1が搬送され、その先頭端が(b)の状態のように光線
26aを遮ると、受光素子19から出力される電圧VCE
は、第2段階の電圧V3となる(区間S2)。このと
き、検出回路のコンパレータ20、21、22、23か
ら“0”“0”“1”“1”の信号がCPU24に出力
される。CPU24では、この信号に基づいて、光線2
6aが遮られていることを判別し、搬送媒体1が図8に
示す方向に斜向していることを検出する。
It is assumed that the carrier medium 1 is sequentially carried from the state (a) shown in FIG. 8 to the state (e). In the state of (a), the carrier medium 1 has which light beam 2
Since 5a and 26a are not blocked, the voltage V CE output from the light receiving element 19 becomes the voltage V4 at the first stage (section S 1 ). At this time, the comparators 20 and 2 of the detection circuit
Signals “0” “0” “0” “1” are output from the CPUs 1, 22, 23 to the CPU 24. Based on this signal, the CPU 24 determines that the carrier medium 1 does not exist. When the medium 1 is conveyed from this state and the leading end thereof blocks the light beam 26a as in the state of (b), the voltage V CE output from the light receiving element 19 is generated.
Becomes the voltage V3 of the second stage (section S 2 ). At this time, the signals “0”, “0”, “1”, and “1” are output from the comparators 20, 21, 22, and 23 of the detection circuit to the CPU 24. In the CPU 24, based on this signal, the light beam 2
It is determined that 6a is blocked, and it is detected that the transport medium 1 is obliquely oriented in the direction shown in FIG.

【0024】さらに搬送媒体1が搬送されて(c)の状
態になると、両方の光線25a、26aが遮られるの
で、受光素子19から出力される電圧VCEは、第4段階
の電圧V1となる。このとき、検出回路のコンパレータ
20、21、22、23から“1”“1”“1”“1”
の信号がCPU24に出力される。CPU24では、こ
の信号に基づいて、両方の光線25a,26aが遮られ
ていることを判別する。受光素子19の出力電圧VCE
V3からV1に変化するまでの時間tを、CPU24で
計測することにより、搬送媒体1の斜向量(傾き角度)
を求めることができる。さらに搬送媒体1が搬送されて
(d)の状態になると、光線25aのみが遮られている
ので、受光素子19からの出力電圧VCEは、第3段階の
電圧V2になる(区間S4 )。このとき、検出回路のコ
ンパレータ20、21、22、23から“0”“1”
“1”“1”の信号がCPU24に出力される。CPU
24では、この信号に基づいて、光線25aが遮られて
いることを判別する。そして最終的に(e)の状態にな
ると、どちらの光線25a、26aも遮られなくなり、
受光素子19の出力電圧は、(a)の状態と同じ第1段
階の電圧V4となる。
When the carrier medium 1 is further transported to the state of (c), both the light rays 25a and 26a are blocked, so that the voltage V CE output from the light receiving element 19 becomes the voltage V1 of the fourth stage. . At this time, from the comparators 20, 21, 22, 23 of the detection circuit, "1""1""1""1"
Is output to the CPU 24. Based on this signal, the CPU 24 determines that both the light rays 25a and 26a are blocked. The time t until the output voltage V CE of the light receiving element 19 changes from V3 to V1 is measured by the CPU 24, so that the skew amount (tilt angle) of the conveying medium 1 is measured.
Can be requested. Further, when the transport medium 1 is transported to the state of (d), only the light beam 25a is blocked, so the output voltage V CE from the light receiving element 19 becomes the voltage V2 of the third stage (section S 4 ). . At this time, the comparators 20, 21, 22, and 23 of the detection circuit output “0” and “1”.
The signals “1” and “1” are output to the CPU 24. CPU
At 24, it is determined based on this signal that the light ray 25a is blocked. Finally, in the state of (e), neither of the light rays 25a and 26a is blocked,
The output voltage of the light receiving element 19 becomes the first stage voltage V4 which is the same as the state of (a).

【0025】図8、図9は搬送媒体1が搬送方向に向か
って左側に斜向した場合の検出動作を示すものである
が、搬送媒体1が搬送方向に向かって右側に斜向した場
合も同様に検出できることはいうまでもない。図10
は、搬送媒体1が搬送方向に向かって右側に斜向した場
合の受光素子の出力電圧VCEの変化を示すタイムチャー
トである。同図に示すように、区間S2 において、第3
段階の電圧V2が出力される。区間S2 でこの電圧V2
を検出することにより、搬送媒体1が右側に斜向してい
ると判断され、電圧V2が出力され始めてから電圧V1
が出力されるまでの時間を計測することにより、搬送媒
体1の斜向量が測定される。
8 and 9 show the detection operation when the carrier medium 1 is tilted leftward in the carrying direction, but the carrier medium 1 is also tilted rightward in the carrying direction. Needless to say, it can be detected similarly. Figure 10
4A is a time chart showing changes in the output voltage V CE of the light receiving element when the carrier medium 1 is inclined rightward in the carrying direction. As shown in the figure, in the section S 2 , the third
The stepped voltage V2 is output. This voltage V2 in the section S 2
Is detected, it is determined that the carrier medium 1 is tilted to the right, and the voltage V1 is output after the voltage V2 starts to be output.
The skew amount of the transport medium 1 is measured by measuring the time until is output.

【0026】以上説明したように第1実施例によれば、
発光素子7、8および受光素子19を直接制御基板9に
取付けて、搬送媒体1の搬送状態を検出することができ
る。とくに受光素子19を1個にしたので、受光素子の
数を少なくすることができる効果がある。また第1の光
通路25を通る光と第2の光通路26を通る光の量を異
ならせるのに、光路の長さを変えることにより行ってい
るので、簡単な構造で受光素子の削減が実現できる。
As described above, according to the first embodiment,
The light emitting elements 7 and 8 and the light receiving element 19 can be directly attached to the control board 9 to detect the carrying state of the carrying medium 1. In particular, since the number of light receiving elements 19 is one, there is an effect that the number of light receiving elements can be reduced. Further, since the amount of light passing through the first optical path 25 and the amount of light passing through the second optical path 26 are made different by changing the length of the optical path, the number of light receiving elements can be reduced with a simple structure. realizable.

【0027】次に本発明に係る第2実施例を説明する。
図11は本発明に係る第2実施例を示す斜視図、図12
は第2実施例を示す要部平面図、図13は図11のZ−
Z断面図である。本発明の第2実施例は、前記第1実施
例に対して発光素子の数を少なくしたものである。
Next, a second embodiment according to the present invention will be described.
11 is a perspective view showing a second embodiment according to the present invention, FIG.
Is a plan view of an essential part showing the second embodiment, and FIG. 13 is a view of Z- in FIG.
It is a Z sectional view. The second embodiment of the present invention has a smaller number of light emitting elements than the first embodiment.

【0028】搬送媒体1の搬送路4を形成する上側搬送
ガイド2および下側搬送ガイド3が設けられ、上側搬送
ガイド2には光路31および32が一体に形成されてい
る。光路31は、共通取り込み部33から反射面34ま
でを成し、光路32は、共通取り込み部33から反射面
35までを成している。即ち、光路31は全体が共通の
光路となっている。反射面34の深度(図13にHで示
す)は、取り込み部33の高さ(図13にLで示す)の
約2分の1になっており、取り込み部33で取り込まれ
た光の半分をここで搬送路4方向へ反射するようにして
いる。反射面34の角度は媒体1の搬送面に対して約4
5度となっている。反射面35は、その角度が同様に約
45度の設定され、光路32を通ってきた光を搬送路4
方向へ反射する。
An upper transport guide 2 and a lower transport guide 3 which form a transport path 4 for the transport medium 1 are provided, and optical paths 31 and 32 are integrally formed in the upper transport guide 2. The optical path 31 extends from the common capturing section 33 to the reflecting surface 34, and the optical path 32 extends from the common capturing section 33 to the reflecting surface 35. That is, the entire optical path 31 is a common optical path. The depth of the reflecting surface 34 (shown by H in FIG. 13) is about one half of the height of the capturing section 33 (shown by L in FIG. 13), which is half of the light captured by the capturing section 33. Is reflected here in the direction of the transport path 4. The angle of the reflecting surface 34 is about 4 with respect to the transport surface of the medium 1.
It is 5 degrees. The angle of the reflecting surface 35 is similarly set to about 45 degrees, and the light that has passed through the optical path 32 is conveyed by the transport path 4
Reflects in the direction.

【0029】共通取り込み部33に対向して、制御基板
9に発光素子36が直接半田付けされている。共通取り
込み部33の端面は、発光素子36に対して垂直で、一
辺が発光素子36の直径と同等かもしくは若干長い四角
形の平面で構成される。発光素子36から出力される光
は共通取り込み部33で取り込まれ、光路31および3
2へ伝わる。
The light emitting element 36 is directly soldered to the control board 9 so as to face the common take-in portion 33. The end surface of the common capturing portion 33 is a rectangular flat surface which is perpendicular to the light emitting element 36 and whose one side is equal to or slightly longer than the diameter of the light emitting element 36. The light output from the light emitting element 36 is captured by the common capturing unit 33, and the light paths 31 and 3
It is transmitted to 2.

【0030】下側搬送ガイド3には、第1実施例と同様
に、光路14および15が形成されている。即ち、光路
14と光路15は一体に形成され、光路14は反射面1
6から取り出し部17までを成し、光路15は反射面1
8から取り出し部17までを成す。取り出し部17は、
制御基板9に半田付けされた受光素子19に対向してい
る。
Optical paths 14 and 15 are formed in the lower transport guide 3 as in the first embodiment. That is, the optical path 14 and the optical path 15 are integrally formed, and the optical path 14 has the reflecting surface 1
6 to the take-out portion 17, and the optical path 15 is the reflecting surface 1
8 to the take-out part 17. The take-out section 17 is
It faces the light receiving element 19 soldered to the control board 9.

【0031】反射面34で反射された光は搬送路4を通
過して反射面16に達し、ここで取り出し部17方向へ
反射されて、受光素子19へ入る。この光の通路37を
第1の光通路と呼ぶ。また光路32を通って反射面35
で反射された光は、搬送路4を通過して光路15の反射
面18に達し、ここで取り出し部17方向へ反射されて
受光素子19へ入る。この光の通路38を第2の光通路
と呼ぶ。第1の光通路37の光が搬送路4を通過する位
置は、第1実施例と同様に、Aの位置であり、第2の光
通路38の光が搬送路4を通過する位置は、Bの位置と
なっている。その他の第2実施例の構成は、第1実施例
と同様になっている。
The light reflected by the reflecting surface 34 passes through the conveying path 4 and reaches the reflecting surface 16, where it is reflected toward the extraction portion 17 and enters the light receiving element 19. This light path 37 is called a first light path. In addition, the reflecting surface 35 passes through the optical path 32.
The light reflected by (1) passes through the transport path 4 and reaches the reflecting surface 18 of the optical path 15, where it is reflected toward the extraction portion 17 and enters the light receiving element 19. This light passage 38 is called a second light passage. The position where the light in the first optical path 37 passes through the transport path 4 is the position A as in the first embodiment, and the position where the light in the second optical path 38 passes through the transport path 4 is It is in position B. Other configurations of the second embodiment are similar to those of the first embodiment.

【0032】第2実施例においては、光路31の反射面
34の位置で、反射される光の量と直進する光の量はほ
ぼ同じとなっている。しかしながら、第1の光通路37
と第2の光通路38とでは、共通取り込み部33から取
り出し部17までの長さが異なる。光の通路が長いと、
光は減衰するので、第2の光通路38から受光素子19
へ入る光の量は、第1の光通路から受光素子19へ入る
光の量より少なくなる。それ故、搬送媒体1が第1の光
通路37の光を遮った場合と、搬送媒体1が第2の光通
路の光を遮った場合とでは、受光素子19の出力電圧が
異なる。この違いを検出することにより、第1実施例と
同様に、搬送媒体1の斜向状態(どちら側に斜向してい
るか)および斜向量を検出することができる。
In the second embodiment, at the position of the reflecting surface 34 of the optical path 31, the amount of reflected light and the amount of light traveling straight are substantially the same. However, the first light path 37
The second light path 38 and the second light path 38 have different lengths from the common take-in portion 33 to the take-out portion 17. If the light path is long,
Since the light is attenuated, the light receiving element 19 passes through the second optical path 38.
The amount of light entering the light receiving element 19 is smaller than the amount of light entering the light receiving element 19 from the first optical path. Therefore, the output voltage of the light receiving element 19 is different when the carrier medium 1 blocks the light of the first optical path 37 and when the carrier medium 1 blocks the light of the second optical path. By detecting this difference, it is possible to detect the skewed state (which side is skewed) and the skew amount of the transport medium 1 as in the first embodiment.

【0033】以上にように第2実施例においては、1個
の発光素子36で搬送媒体1の搬送状態を検出できるの
で、発光素子の数を少なくできることによるコストの低
減が期待できる。
As described above, in the second embodiment, since the transport state of the transport medium 1 can be detected by one light emitting element 36, it is expected that the number of light emitting elements can be reduced and the cost can be reduced.

【0034】次に本発明の第3実施例を図14にしたが
って説明する。図14は本発明の第3実施例を示す断面
図である。第3実施例の検出装置は、発光素子を上側の
搬送ガイドに直接設けたものである。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 14 is a sectional view showing the third embodiment of the present invention. In the detection device of the third embodiment, the light emitting element is directly provided on the upper conveyance guide.

【0035】図14において、搬送媒体1の搬送路4
は、上側搬送ガイド41と下側搬送ガイド3により形成
される。上側搬送ガイド41には、篏入穴42、43が
形成され、この篏入穴42、43に発光素子44、45
が嵌入している。発光素子44および45は基板46に
直接半田付けされている。基板46は搬送ガイド46に
固定されており、またコネクタ47を介して制御基板9
に電気的に接続されている。下側の搬送ガイド3には、
前記第1、第2実施例と同様に、光路14および光路1
6が形成されている。
In FIG. 14, the transport path 4 for the transport medium 1
Is formed by the upper conveyance guide 41 and the lower conveyance guide 3. Insert holes 42 and 43 are formed in the upper conveyance guide 41, and the light emitting elements 44 and 45 are inserted into the insert holes 42 and 43.
Is inserted. The light emitting elements 44 and 45 are directly soldered to the substrate 46. The board 46 is fixed to the conveyance guide 46, and the control board 9 is connected via the connector 47.
Electrically connected to. The lower transport guide 3 has
Similar to the first and second embodiments, the optical path 14 and the optical path 1
6 is formed.

【0036】発光素子44から出力される光は、Aの位
置で搬送路4を通過し、光路14の反射面16に達し、
ここで取り出し部17方向に反射される。また発光素子
45から出力される光は、Bの位置で搬送路4を通過
し、光路15の反射面18に達し、ここで取り出し部1
7方向に反射される。取り出し部17に反射されてくる
光は、受光素子19へ入る。
The light output from the light emitting element 44 passes through the conveying path 4 at the position A, reaches the reflecting surface 16 of the optical path 14,
Here, the light is reflected in the direction of the take-out portion 17. Further, the light output from the light emitting element 45 passes through the transport path 4 at the position B and reaches the reflecting surface 18 of the optical path 15, where the extraction section 1
It is reflected in 7 directions. The light reflected by the extraction portion 17 enters the light receiving element 19.

【0037】図15は第3実施例の発光、受光素子を示
す回路図である。同図において、発光素子44および4
5は、第1実施例で示したと同様に、発光ダイオードL
ED1、LED2から成り、それぞれ負荷抵抗R8、R
9が接続されている。負荷抵抗R8の値と負荷抵抗R9
の値を異なる値に設定することにより、発光素子44と
発光素子45に流れる電流値を異ならせることができ
る。電流値が異なると、発光素子44と発光素子45と
で発光量が異なる。本実施例では、負荷抵抗R8、R9
の値を変え、発光素子44の発光量が発光素子45の発
光量より多くなるように設定している。これにより、光
路14を通って受光素子19に入る光の量と、光路15
を通って受光素子19へ入る光の量は異なる。受光素子
19への受光量を光路によって異ならせる他の方法とし
て、たとえば一方の発光素子側にシールドを設けてその
素子側の光を減衰させる方法を採用してもよい。その他
の構成は前記第1実施例と同様である。
FIG. 15 is a circuit diagram showing the light emitting and light receiving elements of the third embodiment. In the figure, light emitting elements 44 and 4
5 is a light emitting diode L, as in the first embodiment.
It consists of ED1 and LED2, and load resistors R8 and R respectively.
9 is connected. Value of load resistance R8 and load resistance R9
By setting the values of 1 and 2 to different values, the current values flowing through the light emitting element 44 and the light emitting element 45 can be made different. When the current value is different, the light emitting element 44 and the light emitting element 45 have different light emission amounts. In this embodiment, the load resistors R8 and R9
The light emitting amount of the light emitting element 44 is set to be larger than that of the light emitting element 45. As a result, the amount of light entering the light receiving element 19 through the optical path 14 and the optical path 15
The amount of light passing through and entering the light receiving element 19 is different. As another method of varying the amount of light received by the light receiving element 19 depending on the optical path, for example, a method of providing a shield on one light emitting element side and attenuating the light on that element side may be adopted. The other structure is similar to that of the first embodiment.

【0038】以上のように構成した第3実施例において
も、前記各実施例と同様の効果を奏する。さらに本実施
例では、上側の搬送ガイド41に光路を形成する必要が
なくなるので、光通路の構成がさらに簡単になる。
Also in the third embodiment constructed as described above, the same effect as that of each of the above-mentioned embodiments can be obtained. Further, in the present embodiment, it is not necessary to form an optical path in the upper conveyance guide 41, so that the structure of the optical path is further simplified.

【0039】次に本発明の第4実施例を図16、図1
7、図18にしたがって説明する。図16は本発明の第
4実施例を示す平面図、図17は第4実施例を示す正面
図、図18は第4実施例を示す側面図である。第4実施
例の検出装置は、光が通過する光路を搬送媒体の搬送方
向に沿う方向に配設し、受光素子への受光量を反射面の
大きさにより変えたものである。
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
7, according to FIG. 16 is a plan view showing a fourth embodiment of the present invention, FIG. 17 is a front view showing the fourth embodiment, and FIG. 18 is a side view showing the fourth embodiment. In the detection device of the fourth embodiment, the optical path through which light passes is arranged in the direction along the transport direction of the transport medium, and the amount of light received by the light receiving element is changed according to the size of the reflecting surface.

【0040】図16〜図18において、制御基板51に
は発光素子52が半田付けされ、制御基板53には受光
素子54が半田付けされている。発光素子52と対向し
て、光路55と光路56が一体に設けられ、発光素子5
2から出力される光が両方の光路55、56をほぼ同じ
量通過するようになっている。光路55の長さと光路5
6の長さはほぼ同じになっている。光路55の端部には
反射面57が形成され、この反射面57で光路55を通
ってくる光を搬送路59方向に反射する。また光路56
の端部には反射面58が形成され、この反射面58で光
路56を通ってくる光を搬送路59方向に反射する。反
射面57の面積は、反射面58の面積より小さくなって
おり、したがって反射面57から反射される光の量は、
反射面58から反射される光の量より少ない。
16 to 18, a light emitting element 52 is soldered to the control board 51, and a light receiving element 54 is soldered to the control board 53. An optical path 55 and an optical path 56 are integrally provided to face the light emitting element 52, and
The light output from 2 passes through both optical paths 55 and 56 by substantially the same amount. Optical path 55 length and optical path 5
The lengths of 6 are almost the same. A reflecting surface 57 is formed at the end of the optical path 55, and the reflecting surface 57 reflects the light passing through the optical path 55 toward the transport path 59. Optical path 56
A reflection surface 58 is formed at the end of the reflection surface 58, and the reflection surface 58 reflects the light passing through the optical path 56 toward the transport path 59. The area of the reflecting surface 57 is smaller than the area of the reflecting surface 58, and therefore the amount of light reflected from the reflecting surface 57 is
It is less than the amount of light reflected from the reflecting surface 58.

【0041】光路55の下側に光路60が配設され、光
路56の下側に光路61が配設されている。光路60は
光路55と同形状で、光路61は光路56と同形状とな
っており、光路60と光路61は一体となっている。即
ち、光路60の端部に反射面62が形成され、光路61
の端部には反射面63が形成されており、反射面62の
面積は反射面63の面積より小さくなっている。光路6
0、61は受光素子54に対向しており、光路60、6
1を通ってきた光は受光素子54に受光される。
An optical path 60 is provided below the optical path 55, and an optical path 61 is provided below the optical path 56. The optical path 60 has the same shape as the optical path 55, the optical path 61 has the same shape as the optical path 56, and the optical path 60 and the optical path 61 are integrated. That is, the reflecting surface 62 is formed at the end of the optical path 60,
The reflecting surface 63 is formed at the end of the reflecting surface 62, and the area of the reflecting surface 62 is smaller than the area of the reflecting surface 63. Light path 6
0 and 61 face the light receiving element 54, and the optical paths 60 and 6
The light passing through 1 is received by the light receiving element 54.

【0042】光路55、搬送路59および光路60によ
り第1の光通路64を構成し、光路56、搬送路59お
よび光路61により第2の光通路65を構成する。第1
の光通路64を通る光が搬送路59を貫通する位置と、
第2の光通路65を通る光が搬送路59を貫通する位置
とは、両位置を結ぶ直線が搬送媒体1の搬送方向に直交
するような位置関係に設定されている。また第1の光通
路64を通って受光素子54に入る光の量は、第2の光
通路65を通って受光素子54に入る光の量より少な
い。
The optical path 55, the transport path 59, and the optical path 60 form a first optical path 64, and the optical path 56, the transport path 59, and the optical path 61 form a second optical path 65. First
The position where the light passing through the optical path 64 of
The position where the light passing through the second optical path 65 penetrates the transport path 59 is set such that the straight line connecting both positions is orthogonal to the transport direction of the transport medium 1. The amount of light that enters the light receiving element 54 through the first optical path 64 is smaller than the amount of light that enters the light receiving element 54 through the second optical path 65.

【0043】以上のように構成した第4実施例において
も、搬送媒体1が第1の光通路64を通る光を遮るかま
たは第2の光通路65を通る光を遮るかにより、搬送媒
体1の斜向状態を検出できる。とくに本実施例では、発
光素子52が1個であり、しかも光路の反射面積を第1
の光通路64と第2の光通路65とで異ならせることに
より受光素子54への受光量を変えるようにしたので、
簡単な構造の検出装置が得られる。
Also in the fourth embodiment configured as described above, the carrier medium 1 is blocked depending on whether the carrier medium 1 blocks the light passing through the first optical path 64 or the second optical path 65. The tilted state of can be detected. Particularly, in this embodiment, the number of the light emitting elements 52 is one, and the reflection area of the optical path is the first.
The light receiving amount to the light receiving element 54 is changed by making the optical path 64 and the second optical path 65 different from each other.
A detection device having a simple structure can be obtained.

【0044】次に本発明の第5実施例を図19、図2
0、図21にしたがって説明する。図19は本発明の第
5実施例を示す平面図、図20は第5実施例を示す正面
図、図21は第5実施例を示す側面図である。第5実施
例の検出装置は、光が通過する光路を搬送媒体の搬送方
向に沿う方向に配設し、受光素子への受光量を反射面の
反射率により変えたものである。
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
0, a description will be given according to FIG. 19 is a plan view showing a fifth embodiment of the present invention, FIG. 20 is a front view showing the fifth embodiment, and FIG. 21 is a side view showing the fifth embodiment. In the detection device of the fifth embodiment, the optical path through which light passes is arranged in the direction along the transport direction of the transport medium, and the amount of light received by the light receiving element is changed by the reflectance of the reflecting surface.

【0045】図19〜図21において、制御基板51に
は発光素子52が半田付けされ、制御基板53には受光
素子54が半田付けされている。発光素子52と対向し
て、光路71と光路72が一体に設けられ、発光素子5
2から出力される光が両方の光路71、72をほぼ同じ
量通過するようになっている。光路71の長さと光路7
2の長さはほぼ同じになっている。光路71の端部には
反射面73が形成され、この反射面73で光路71を通
ってくる光を搬送路59方向に反射する。また光路72
の端部には反射面74が形成され、この反射面74で光
路72を通ってくる光を搬送路59方向に反射する。反
射面73は反射面74に比較して表面粗さを大きくして
あり、反射面73の反射率は、反射面74の反射率より
小さくなっている。したがって反射面73から反射され
る光の量は、反射面74から反射される光の量より少な
い。反射率を変えるこの他の手段としては、一方の反射
面の表面にコーティングや鍍金等を施して反射率を変え
る方法がある。
19 to 21, a light emitting element 52 is soldered to the control board 51, and a light receiving element 54 is soldered to the control board 53. An optical path 71 and an optical path 72 are integrally provided so as to face the light emitting element 52, and
The light output from 2 passes through both optical paths 71 and 72 in substantially the same amount. Optical path 71 length and optical path 7
The lengths of 2 are almost the same. A reflecting surface 73 is formed at the end of the optical path 71, and the reflecting surface 73 reflects the light passing through the optical path 71 toward the transport path 59. Optical path 72
A reflection surface 74 is formed at the end of the reflection surface 74, and the reflection surface 74 reflects the light passing through the optical path 72 toward the transport path 59. The reflecting surface 73 has a surface roughness larger than that of the reflecting surface 74, and the reflectance of the reflecting surface 73 is smaller than that of the reflecting surface 74. Therefore, the amount of light reflected from the reflecting surface 73 is smaller than the amount of light reflected from the reflecting surface 74. As another means of changing the reflectance, there is a method of changing the reflectance by coating or plating the surface of one of the reflecting surfaces.

【0046】光路71の下側に光路75が配設され、光
路72の下側に光路76が配設されている。光路75と
光路76は一体となっている。光路75の端部には反射
面77が形成され、光路76の端部には反射面78が形
成されており、反射面77の反射率は反射面78の反射
率より小さくなっている。光路75、76は受光素子5
4に対向しており、光路75、76を通ってきた光は受
光素子54に受光される。
An optical path 75 is provided below the optical path 71, and an optical path 76 is provided below the optical path 72. The optical path 75 and the optical path 76 are integrated. A reflection surface 77 is formed at the end of the optical path 75, and a reflection surface 78 is formed at the end of the optical path 76. The reflectance of the reflection surface 77 is smaller than the reflectance of the reflection surface 78. Optical paths 75 and 76 are light receiving elements 5
The light that has passed through the optical paths 75 and 76 is received by the light receiving element 54.

【0047】光路71、搬送路59および光路75によ
り第1の光通路79を構成し、光路72、搬送路59お
よび光路76により第2の光通路80を構成する。第1
の光通路79を通る光が搬送路59を通過する位置と、
第2の光通路80を通る光が搬送路59を通過する位置
とは、第4実施例と同様に、両位置を結ぶ直線が搬送媒
体1の搬送方向に直交するような位置関係に設定されて
いる。また第1の光通路79を通って受光素子54に入
る光の量は、反射面73および反射面77の反射率が小
さいことから、第2の光通路80を通って受光素子54
に入る光の量より少ない。
The optical path 71, the conveying path 59 and the optical path 75 form a first optical path 79, and the optical path 72, the conveying path 59 and the optical path 76 form a second optical path 80. First
A position where the light passing through the optical path 79 of
The position where the light passing through the second optical path 80 passes through the transport path 59 is set such that the straight line connecting both positions is orthogonal to the transport direction of the transport medium 1, as in the fourth embodiment. ing. Further, the amount of light entering the light receiving element 54 through the first optical path 79 passes through the second optical path 80 because the reflectance of the reflecting surface 73 and the reflecting surface 77 is small.
Less than the amount of light entering.

【0048】以上のように構成した第5実施例において
も、搬送媒体1が第1の光通路79を通る光を遮るかま
たは第2の光通路80を通る光を遮るかにより、搬送媒
体1の斜向状態を検出できる。また本実施例では、発光
素子52が1個であり、しかも光路の大きさを第1の光
通路79と第2の光通路80とで同じにし、反射面の反
射率を異ならせることにより第1の光通路79と第2の
光通路80とで受光素子54への受光量を変えるように
したので、より簡単な構造の検出装置が得られる。
Also in the fifth embodiment configured as described above, the carrier medium 1 is blocked depending on whether the carrier medium 1 blocks the light passing through the first optical passage 79 or the light passing through the second optical passage 80. The tilted state of can be detected. Further, in this embodiment, the number of the light emitting elements 52 is one, the size of the optical path is the same in the first optical path 79 and the second optical path 80, and the reflectance of the reflecting surface is different. Since the amount of light received by the light receiving element 54 is changed between the first light passage 79 and the second light passage 80, a detection device having a simpler structure can be obtained.

【0049】本発明は上記各実施例に限定されるもので
はなく、種々の変形が可能である。たとえば、第1の光
通路と第2の光通路とで受光素子への光の受光量を変え
る手段として、光をより多く減衰させたい側の光通路の
途中に切り欠きを形成し、この切り欠きに光透過性の良
くない部材を配置してもよいし、種々の変形が可能であ
る。
The present invention is not limited to the above embodiments, but various modifications can be made. For example, as a means for changing the amount of light received by the light receiving element between the first optical path and the second optical path, a notch is formed in the middle of the optical path on the side where more light is desired to be attenuated. A member having poor light transmittance may be arranged in the notch, and various modifications are possible.

【0050】[0050]

【発明の効果】以上詳細に説明したように本発明によれ
ば、発光素子からの光を媒体搬送路を貫通させて受光素
子へ導く第1、第2の光通路を設けたので、発光素子お
よび受光素子を媒体搬送路に必ずしも対向して設ける必
要がなくなり、制御基板に直接実装することが可能にな
り、接続コードあるいはコネクタが不要になる。その結
果部品点数が少なくなって、装置の構造が簡単になると
ともに、装置の低価格化が可能になる。
As described in detail above, according to the present invention, the first and second optical paths for guiding the light from the light emitting element to the light receiving element through the medium conveying path are provided. Therefore, the light emitting element is provided. Further, the light receiving element does not necessarily have to be provided so as to face the medium transport path, and it becomes possible to directly mount the light receiving element on the control board, and the connection cord or connector becomes unnecessary. As a result, the number of parts is reduced, the structure of the device is simplified, and the cost of the device can be reduced.

【0051】さらに接続コードやコネクタの数量が減少
することにより、故障の発生率が減少し、保守性の向上
および稼働率の向上が期待できる。
Furthermore, since the number of connecting cords and connectors is reduced, the failure rate is reduced, and maintenance and improvement of operation rate can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.

【図2】第1実施例を示す要部平面図である。FIG. 2 is a main part plan view showing a first embodiment.

【図3】図1のX−X断面図である。FIG. 3 is a sectional view taken along line XX of FIG. 1;

【図4】第1実施例を示す要部底面図である。FIG. 4 is a bottom view of an essential part showing the first embodiment.

【図5】第1実施例の検出回路を示す回路図である。FIG. 5 is a circuit diagram showing a detection circuit of the first embodiment.

【図6】搬送媒体の搬送状態を示す説明図である。FIG. 6 is an explanatory diagram showing a conveyance state of a conveyance medium.

【図7】電圧と電流の関係を示すグラフである。FIG. 7 is a graph showing the relationship between voltage and current.

【図8】搬送媒体の搬送状態を示す説明図である。FIG. 8 is an explanatory diagram showing a conveyance state of a conveyance medium.

【図9】受光素子の出力電圧を示すタイムチャートであ
る。
FIG. 9 is a time chart showing an output voltage of a light receiving element.

【図10】受光素子の出力電圧を示すタイムチャートで
ある。
FIG. 10 is a time chart showing an output voltage of a light receiving element.

【図11】本発明の第2実施例を示す斜視図である。FIG. 11 is a perspective view showing a second embodiment of the present invention.

【図12】第2実施例を示す要部平面図である。FIG. 12 is a plan view of an essential part showing a second embodiment.

【図13】図12のZ−Z断面図である。13 is a sectional view taken along line ZZ of FIG.

【図14】本発明の第3実施例を示す断面図である。FIG. 14 is a sectional view showing a third embodiment of the present invention.

【図15】第3実施例の発光、受光素子を示す回路図で
ある。
FIG. 15 is a circuit diagram showing a light emitting and light receiving element of a third embodiment.

【図16】本発明の第4実施例を示す平面図である。FIG. 16 is a plan view showing a fourth embodiment of the present invention.

【図17】第4実施例を示す正面図である。FIG. 17 is a front view showing a fourth embodiment.

【図18】第4実施例を示す側面図である。FIG. 18 is a side view showing a fourth embodiment.

【図19】本発明の第5実施例を示す平面図である。FIG. 19 is a plan view showing a fifth embodiment of the present invention.

【図20】第5実施例を示す正面図である。FIG. 20 is a front view showing a fifth embodiment.

【図21】第5実施例を示す側面図である。FIG. 21 is a side view showing a fifth embodiment.

【符号の説明】[Explanation of symbols]

1 搬送媒体 2 上側搬送ガイド 3 下側搬送ガイド 4 搬送路 5、6 光路 7、8 発光素子 9 制御基板 12、13 反射面 14、15 光路 16、18 反射面 19 受光素子 25 第1の光通路 26 第2の光通路 A 第1の位置 B 第2の位置 1 Transport Medium 2 Upper Transport Guide 3 Lower Transport Guide 4 Transport Paths 5, 6 Optical Paths 7, 8 Light Emitting Element 9 Control Board 12, 13 Reflective Surface 14, 15 Optical Path 16, 18 Reflective Surface 19 Photosensitive Element 25 First Optical Path 26 Second Optical Path A First Position B Second Position

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 搬送路上を搬送する搬送媒体の搬送状態
を光学的に検出する搬送媒体の検出装置において、 前記搬送路を挟んで一方の側に配置された発光素子と、 前記搬送路を挟んで他方の側に配置された1個の受光素
子と、 前記発光素子からの光を第1の位置で前記一方の側から
前記搬送路を通過させて前記他方の側へ導き、さらに前
記受光素子へ導く第1の光通路と、 前記第1の位置から所定の位置関係にある第2の位置で
前記発光素子からの光を前記一方の側から前記搬送路を
通過させて前記他方の側へ導き、さらに前記受光素子へ
導く第2の光通路と、 前記受光素子の受光量に基づいて搬送媒体の搬送状態を
検出する検出回路とを設け、 前記第1の光通路から前記受光素子へ入る光の光量と前
記第2の光通路から前記受光素子へ入る光の光量を異な
るようにしたことを特徴とする搬送媒体の検出装置。
1. A device for detecting a carrying medium, which optically detects a carrying state of a carrying medium carried on a carrying path, wherein a light emitting element arranged on one side of the carrying path is sandwiched between the light emitting element and the light emitting element. And one light receiving element disposed on the other side, and guides light from the light emitting element from the one side to the other side through the transport path at the first position, and further receives the light receiving element. A first optical path leading to the first optical path and a second position having a predetermined positional relationship from the first position to allow the light from the light emitting element to pass from the one side through the transport path to the other side. A second optical path that guides the light to the light receiving element and a detection circuit that detects the transport state of the transport medium based on the amount of light received by the light receiving element are provided, and the light receiving element enters from the first optical path. The amount of light entering the light receiving element from the second light path. A detection device for a carrier medium, characterized in that the amount of light emitted is different.
【請求項2】 前記第1の光通路は、前記一方の側に形
成され前記発光素子から出力される光を前記第1の位置
へ導く第1の光路と、前記他方の側に形成され前記第1
の位置から前記搬送路を通過した光を前記受光素子へ導
く第2の光路とから成り、 前記第2の光通路は、前記一方の側に形成され前記発光
素子から出力される光を前記第2の位置へ導く第3の光
路と、前記他方の側に形成され前記第2の位置から前記
搬送路を通過した光を前記受光素子へ導く第4の光路と
から成り、 前記第2の光路と前記第4の光路は共通の光路を有する
請求項1記載の搬送媒体の検出装置。
2. The first optical path is a first optical path formed on the one side to guide light output from the light emitting element to the first position, and the first optical path is formed on the other side. First
And a second optical path that guides light that has passed through the transport path from the position of 1 to the light receiving element, the second optical path being formed on the one side, and outputting the light output from the light emitting element. The second optical path includes a third optical path that leads to the position 2 and a fourth optical path that is formed on the other side and that guides light that has passed through the transport path from the second position to the light receiving element. The carrier medium detection device according to claim 1, wherein the fourth optical path and the fourth optical path have a common optical path.
【請求項3】 前記発光素子は1個配置され、前記第1
の光路と前記第3の光路は共通の光路を有する請求項2
記載の搬送媒体の検出装置。
3. The one light emitting device is arranged, and the first light emitting device is provided.
3. The optical path of 3 and the third optical path have a common optical path.
The carrier medium detection device described.
【請求項4】 前記第1の光通路と前記第2の光通路は
距離が異なる請求項1、2または3記載の搬送媒体の検
出装置。
4. The carrier medium detection device according to claim 1, 2 or 3, wherein the first optical path and the second optical path have different distances.
【請求項5】 前記検出回路は、前記搬送路を搬送され
る搬送媒体の先頭端が前記第1の位置または前記第2の
位置に達し受光素子の受け取る受光量が変化した時点か
ら、さらに搬送媒体の先頭端が前記第2の位置または前
記第1の位置に達し受光素子の受け取る受光量がさらに
変化した時点までの時間差に基づいて搬送媒体の斜向量
を検出する請求項1記載の搬送媒体の検出装置。
5. The detection circuit further conveys when the leading end of the conveyance medium conveyed on the conveyance path reaches the first position or the second position and the amount of light received by the light receiving element changes. 2. The carrier medium according to claim 1, wherein the skew amount of the carrier medium is detected based on a time difference between when the leading edge of the medium reaches the second position or the first position and when the amount of light received by the light receiving element further changes. Detection device.
【請求項6】 前記発光素子は前記搬送路に対面して2
個設けられ、一方の発光素子は前記第1の位置に対向
し、他方の発光素子は前記第2の位置に対向し、 前記第1の光通路は、前記第1の位置から前記搬送路を
通過する光を前記受光素子へ導く光路から成り、前記第
2の光通路は、前記第2の位置から前記搬送路を通過す
る光を前記受光素子へ導く光路から成る請求項1、2、
4または5記載の搬送媒体の検出装置。
6. The light emitting element faces the conveying path and
One light emitting element is opposed to the first position, the other light emitting element is opposed to the second position, and the first light path extends from the first position to the transport path. The optical path for guiding light passing therethrough to the light receiving element, wherein the second optical path includes an optical path for guiding light passing through the transport path from the second position to the light receiving element.
4. The detection device for a carrier medium according to 4 or 5.
【請求項7】 前記発光素子は、複数設けられ、各素子
を駆動する電流値を変えることにより、前記第1の光通
路から前記受光素子へ入る光の光量と前記第2の光通路
から前記受光素子へ入る光の光量を異なるようにする請
求項1、2、5または6記載の搬送媒体の検出装置。
7. A plurality of the light emitting elements are provided, and the amount of light entering the light receiving element from the first light path and the second light path from the second light path are changed by changing a current value for driving each element. 7. The carrier medium detection device according to claim 1, wherein the amount of light entering the light receiving element is different.
【請求項8】 前記第1の光路は発光素子からの光を前
記第1の位置で前記搬送路方向へ導く第1の反射面を有
し、前記第2の光路は前記搬送路からの光を受光素子へ
導く第2の反射面を有し、前記第3の光路は発光素子か
らの光を前記第2の位置で前記搬送路方向へ導く第2の
反射面を有し、前記第4の光路は前記搬送路からの光を
受光素子へ導く第4の反射面を有し、前記第1の反射面
の面積と前記第2の反射面の面積との和と前記第3の反
射面の面積と前記第4の反射面の面積との和が異なる請
求項2、4、5または6記載の搬送媒体の検出装置。
8. The first optical path has a first reflecting surface that guides light from a light emitting element toward the transport path at the first position, and the second optical path has light from the transport path. To a light receiving element, and the third optical path has a second reflecting surface that guides light from the light emitting element toward the transport path at the second position, Has a fourth reflecting surface that guides the light from the conveying path to the light receiving element, and the sum of the area of the first reflecting surface and the area of the second reflecting surface and the third reflecting surface. 7. The detection device for a carrier medium according to claim 2, 4, 5 or 6, wherein the sum of the area of the first reflection surface and the area of the fourth reflection surface is different.
【請求項9】 前記第1の光路は発光素子からの光を前
記第1の位置で前記搬送路方向へ導く第1の反射面を有
し、前記第2の光路は前記搬送路からの光を受光素子へ
導く第2の反射面を有し、前記第3の光路は発光素子か
らの光を前記第2の位置で前記搬送路方向へ導く第3の
反射面を有し、前記第4の光路は前記搬送路からの光を
受光素子へ導く第4の反射面を有し、前記第1の反射面
の反射率と前記第3の反射面の反射率が異なる請求項
2、4、5または6記載の搬送媒体の検出装置。
9. The first optical path has a first reflecting surface that guides light from a light emitting element toward the transport path at the first position, and the second optical path has light from the transport path. To a light receiving element, and the third optical path has a third reflecting surface that guides light from the light emitting element toward the transport path at the second position, and The optical path of 4 has a fourth reflecting surface that guides the light from the conveying path to a light receiving element, and the reflectance of the first reflecting surface and the reflectance of the third reflecting surface are different from each other. 5. The carrier medium detection device according to 5 or 6.
【請求項10】 前記第1の光路は発光素子からの光を
前記第1の位置で前記搬送路方向へ導く第1の反射面を
有し、前記第2の光路は前記搬送路からの光を受光素子
へ導く第2の反射面を有し、前記第3の光路は発光素子
からの光を前記第2の位置で前記搬送路方向へ導く第2
の反射面を有し、前記第4の光路は前記搬送路からの光
を受光素子へ導く第4の反射面を有し、前記第2の反射
面の反射率と前記第4の反射面の反射率が異なる請求項
2、4、5または6記載の搬送媒体の検出装置。
10. The first optical path has a first reflecting surface that guides light from a light emitting element toward the transport path at the first position, and the second optical path has light from the transport path. Has a second reflecting surface that guides the light to the light receiving element, and the third optical path is a second optical path that guides the light from the light emitting element toward the transport path at the second position.
And the fourth optical path has a fourth reflective surface that guides the light from the transport path to the light receiving element, and the reflectance of the second reflective surface and the fourth reflective surface The carrier medium detection device according to claim 2, 4, 5, or 6, which has different reflectances.
JP19932494A 1994-08-24 1994-08-24 Conveyance medium detection device Expired - Fee Related JP3541062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19932494A JP3541062B2 (en) 1994-08-24 1994-08-24 Conveyance medium detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19932494A JP3541062B2 (en) 1994-08-24 1994-08-24 Conveyance medium detection device

Publications (2)

Publication Number Publication Date
JPH0859025A true JPH0859025A (en) 1996-03-05
JP3541062B2 JP3541062B2 (en) 2004-07-07

Family

ID=16405909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19932494A Expired - Fee Related JP3541062B2 (en) 1994-08-24 1994-08-24 Conveyance medium detection device

Country Status (1)

Country Link
JP (1) JP3541062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049644A (en) * 2008-08-25 2010-03-04 Oki Electric Ind Co Ltd Medium detector
US11634292B2 (en) 2020-07-20 2023-04-25 Canon Kabushiki Kaisha Sheet conveyance apparatus and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049644A (en) * 2008-08-25 2010-03-04 Oki Electric Ind Co Ltd Medium detector
US11634292B2 (en) 2020-07-20 2023-04-25 Canon Kabushiki Kaisha Sheet conveyance apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP3541062B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US5197105A (en) Method of reading optical image of inspected surface and image reading system employabale therein
JP3420787B2 (en) Conveyance medium detection device
JP3725843B2 (en) Reflective sensor
JP2609048B2 (en) Carrier detection device
JPH04127585U (en) Sheet-type object detection device
US4806775A (en) Image reading system using an LED array
JPH0859025A (en) Detecting device for carrying medium
JP3245645B2 (en) Multiple transmission type photoelectric sensor, transmission type photoelectric sensor, and photoelectric detection method
US8890054B2 (en) Photoelectric sensor used for detection of thin objects
JPH0989538A (en) Optical sensor device
JPH10218430A (en) Detecting device for carrying medium
JP3212485B2 (en) Medium detection device
JPS604877A (en) Detection apparatus
JP2874020B2 (en) Wafer sensor
JPH09159406A (en) Optical sensor
JP3515000B2 (en) Direction sensor for square member
JPH05221557A (en) Printer or the like output device
KR200147781Y1 (en) IC lead fin checing apparatus
JPH08160152A (en) Method and device for detecting medium
JPH09159422A (en) Device for detecting circumferential shape of wafer
JP2002071835A (en) Medium detecting device
JPH01169590A (en) Paper money distinguishing device
JP2872492B2 (en) Printer or similar output device
JPS61128108A (en) Light detector
JPS61198083A (en) Carrying object detecting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Effective date: 20040329

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080402

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees