JPH0858696A - Automatic ship position holding system for twin-screw ship - Google Patents

Automatic ship position holding system for twin-screw ship

Info

Publication number
JPH0858696A
JPH0858696A JP6194218A JP19421894A JPH0858696A JP H0858696 A JPH0858696 A JP H0858696A JP 6194218 A JP6194218 A JP 6194218A JP 19421894 A JP19421894 A JP 19421894A JP H0858696 A JPH0858696 A JP H0858696A
Authority
JP
Japan
Prior art keywords
ship
hull
external force
bearing
deviation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6194218A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tachibana
英敏 橘
Kazuhiro Inoue
和博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP6194218A priority Critical patent/JPH0858696A/en
Publication of JPH0858696A publication Critical patent/JPH0858696A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To eliminate the installation of a large steering angle rudder and reduce construction costs by controlling a twin-screw thrust generation device on the basis of a bow bearing deviation value calculated from signals from a bearing sensor and a position sensor, and a longitudinal bearing deviation value of a ship. CONSTITUTION: When a ship's hull bearing remarkably deviates from the direction of external force, the hull is turned in a direction for the action of the external force by the help of an anemoscope/anemometer 29 and a tidal current meter 30. On the other hand, when the hull does not deviate much from the direction of the external force, signals from a bearing sensor 27 as well as a position sensor 28 are immediately inputted to a deviation operation device 32 to calculate a longitudinal bearing deviation value and bearing deviation values fore and aft of the ship. Thereafter, a twin-screw thrust generation device is operated on the basis of the respective deviation values, thereby turning the bow toward an accurate acting direction of the external force. Also, the ship is made to advance whenever necessary, and the position thereof is adjusted, for the ship to arrive at the prescribed position. According to this construction, the hull does not need to be equipped with a special device such as a thruster and a large steering angle rudder, and a ship's construction cost can be greatly reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2軸船における自動船位
保持方式、より詳しくは例えば海洋観測船等において好
適な2軸船における自動船位保持方式に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic position maintaining system for a two-axis ship, and more particularly to an automatic position maintaining system for a two-axis ship suitable for, for example, an oceanographic observation ship.

【0002】[0002]

【従来の技術】一般に、例えば比較的深海域における海
洋の観測を行う場合の海洋観測船等においては自動船位
保持装置が設けられ、この自動船位保持装置により船体
を所定位置に保持することが行われている。この自動船
位保持装置としては図6(a)に示すように船体1に推
進器2を設けるとともに船首部にバウスラスタ3と船尾
部にスタンスラスタ4をそれぞれ配置したもの、あるい
は図6(b)に示すように船体1の船尾部に推進器2
a,2bを夫々有する推進軸5a,5bを配置するとと
もに船首部にバウスラスタ3aを配置したものが使用さ
れ、そして図7に示すように位置センサ6と方位センサ
7からの信号V1 〜V2 を中央演算装置8に入力し、こ
の中央演算装置8において制御信号V3 を作成し、この
制御信号V3 を推力制御装置9に入力して制御信号V4
〜V6 を得て推進器2とバウスラスタ3及びスタンスラ
スタ4を制御して船体位置を保持することが行われてい
る。
2. Description of the Related Art Generally, for example, in an ocean observation vessel for observing the ocean in a relatively deep sea area, an automatic ship position holding device is provided, and the hull body is held at a predetermined position by the automatic ship position holding device. It is being appreciated. As shown in FIG. 6 (a), this automatic ship position holding device is provided with a propulsion device 2 on a hull 1 and a bow thruster 3 on the bow and a stance thruster 4 on the stern, or as shown in FIG. 6 (b). As shown, the propulsion unit 2 is attached to the stern of the hull 1.
A propulsion shaft 5a, 5b having a and 2b, respectively, and a bow thruster 3a on the bow are used, and as shown in FIG. 7, the signals V 1 -V 2 from the position sensor 6 and the direction sensor 7 are used. the input to the central processing unit 8, creating a control signal V 3 in the central processing unit 8, the control signal V 4 to input the control signal V 3 to thrust control apparatus 9
~V 6 the obtained by controlling the thruster 2 and the bow thruster 3 and stance raster 4 for holding the hull position is performed.

【0003】即ち、船体1は潮流や風波等の外力を受け
て所定の位置に対して前後方向X、左右方向Y、及び回
頭角Zの三方向に変位する。この三方向の変位を修正す
るために位置センサ6によりXYの変位量を測定し、ま
た回頭角Zの変位量を方向センサ7により測定してその
信号を中央演算装置8に入力して制御信号V4 〜V6
制御信号を作成し、この制御信号V4 〜V6 によりスラ
スタ3、4と推進器2を作動させて図6(a)の船体1
の場合には図8(a)〜(f)に示すようにスラスタ
3、4による推力Fy1 とFy2 、推進器2による推力
Fxを作用させて船体1の位置を修正することが行われ
ている。
That is, the hull 1 receives an external force such as a tidal current or a wind wave, and is displaced in three directions of a predetermined position in the longitudinal direction X, the lateral direction Y, and the turning angle Z. In order to correct the displacements in these three directions, the position sensor 6 measures the XY displacement amount, and the direction sensor 7 measures the displacement amount of the turning angle Z, and the signal is input to the central processing unit 8 to output a control signal. A control signal of V 4 to V 6 is created, and the thrusters 3 and 4 and the propulsion device 2 are operated by the control signals V 4 to V 6 to operate the hull 1 of FIG.
In this case, as shown in FIGS. 8A to 8F, thrusters Fy 1 and Fy 2 by thrusters 3 and 4 and thrust Fx by thruster 2 are applied to correct the position of hull 1. ing.

【0004】しかし、このような自動船位保持装置にお
いては何れも船体1にバウスラスタ3とスタンスラスタ
4の両者、あるいはバウスラスタ3aのみを配置し、船
体1の左右方向への推力を得るものである。そのために
船首部や船尾部に横向きの開口を設けなければならない
ことから構造が複雑になり、かつ通常航行時に船体抵抗
が増加し燃費の低下を来すばかりでなく水中機器を利用
する場合にはケーブルが巻き込まれる恐れがある。ま
た、このスラスタにより発生する雑音により水中機器の
使用が困難となるなどの問題があった。
However, in any of such automatic ship position holding devices, both the bow thruster 3 and the stance thruster 4 or only the bow thruster 3a are arranged on the hull 1 to obtain thrust in the left-right direction of the hull 1. For this reason, the structure becomes complicated because lateral openings must be provided at the bow and stern, and not only does hull resistance increase during normal navigation and fuel consumption declines, but also when using underwater equipment. The cable may get caught. Further, there is a problem that it is difficult to use the underwater equipment due to the noise generated by this thruster.

【0005】前記のような問題点を解消するために、2
軸船の操船舵の可動範囲を大きくした、いわゆる大角度
舵としこの大角度舵を操作することにより船位保持を行
う自動船位保持装置が提案されている。
In order to solve the above problems, 2
A so-called large-angle rudder having a large movable range of a maneuvering rudder of an axial boat has been proposed as an automatic ship-position holding device that holds the ship position by operating this large-angle rudder.

【0006】[0006]

【発明が解決しようとする課題】ところで前記大角度舵
を用いる場合は特殊装置となるため建造費が高くなるば
かりでなく、既存船へ殆ど適用することができないとい
う問題があった。
By the way, when the large-angle rudder is used, there is a problem that the construction cost becomes high because it is a special device, and it cannot be applied to the existing ships.

【0007】[0007]

【課題を解決するための手段】本発明は前記従来技術の
問題点を解決するためになされたものであって、前後方
向推力を夫々独自に調整可能な推力発生装置を有する2
軸船において、 a)この2軸船に方位センサと位置センサと偏差演算装
置と推進制御力演算装置と推力配分装置とを配置し、 b)前記方位センサと位置センサとの信号を前記偏差演
算装置に入力して船首方位偏差値と船の前後方向偏差値
とを算出する第1の工程と、 c)前記船首方位偏差値と前記船の前後方向偏差値とを
前記推進制御力演算装置に入力して必要制御力を算出す
る第2の工程と、 d)前記必要制御力を前記推力配分装置に入力して夫々
2軸の推力発生装置の推進力を制御する第3の工程とよ
りなる2軸船における自動船位保持方式を提案するもの
である。
The present invention has been made in order to solve the problems of the above-mentioned prior art, and has a thrust generating device capable of independently adjusting the thrust in the front-rear direction.
In an axial ship, a) an orientation sensor, a position sensor, a deviation calculation device, a propulsion control force calculation device, and a thrust distribution device are arranged on this two-axis ship, and b) signals of the direction sensor and the position sensor are calculated as the deviation. A first step of inputting to the device to calculate a heading deviation value and a ship front-back deviation value; and c) the heading deviation value and the ship front-rear deviation value to the propulsion control force computing device. A second step of inputting and calculating the required control force, and d) a third step of inputting the required control force to the thrust distribution device and controlling the propulsive force of the biaxial thrust generating device, respectively. It proposes an automatic position-holding method for a two-axis ship.

【0008】そして好ましくは、2軸船には風向風速計
と潮流計が併設され、これらの機器より得られた信号に
より船体に作用する外力とその方向が検知される。そし
てその信号により自動又は手動により2軸に連なる推力
発生装置を操作し、あらかじめ船体1を外力が作用する
方向に回頭させる。前記自動船位保持方式により所定の
方位に、即ち外力の作用する方位に船体が回頭した後
に、船体が所定の位置を外れていた場合は位置センサか
らの信号により2軸の推力発生装置により船体を前進さ
せて所定の位置に船体が位置するよう操船するのであ
る。
Preferably, the biaxial ship is provided with an anemometer and a tidal current meter so that the external force acting on the hull and its direction can be detected by the signals obtained from these devices. Then, the signal is used to automatically or manually operate the thrust generators connected to the two axes to turn the hull 1 in advance in the direction in which the external force acts. When the hull is out of a predetermined position after the hull has turned in a predetermined direction, that is, in the direction in which an external force acts, by the automatic ship position holding method, the hull is moved by a biaxial thrust generator by a signal from a position sensor. The ship is maneuvered so that the hull is located at a predetermined position by moving forward.

【0009】[0009]

【作 用】前記2軸船の自動船位保持方式によれば、船
体が所定の位置外に位置した場合に、外力に対して大き
く船体の方位が外れている場合はあらかじめ風向風速計
と潮流計とにより船体をその外力が作用する方向に回頭
する。これに対して船体の方位が外力の作用する方向に
大巾なズレがないときは、直ちに方位センサと位置セン
サとによりその船首方位偏差値と船の前後方向偏差値と
を算出し、この各偏差値に基づき2軸の推力発生装置を
操作して正確な外力の作用方向に船首を回頭する。そし
て必要に応じて船体を前進させて所定の位置に到達する
よう位置修正を行うのである。
[Operation] According to the automatic position-holding system for the above-mentioned two-axis ship, when the hull is located outside the predetermined position and the direction of the hull greatly deviates from the external force, the wind direction and anemometer and tidal current meter are preliminarily set. And turn the hull in the direction in which the external force acts. On the other hand, when there is no large deviation in the direction of the hull in the direction in which the external force acts, the heading deviation value and the longitudinal deviation value of the ship are immediately calculated by the direction sensor and the position sensor. Based on the deviation value, the two-axis thrust generator is operated to turn the bow in the correct direction of the external force. Then, if necessary, the hull is advanced to correct the position so as to reach a predetermined position.

【0010】[0010]

【実 施 例】以下、図1〜図5を参照して本発明によ
る2軸船の自動船位保持方式の一実施例を説明する。図
1は船体21の平面図であって、この船体21には推力
発生装置としてのプロペラ22aと22bとが配置さ
れ、これらのプロペラ22a,22bは主軸23a,2
3bを介して主機24a,24bにそれぞれ連結されて
いる。
[Embodiment] An embodiment of an automatic position maintaining system for a twin-screw ship according to the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of a hull 21. Propellers 22a and 22b as thrust generating devices are arranged on the hull 21, and the propellers 22a and 22b are attached to the main shafts 23a and 2b.
The main machines 24a and 24b are respectively connected via 3b.

【0011】そして自動制御装置25からの信号V11
12が主機24a,24bに与えられ、プロペラ22
a,22bの回転数が調速されるようになっている。即
ち、推力が調整可能となっている。この場合、プロペラ
22a,22bが可変ピッチプロペラで構成されている
ときは自動制御装置25からの信号V11,V12は可変ピ
ッチプロペラの翼角調整装置に入力されればよい。な
お、前記プロペラ22a,22bの後方に舵26a,2
6bがそれぞれ配置されている。
The signal V 11 from the automatic control device 25,
V 12 is given to the main engines 24a and 24b, and the propeller 22
The rotational speeds of a and 22b are adjusted. That is, the thrust can be adjusted. In this case, when the propellers 22a and 22b are composed of variable pitch propellers, the signals V 11 and V 12 from the automatic control device 25 may be input to the blade angle adjusting device of the variable pitch propeller. It should be noted that the rudder 26a, 2 is provided behind the propellers 22a, 22b.
6b are arranged respectively.

【0012】自動制御装置25は、図2にも示すように
方位センサ27と位置センサ28と風向風速計29と汐
流計30と、これらの信号を受けて処理する中央演算装
置31等で構成されており、そしてこの中央演算装置3
1は、偏差演算装置32と推進制御力演算装置33と推
力配分装置34とから構成されている。前記構成による
2軸を有する船体21において、今、図3に示すように
目標点〔O〕を中心とする半径Rの内(所定位置)に船
体21を保持しようとする場合において、風波による外
力P1 と潮流による外力P2 との合成外力P3 が作用し
ており、更に船体21が所定位置を外れたX1 点に存在
していたとき、先ず風向風速計29及び潮流計30から
の信号V13とV14が中央演算装置31に入力され、そし
て2軸の推力発生装置22a,22bが制御されてほゞ
合成外力P3 が作用する方向に船体21は回頭されなが
らX2 点に達する。
As shown in FIG. 2, the automatic control unit 25 is composed of an azimuth sensor 27, a position sensor 28, an anemometer 29, a tide meter 30, and a central processing unit 31 for receiving and processing these signals. Has been done, and this central processing unit 3
1 is composed of a deviation calculation device 32, a propulsion control force calculation device 33, and a thrust distribution device 34. In the case of the hull 21 having two axes having the above-described structure, when the hull 21 is to be held within a radius R centered on the target point [O] (predetermined position) as shown in FIG. When the combined external force P 3 of P 1 and the external force P 2 due to the tidal current is acting, and further the hull 21 is present at the point X 1 which is out of the predetermined position, first, the wind anemometer 29 and the tidal current meter 30 The signals V 13 and V 14 are input to the central processing unit 31, and the thrust generators 22a and 22b of the two axes are controlled so that the hull 21 is turned in the direction in which the almost combined external force P 3 acts and reaches the X 2 point. Reach

【0013】このとき風向風速計29及び潮流計30の
信号による正確な制御は実際上不可能であることから前
述したようにほゞ合成外力P3 の作用方向に回頭させる
のみとなる。その後、図4に示すように合成外力P3
らの方位偏差値〔θ〕が、また、方向センサ27の信号
15と偏差演算装置32により、また所定位置からの船
の前後方向偏差値〔α〕が、位置センサ28からの信号
16と偏差演算装置32により夫々算出される(第1の
工程)。
At this time, since accurate control by the signals of the wind direction anemometer 29 and the tidal current meter 30 is practically impossible, as described above, only the turning is performed in the acting direction of the almost combined external force P 3 . Thereafter, as shown in FIG. 4, the azimuth deviation value [θ] from the combined external force P 3 is detected by the signal V 15 of the direction sensor 27 and the deviation calculation device 32, and the deviation value in the longitudinal direction of the ship from the predetermined position [θ]. [alpha]] is calculated by the signal V 16 from the position sensor 28 and the deviation calculation device 32 (first step).

【0014】次に、この方位偏差値〔θ〕と船の前後方
向偏差値〔α〕が推進制御力演算装置33に入力され、
これらの方位偏差値〔θ〕と船の前後方向偏差値〔α〕
とがゼロとなるような必要制御力、即ち船体21の前後
方向制御力Fxと回頭方向制御力Mが算出される(第2
の工程)。 即ち図5に示すように、プロペラ22aの推力・・・F1 プロペラ22b の推力・・・F2 そして船体21の中心線からのプロペラ22a,22b
までの距離を〔a〕とするときは、 Fx= F1 + F2 ,Fy= 0,M=2×F1 − a×F2 の関係式より「必要制御力」が算出され、その結果が推
力配分装置34に入力される。そしてプロペラ22a,
22bの指令推力F1 ,F2 が算出される。即ち、 F1 =(aFx−M)/2a,F2 =(aFx+M)/2a として指令推力F1 ,F2 が算出されるのである(第3
の工程)。
Next, the heading deviation value [θ] and the longitudinal deviation value [α] of the ship are input to the propulsion control force calculation device 33,
These bearing deviations [θ] and ship deviations [α]
The required control force such that and are zero, that is, the front-rear direction control force Fx of the hull 21 and the turning direction control force M are calculated (second
Process). That is, as shown in FIG. 5, a propeller 22a from the center line of the thrust · · · F 2 and the hull 21 of the thrust · · · F 1 propeller 22b of the propeller 22a, 22b
When the distance to the [a] is, Fx = F 1 + F 2 , Fy = 0, M = 2 × F 1 - "necessary control force" from the relationship a × F 2 is calculated, the result Is input to the thrust distribution device 34. And the propeller 22a,
The command thrusts F 1 and F 2 of 22b are calculated. That is, the command thrusts F 1 and F 2 are calculated as F 1 = (aFx−M) / 2a, F 2 = (aFx + M) / 2a (third third).
Process).

【0015】このような自動制御中において船体21は
図3に示すように合成外力P3 の作用によりX2 点から
6 点に変位して正確に合成外力P3 方向に船首が回頭
することになる。その後、船体21の前後方向偏差値
〔α〕のみが演算装置33に入力され、プロペラ22
a,22bの推力F1 ,F2 は等しくなり、船体21が
前進して所定位置に達するのである。
During such automatic control, the hull 21 is displaced from the X 2 point to the X 6 point by the action of the combined external force P 3 as shown in FIG. 3 and the bow is accurately turned in the combined external force P 3 direction. become. Thereafter, only the deviation value [α] in the front-rear direction of the hull 21 is input to the arithmetic unit 33, and the propeller 22
The thrusts F 1 and F 2 of a and 22b become equal, and the hull 21 advances to reach a predetermined position.

【0016】勿論、船体21の船首が合成外力P3 に対
してほゞ等しい方向に位置している場合は、風向風力計
29と潮流計30の信号V13,V14は無視することがで
きるので操船が著しく簡単となる。
Of course, when the bow of the hull 21 is located in a direction approximately equal to the combined external force P 3 , the signals V 13 and V 14 of the wind direction anemometer 29 and the tidal current meter 30 can be ignored. Therefore, maneuvering becomes significantly easier.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
による2軸船における自動船位保持方式によれば次の効
果を奏することができる。 イ)船体にスラスタや大角度舵等の特殊の装置を装備す
る必要はなく、2軸のプロペラさえ装備しておれば位置
保持が可能であるため建造費を大幅に削減することが可
能となる。
As is clear from the above description, the following effects can be achieved by the automatic position-holding system for a twin-screw ship according to the present invention. B) It is not necessary to equip the hull with special equipment such as thrusters and large-angle rudder, and it is possible to maintain the position as long as the propeller with two axes is equipped, so the construction cost can be greatly reduced. .

【0018】ロ)信頼性の比較的低い風向風速計と潮流
計の信号によることなく、合成外力に対して船体を正確
に回頭できるため、装置が安価である上に正確な自動船
位保持が可能である。 ハ)合成外力方向に船首を向けるため回頭モーメントの
発生は殆んど必要なく、2軸のプロペラにより発生でき
る推力=位置保持限界外力となり、これまで推力不足で
不可能とされていた、かなりの高海象中においても位置
保持が可能となる。 ニ)船体を改造する必要がないことから、既存船にも容
易に適用できる。
(B) Since the hull can be turned accurately against the combined external force without relying on the signals of the wind direction and anemometer, which are relatively unreliable, the device is inexpensive and the accurate automatic position maintenance is possible. Is. C) Since the bow is directed in the direction of the combined external force, there is almost no need to generate a turning moment, and the thrust that can be generated by the two-axis propeller is the position-holding limit external force, which was previously impossible due to insufficient thrust. Position can be maintained even in high sea conditions. D) Since there is no need to modify the hull, it can be easily applied to existing ships.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による2軸船の概念を示す平面図であ
る。
FIG. 1 is a plan view showing the concept of a biaxial ship according to the present invention.

【図2】自動制御装置の系統図である。FIG. 2 is a system diagram of an automatic control device.

【図3】本発明の作用説明図である。FIG. 3 is an explanatory view of the operation of the present invention.

【図4】本発明の作用説明図である。FIG. 4 is an explanatory view of the operation of the present invention.

【図5】本発明による船体の制御説明図である。FIG. 5 is an explanatory diagram of control of a hull according to the present invention.

【図6】(a),(b)は従来の自動船位保持方式の概
念の説明図である。
6 (a) and 6 (b) are explanatory views of the concept of a conventional automatic position maintaining system.

【図7】従来の自動船位保持方式の自動制御装置の系統
図である。
FIG. 7 is a system diagram of a conventional automatic control system of an automatic ship position holding system.

【図8】(a)〜(f)は従来の自動船位保持方式の操
作方法の説明図である。
8 (a) to 8 (f) are explanatory views of a conventional automatic ship-position-holding operation method.

【符号の説明】[Explanation of symbols]

1,21 船体 2 推進器 3 バウスラスタ 4 スタンス
ラスタ 5a,5b 推進軸 6,28 位置セ
ンサ 7,27 方位センサ 8,31 中央演
算装置 9 推力制御装置 22a,22b
プロペラ 23a,23b 主軸 24a,24b
主機 25 自動制御装置 26a,26b
舵 29 風向風速計 30 潮流計 32 偏差演算装置 33 推進制御
力演算装置 34 推力配分装置
1,21 Hull 2 Propulsor 3 Bow thruster 4 Stancer 5a, 5b Propulsion axis 6,28 Position sensor 7,27 Direction sensor 8,31 Central processing unit 9 Thrust control device 22a, 22b
Propellers 23a, 23b Spindles 24a, 24b
Main machine 25 Automatic control device 26a, 26b
Rudder 29 Wind direction anemometer 30 Tidal current meter 32 Deviation calculation device 33 Propulsion control force calculation device 34 Thrust distribution device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前後方向推力を夫々独自に調整可能な推
力発生装置を有する2軸船において、この2軸船に方位
センサと、位置センサと、偏差演算装置と、推進制御力
演算装置と、推力配分装置とを配置し、前記方位センサ
と位置センサとの信号を前記偏差演算装置に入力して船
首方位偏差値と、船の前後方向偏差値とを算出する第1
の工程と、前記船首方位偏差値と船の前後方向偏差値と
を前記推進制御力演算装置に入力して必要制御力を演算
する第2の工程と、前記必要制御力を前記推力配分装置
に入力して夫々2軸の推力発生装置の推進力を制御する
第3の工程とよりなることを特徴とする2軸船における
自動船位保持方式。
1. A two-axis ship having thrust generators capable of independently adjusting forward and backward thrusts, wherein an orientation sensor, a position sensor, a deviation calculation device, and a propulsion control force calculation device are provided in the two-axis ship. A thrust distribution device is arranged, and signals from the direction sensor and the position sensor are input to the deviation calculation device to calculate a bow direction deviation value and a longitudinal deviation value of the ship.
And a second step of calculating the required control force by inputting the heading deviation value and the longitudinal deviation value of the ship to the propulsion control force calculation device, and the necessary control force to the thrust distribution device. An automatic position-holding system for a two-axis ship, which comprises a third step of inputting and controlling the propulsive forces of the two-axis thrust generators, respectively.
JP6194218A 1994-08-18 1994-08-18 Automatic ship position holding system for twin-screw ship Pending JPH0858696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194218A JPH0858696A (en) 1994-08-18 1994-08-18 Automatic ship position holding system for twin-screw ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194218A JPH0858696A (en) 1994-08-18 1994-08-18 Automatic ship position holding system for twin-screw ship

Publications (1)

Publication Number Publication Date
JPH0858696A true JPH0858696A (en) 1996-03-05

Family

ID=16320924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194218A Pending JPH0858696A (en) 1994-08-18 1994-08-18 Automatic ship position holding system for twin-screw ship

Country Status (1)

Country Link
JP (1) JPH0858696A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032087A (en) * 1997-02-17 2000-02-29 Nissan Motor Co., Ltd. Ship position control system
JP2002145193A (en) * 2000-11-06 2002-05-22 Japan Marine Sci & Technol Center Fixed point holding method for ship utilizing external force and its device
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2002173085A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Dynamic analysis method for ocean platform
JP2005254956A (en) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Automated fixed point holding device of water jet propulsion ship
JP2006327215A (en) * 2005-05-23 2006-12-07 Japan Hamuwaaji Kk Piloting method of vessel having pod propeller type propulsion unit
JP2008247102A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Method and device for holding fixed point position of single-shaft single-rudder vessel
JP2010241182A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Ship azimuth control device
CN103016747A (en) * 2012-11-29 2013-04-03 芜湖世纪凯旋消防设备有限公司 Fire extinguisher container valve
WO2014065147A1 (en) * 2012-10-22 2014-05-01 古野電気株式会社 Method for controlling hull and device for controlling hull
WO2016072028A1 (en) * 2014-11-07 2016-05-12 三菱重工業株式会社 Amphibious vehicle and control method for same
JP2021500268A (en) * 2017-10-23 2021-01-07 コングスバーグ マリタイム スウェーデン アクチボラグKongsberg Maritime Sweden AB Navigation system that independently controls lateral and vertical thrust

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032087A (en) * 1997-02-17 2000-02-29 Nissan Motor Co., Ltd. Ship position control system
JP2002145193A (en) * 2000-11-06 2002-05-22 Japan Marine Sci & Technol Center Fixed point holding method for ship utilizing external force and its device
JP2002173086A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Control method for ocean platform
JP2002173085A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Dynamic analysis method for ocean platform
JP2005254956A (en) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Automated fixed point holding device of water jet propulsion ship
JP2006327215A (en) * 2005-05-23 2006-12-07 Japan Hamuwaaji Kk Piloting method of vessel having pod propeller type propulsion unit
JP2008247102A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Method and device for holding fixed point position of single-shaft single-rudder vessel
JP2010241182A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Ship azimuth control device
WO2014065147A1 (en) * 2012-10-22 2014-05-01 古野電気株式会社 Method for controlling hull and device for controlling hull
JPWO2014065147A1 (en) * 2012-10-22 2016-09-08 古野電気株式会社 Hull control method and hull control device
CN103016747A (en) * 2012-11-29 2013-04-03 芜湖世纪凯旋消防设备有限公司 Fire extinguisher container valve
WO2016072028A1 (en) * 2014-11-07 2016-05-12 三菱重工業株式会社 Amphibious vehicle and control method for same
US10189325B2 (en) 2014-11-07 2019-01-29 Mitsubishi Heavy Industries, Ltd. Amphibious vehicle and control method for the same
JP2021500268A (en) * 2017-10-23 2021-01-07 コングスバーグ マリタイム スウェーデン アクチボラグKongsberg Maritime Sweden AB Navigation system that independently controls lateral and vertical thrust
US11526169B2 (en) 2017-10-23 2022-12-13 Kongsberg Maritime Sweden Ab Navigation system with independent control of lateral and longitudinal thrust

Similar Documents

Publication Publication Date Title
JP2926533B2 (en) Automatic fixed point return control method for ships
JP6036515B2 (en) Underwater vehicle
EP1981757B1 (en) A method and arrangement for controlling a drive arrangement in a watercraft
CN101342937B (en) Navigation control method for ship propulsion system
TWI429560B (en) Method of operating a ship, in particular a cargo ship, with at least one magnus rotor
US11597488B2 (en) Ship maneuvering system, ship, and ship maneuvering method
JPH0858696A (en) Automatic ship position holding system for twin-screw ship
JP2000211585A (en) Wind power utilizing boat
JP3038209B1 (en) Automatic bearing setting method and device
JP5147273B2 (en) Method and apparatus for holding a fixed point position of a 1-axis 1-steer boat
CN112004741A (en) Method for controlling a towing fleet
US5931110A (en) Vessel direction control system for small-scale vessel
WO2018008589A1 (en) Ship maneuvering system, ship, and ship maneuvering method
JP4264369B2 (en) Underwater vehicle and its control method
JP2961594B2 (en) Ship route control method and apparatus
WO2022131935A1 (en) Marine vessel fender and control system
JP4295645B2 (en) Automatic fixed point holding device for water jet propulsion ship
JP2964304B2 (en) Ship route control method and apparatus
JP2926531B2 (en) Automatic position holding device
JP2749833B2 (en) Control thrust distribution device
JP3026053B2 (en) Automatic position keeping method for ships with water guns
JP2948237B2 (en) Ship route control system
JPH01148696A (en) Holding device for fixed point of ship
JPH09142391A (en) Ship with turning propeller
JP3644278B2 (en) Ship position control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001212