JPH085807A - Plane mirror - Google Patents

Plane mirror

Info

Publication number
JPH085807A
JPH085807A JP13450694A JP13450694A JPH085807A JP H085807 A JPH085807 A JP H085807A JP 13450694 A JP13450694 A JP 13450694A JP 13450694 A JP13450694 A JP 13450694A JP H085807 A JPH085807 A JP H085807A
Authority
JP
Japan
Prior art keywords
mount
hole
mirror
light incident
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13450694A
Other languages
Japanese (ja)
Inventor
Hiroshi Okumura
啓 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13450694A priority Critical patent/JPH085807A/en
Publication of JPH085807A publication Critical patent/JPH085807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To realize the assembly of a mirror surface with high accuracy and further to make the accuracy of the mirror surface higher by providing a mount part and plural long holes formed to be longer than a mount hole in a peripheral direction corresponding to the mount hole at a middle position between the mount hole of the mount part and a light incident part. CONSTITUTION:The mount part 22 having the mount hole 22a is formed on the periphery of the light incident part 21 of a mirror surface main body 20. The long hole 24 longer than the mount hole 22a in the peripheral direction is formed corresponding to the mount hole 22a at the middle position between the mount hole 22a of the mount part 22 and the light incident part 21. By such constitution, when additional force is imparted to the mount hole 22a of the mount part 22 in the case the mount part 22 is tightened to a supporting body 23, the additional force is disped in the peripheral direction of the light incident part 21 of the main body 20 through the long hole 29, and further when the additional force caused by the thermal deformation of the supporting body 23 is imparted to the mount part 22 on the supporting body side, the additional force is dispersed in the peripheral direction of the mount part 22 of the main body 20 through the long hole 211, thereby reducing the influence of the additional force exerted on the main body 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばマイケルソン
分光計等の気体の放射/吸収スペクトルから気体の成分
を検出する分光計に用いるのに好適する平面鏡に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plane mirror suitable for use in a spectrometer for detecting a gas component from a gas emission / absorption spectrum such as a Michelson spectrometer.

【0002】[0002]

【従来の技術】分光計は、図2に示すように周知のビー
ムスプリッタ1が、その視線軸(入射光路)を測定方向
に指向させて配置される。このビームスプリッタ1の透
過光路には、固定鏡2が配設される。固定鏡2は、ビー
ムスプリッタ1を介して導かれた観測光を反射して再び
ビームスプリッタ1に導く。
2. Description of the Related Art In a spectrometer, as shown in FIG. 2, a well-known beam splitter 1 is arranged with its line-of-sight axis (incident optical path) oriented in the measuring direction. A fixed mirror 2 is arranged in the transmission optical path of the beam splitter 1. The fixed mirror 2 reflects the observation light guided through the beam splitter 1 and guides it again to the beam splitter 1.

【0003】また、ビームスプリッタ1の反射光路上に
は、移動鏡3が直線移動機構4を介して矢印方向に直線
移動自在に配設される。そして、ビームスプリッタ1の
干渉光路上には、光検出器5が配設される。これによ
り、ビームスプリッタ1で反射した観測光は、移動鏡3
に導かれて該移動鏡3で反射され、再びビームスプリッ
タ1に導かれる。この際、移動鏡3は、直線移動機構4
により反射光路上に所定の状態に直線駆動されて光路長
が可変設定される。ここで、上記固定鏡2からの光と、
移動鏡3からの光は、ビームスプリッタ1に導かれて干
渉されて、その干渉した光が光検出器5に導かれ、光の
スペクトル毎に異なる干渉光の和であるインタフェログ
ラムを取得して、光のスペクトラムの強度が検出され
る。
A movable mirror 3 is arranged on the reflected light path of the beam splitter 1 via a linear movement mechanism 4 so as to be linearly movable in the arrow direction. A photodetector 5 is arranged on the interference optical path of the beam splitter 1. As a result, the observation light reflected by the beam splitter 1 is moved by the moving mirror 3
Is reflected by the movable mirror 3 and is again guided to the beam splitter 1. At this time, the movable mirror 3 is moved by the linear movement mechanism 4
Thus, the optical path length is variably set by linearly driving in a predetermined state on the reflected optical path. Here, the light from the fixed mirror 2
The light from the movable mirror 3 is guided to the beam splitter 1 and interfered, and the interfered light is guided to the photodetector 5 to obtain an interferogram which is the sum of interference light different for each spectrum of light. , The intensity of the light spectrum is detected.

【0004】上記光検出器5には、演算部6が接続さ
れ、検出信号を演算部6に出力する。演算部6は、入力
した光のスペクトルの強度をレーザ光のスペクトルの強
度に基づいてフーリエ逆変換(FFT)して、観測光の
光成分を求める。
An arithmetic unit 6 is connected to the photodetector 5 and outputs a detection signal to the arithmetic unit 6. The calculation unit 6 performs an inverse Fourier transform (FFT) on the intensity of the spectrum of the input light based on the intensity of the spectrum of the laser light to obtain the light component of the observation light.

【0005】ところで、上記分光計は、その固定鏡及び
移動鏡が平面鏡を用いて構成され、その測定精度が平面
鏡の鏡面精度に大きな影響を受けるという特性を有して
いる。このため、このような平面鏡にあっては、高精度
な鏡面精度を確保することが要求される。
By the way, the above-mentioned spectrometer has a characteristic that its fixed mirror and movable mirror are constructed by using plane mirrors, and the measurement accuracy thereof is greatly affected by the mirror surface precision of the plane mirror. Therefore, in such a plane mirror, it is required to ensure high mirror surface precision.

【0006】図3は、このような従来の平面鏡を示すも
ので、鏡面本体10には、光入射部10aが形成され
る。この光入射部10aの周囲には、つば状の取付部1
0bが上記固定鏡2(図2参照)あるいは移動鏡3(図
2参照)を構成する支持体に対応して形成され、この取
付部10bには、複数の取付穴10cが周方向に所定の
間隔を有して形成される。そして、この鏡面本体10
は、その取付部10bの光入射部10aの入射面側と逆
側の一方面が支持体11に載置され、その取付部10b
の取付穴10cを利用して締結具、例えば螺子部材(図
示せず)を介して支持体11に固定される。
FIG. 3 shows such a conventional plane mirror, in which a light entrance portion 10a is formed in the mirror surface main body 10. Around the light incident portion 10a, a collar-shaped mounting portion 1
0b is formed corresponding to the support body that constitutes the fixed mirror 2 (see FIG. 2) or the movable mirror 3 (see FIG. 2), and a plurality of mounting holes 10c are formed in the mounting portion 10b in the circumferential direction. It is formed with a space. And this mirror surface body 10
Has one surface opposite to the incident surface side of the light incident portion 10a of the mounting portion 10b mounted on the support 11, and the mounting portion 10b.
It is fixed to the support body 11 via a fastener, for example, a screw member (not shown) using the mounting hole 10c.

【0007】しかしながら、上記平面鏡では、鏡面本体
10を支持体11に締結する際に付与される付加力によ
り、その光入射部10aの入射面が変形して鏡面精度の
低下を招き、組立状態において、所望の鏡面精度を確保
するのが困難となるという問題を有する。また、係る鏡
面本体10の鏡面精度は、支持体側の平面度あるいは、
支持体側の熱変形等による付加力が付与されても同様に
低下するという問題が発生する。
However, in the above-mentioned plane mirror, the incident surface of the light incident portion 10a is deformed by the additional force applied when the mirror surface main body 10 is fastened to the support body 11, and the mirror surface precision is deteriorated. However, there is a problem that it becomes difficult to secure a desired mirror surface accuracy. Further, the mirror surface accuracy of the mirror surface main body 10 is the flatness on the support side or
Even if an additional force is applied by thermal deformation or the like on the support side, the problem similarly occurs that it is reduced.

【0008】[0008]

【発明が解決しようとする課題】以上述べたように、従
来の平面鏡では、組立状態において、高精度な鏡面精度
を確保するのが困難であるという問題を有する。この発
明は上記の事情に鑑みてなされたもので、容易にして、
確実な鏡面組立を実現したうえで、鏡面精度の高精度化
を図り得るようにした平面鏡を提供することを目的とす
る。
As described above, the conventional plane mirror has a problem that it is difficult to secure high precision mirror surface precision in the assembled state. The present invention has been made in view of the above circumstances, and it is made easy.
It is an object of the present invention to provide a plane mirror capable of achieving high precision mirror surface precision after realizing reliable mirror surface assembly.

【0009】[0009]

【課題を解決するための手段】この発明は、光の入射さ
れる光入射部の周囲に取付部が形成された鏡面本体と、
この鏡面本体の光入射部の周囲に形成され、複数の取付
穴が周方向に所定の間隔を有して設けられた取付部と、
この取付部の前記取付穴と前記光入射部との中間位置で
あって、前記取付穴に対応して該取付穴より周方向に長
く形成した複数の長孔とを備えて平面鏡を構成したもの
である。
According to the present invention, there is provided a mirror surface main body having a mounting portion formed around a light incident portion on which light is incident,
A mounting portion which is formed around the light incident portion of the mirror main body and has a plurality of mounting holes provided at predetermined intervals in the circumferential direction,
A plane mirror is formed at an intermediate position between the mounting hole of the mounting portion and the light incident portion, and having a plurality of elongated holes formed in the circumferential direction longer than the mounting hole corresponding to the mounting hole. Is.

【0010】[0010]

【作用】上記構成によれば、鏡面本体は、その取付穴を
利用して支持体に締結され、該締結に伴う付加力が付与
されると、その付加力が長孔により、周方向に分散さ
れ、直接的な影響が軽減される。また、支持体の変形に
伴う付加力が付与されると、この付加力が長孔により、
周方向に分散されて鏡面本体への影響が軽減される。従
って、鏡面本体は、その製作鏡面精度に基づく高精度な
精度を保って支持体への組付けが可能となり、高精度な
鏡面精度が確保される。
According to the above construction, the mirror body is fastened to the support by using the mounting holes, and when an additional force is applied by the fastening, the additional force is dispersed in the circumferential direction by the elongated holes. And the direct impact is reduced. Also, when an additional force is applied due to the deformation of the support, this additional force is generated by the long holes.
Dispersion in the circumferential direction reduces the effect on the mirror body. Therefore, the mirror surface main body can be attached to the support body while maintaining high accuracy based on the manufactured mirror surface accuracy, and high mirror surface accuracy is ensured.

【0011】[0011]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1はこの発明の一実施例に係
る平面鏡を示すもので、鏡面本体20には、光入射部2
1が設けられる。そして、鏡面本体20の光入射部21
の周囲部には、つば状の取付部22が設けられる。この
取付部22は、例えば前記干渉計の固定鏡2(図2参
照)あるいは移動鏡3(図2参照)を構成する支持体2
3に対応して形成される。この取付部22には、複数の
取付穴22aが周方向に所定の間隔を有して形成され
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a plane mirror according to an embodiment of the present invention.
1 is provided. Then, the light entrance portion 21 of the mirror body 20
A brim-shaped mounting portion 22 is provided around the periphery of the. The mounting portion 22 is, for example, a support body 2 that constitutes the fixed mirror 2 (see FIG. 2) or the movable mirror 3 (see FIG. 2) of the interferometer.
It is formed corresponding to 3. A plurality of mounting holes 22a are formed in the mounting portion 22 at predetermined intervals in the circumferential direction.

【0012】また、取付部22には、付加力分散用の複
数の長孔24が取付穴22aと光入射部21との中間部
に該長孔24に対応して形成される。この長孔24は、
それぞれが取付穴22aに対応して設けられ、周方向に
長く、隣接する取付穴22aとの中間位置まで形成され
る。
Further, in the mounting portion 22, a plurality of elongated holes 24 for dispersing the additional force are formed in an intermediate portion between the mounting hole 22a and the light incident portion 21 corresponding to the elongated holes 24. This long hole 24
Each is provided corresponding to the mounting hole 22a, is long in the circumferential direction, and is formed up to an intermediate position between the adjacent mounting holes 22a.

【0013】上記構成において、鏡面本体20は、その
光入射部21の入射面側が支持体23の所定の位置に載
置されて、その取付部22の取付穴22aに図示しない
螺子部材が挿入され、該螺子部材(図示せず)が支持体
23に締結される。この際、螺子部材(図示せず)の締
結に伴う締結力は、長孔24により周方向に分散されて
鏡面本体20の光入射部21への影響が軽減される。ま
た、長孔24は、支持体23への締結により、該支持体
23から付与される付加力を周方向に分散して、鏡面本
体20の取付部22への付加力の付与を軽減する。この
結果、鏡面本体20は、その光入射部21の鏡面精度を
高精度に保った状態で、所定の締結力で支持体23に支
持される。
In the above structure, the light-incident part 21 of the mirror body 20 is placed at a predetermined position on the support 23, and a screw member (not shown) is inserted into the mounting hole 22a of the mounting part 22. The screw member (not shown) is fastened to the support body 23. At this time, the fastening force associated with the fastening of the screw member (not shown) is dispersed in the circumferential direction by the elongated hole 24, and the influence on the light incident portion 21 of the mirror body 20 is reduced. Further, the long holes 24 disperse the additional force applied from the support body 23 in the circumferential direction by fastening to the support body 23, and reduce the application of the additional force to the mounting portion 22 of the mirror body 20. As a result, the mirror surface main body 20 is supported by the support body 23 with a predetermined fastening force while maintaining the mirror surface accuracy of the light incident portion 21 with high accuracy.

【0014】このように、上記平面鏡は、鏡面本体20
の光入射部21の周囲に対して取付穴22aを有する取
付部22を形成して,この取付部22の取付穴23と光
入射部21との中間位置に周方向に取付穴22aより長
い長孔24を該取付穴22aに対応して形成した。これ
によれば、取付部22の取付穴22aに支持体23への
締結時に付加力が付与されると、その付加力が長孔24
を介して鏡面本体20の光入射部21の周方向に分散さ
れ、且つ、支持体側が取付部22に支持体23の熱変形
等に伴う付加力が付与されると、この付加力が長孔24
を介して鏡面本体20の取付部22の周方向に分散され
て鏡面本体20への付加力の影響が軽減される。この結
果、鏡面本体21は、支持体23に対して、その光入射
部21の高精度な精度を保った状態で、強い締結力で高
精度にして確実に取付けることが可能となる。
As described above, the plane mirror has the mirror main body 20.
A mounting portion 22 having a mounting hole 22a is formed around the light incident portion 21, and a length longer than the mounting hole 22a is circumferentially formed at an intermediate position between the mounting hole 23 of the mounting portion 22 and the light incident portion 21. The holes 24 are formed corresponding to the mounting holes 22a. According to this, when an additional force is applied to the attachment hole 22 a of the attachment portion 22 when the support body 23 is fastened, the additional force is applied to the elongated hole 24.
When the support body side applies an additional force to the mounting portion 22 due to thermal deformation of the support body 23, etc., the additional force is dispersed in the circumferential direction of the light incident portion 21 of the mirror main body 20 through the long hole. 24
Are distributed in the circumferential direction of the mounting portion 22 of the mirror-finished body 20 through the so that the influence of the additional force on the mirror-finished body 20 is reduced. As a result, the mirror-finished main body 21 can be securely attached to the support 23 with high precision and high precision while maintaining the high precision of the light incident portion 21.

【0015】なお、上記実施例では、干渉計の光学系に
適用した場合で説明したが、これに限ることなく、各種
光学器機の光学系に適用することが可能で、略同様の効
果が期待される。よって、この発明は、上記実施例に限
ることなく、その他、この発明の要旨を逸脱しない範囲
で種々の変形を実施し得ることは勿論である。
In the above embodiment, the case where the invention is applied to the optical system of the interferometer has been described, but the invention is not limited to this, and the invention can be applied to the optical system of various optical instruments, and substantially the same effect is expected. To be done. Therefore, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

【0016】[0016]

【発明の効果】以上述べたように、この発明によれば、
容易にして、確実な鏡面組立を実現したうえで、鏡面精
度の高精度化を図り得るようにした平面鏡を提供するこ
とができる。
As described above, according to the present invention,
It is possible to provide a flat mirror which can be easily and surely assembled with a reliable mirror surface and can be improved in mirror surface accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る平面鏡を示した図。FIG. 1 is a view showing a plane mirror according to an embodiment of the present invention.

【図2】この発明の適用される分光計を示した図。FIG. 2 is a diagram showing a spectrometer to which the present invention is applied.

【図3】従来の平面鏡を示した図。FIG. 3 is a view showing a conventional plane mirror.

【符号の説明】[Explanation of symbols]

20…鏡面本体。 21…光入射部。 22…取付部。 22a…取付穴。 23…支持体。 24…長孔。 20 ... Mirror surface body. 21 ... Light incident part. 22 ... Mounting part. 22a ... Mounting hole. 23 ... Support. 24 ... long hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光の入射される光入射部の周囲部に取付
部が形成された鏡面本体と、 この鏡面本体の光入射部の周囲に形成され、複数の取付
穴が周方向に所定の間隔を有して設けられた取付部と、 この取付部の前記取付穴と前記光入射部との中間位置で
あって、前記取付穴に対応して該取付穴より周方向に長
く形成した複数の長孔とを具備した平面鏡。
1. A mirror surface main body in which a mounting portion is formed around a light incident portion on which light is incident, and a plurality of mounting holes formed in the periphery of the light incident portion of the mirror surface main body in a predetermined circumferential direction. A mounting portion provided with a space, and a plurality of intermediate portions formed between the mounting hole of the mounting portion and the light incident portion, the plurality of mounting portions corresponding to the mounting hole and being longer in the circumferential direction than the mounting hole. A flat mirror with a long hole.
【請求項2】 前記長孔は、取付穴を中心として、隣接
する取付穴との中間位置まで形成したことを特徴とする
請求項1記載の平面鏡。
2. The plane mirror according to claim 1, wherein the elongated hole is formed up to an intermediate position between adjacent mounting holes with the mounting hole as a center.
JP13450694A 1994-06-16 1994-06-16 Plane mirror Pending JPH085807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13450694A JPH085807A (en) 1994-06-16 1994-06-16 Plane mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13450694A JPH085807A (en) 1994-06-16 1994-06-16 Plane mirror

Publications (1)

Publication Number Publication Date
JPH085807A true JPH085807A (en) 1996-01-12

Family

ID=15129922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13450694A Pending JPH085807A (en) 1994-06-16 1994-06-16 Plane mirror

Country Status (1)

Country Link
JP (1) JPH085807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040926A3 (en) * 2003-10-02 2005-09-09 Zeiss Carl Smt Ag Optical subassembly and projection objective for semiconductor lithography
US7760327B2 (en) 2003-10-02 2010-07-20 Carl Zeiss Smt Ag Reflecting optical element with eccentric optical passageway

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040926A3 (en) * 2003-10-02 2005-09-09 Zeiss Carl Smt Ag Optical subassembly and projection objective for semiconductor lithography
US7448763B2 (en) 2003-10-02 2008-11-11 Carl Zeiss Smt Ag Optical subassembly and projection objective in semiconductor lithography
US7760327B2 (en) 2003-10-02 2010-07-20 Carl Zeiss Smt Ag Reflecting optical element with eccentric optical passageway
KR101134210B1 (en) * 2003-10-02 2012-04-09 칼 짜이스 에스엠테 게엠베하 Optical subassembly and projection objective for semiconductor lithography

Similar Documents

Publication Publication Date Title
RU2468400C2 (en) Device for exciting multimode optical fibre
US20070159634A1 (en) Compression assembly of spatial heterodyne spectrometer (shs)
US20090231592A1 (en) Refractive spatial heterodyne spectrometer
US20050007586A1 (en) Transmission spectrometer with improved spectral and temperature characteristics
US5715057A (en) Reference interferometer with variable wavelength and folded measurement beam path
US20220187055A1 (en) Heterodyne photonic integrated circuit for absolute metrology
JPH085807A (en) Plane mirror
Van Gorkom et al. The space coronagraph optical bench (SCoOB): 4. Vacuum performance of a high contrast imaging testbed
JP2012225729A (en) Fbg distortion sensor
KR950006483A (en) Assembly method and measurement method of optical isolator
CN110383131B (en) Beam splitter assembly
US4345838A (en) Apparatus for spectrometer alignment
JPH07260584A (en) Michelson interferometer
JPH021505A (en) Stage with interferometer
KR101806897B1 (en) System for tilt compensation of moveable reflective mirror of michelson interferometer
US7242508B2 (en) Infrared modulator for spectrometer
JP2000123995A (en) Plasma density measuring device
SU1760499A1 (en) Device for fixing objective in instrument case
JP7467386B2 (en) Optical Fiber Sensors
JPH0835883A (en) Michelson interferometer
JP3749571B2 (en) Microspectrometer
JPH07243806A (en) Michelson interferometer
EP0767394B1 (en) Diamond optical plate beamsplitter
Liu et al. Optical fiber interferometric spectrometer
SU1696930A1 (en) Method for determining focal distance of optical system