JPH085781A - Preprocessing method for spent nuclear fuel - Google Patents

Preprocessing method for spent nuclear fuel

Info

Publication number
JPH085781A
JPH085781A JP6162695A JP16269594A JPH085781A JP H085781 A JPH085781 A JP H085781A JP 6162695 A JP6162695 A JP 6162695A JP 16269594 A JP16269594 A JP 16269594A JP H085781 A JPH085781 A JP H085781A
Authority
JP
Japan
Prior art keywords
fuel rod
temperature
fuel
cladding tube
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6162695A
Other languages
Japanese (ja)
Inventor
Masayuki Hayashi
正之 林
Kazutoshi Tokai
和俊 渡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP6162695A priority Critical patent/JPH085781A/en
Publication of JPH085781A publication Critical patent/JPH085781A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To more quickly and strongly eliminate oxide film of a cladding in a method in which the fuel rod cladding is degraded by hydrogen before finely cutting the fuel rod in reprocessing. CONSTITUTION:A fuel rod is heated in vacuum at the temperature at least the beta-transformation point of zirconium alloy constituting the cladding, the fuel rod is cooled in hydrogen flow and the oxide film on the clad is eliminated by making use of quick oxygen diffusion velocity in beta metal mother phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は使用済原子燃料の再処理
に係り、特に燃料棒細断の前工程として、水素により燃
料棒被覆管の脆化を図る前処理の際の方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reprocessing of spent nuclear fuel, and more particularly to a pretreatment method for embrittlement of a fuel rod cladding tube with hydrogen as a preprocess for shredding fuel rods. is there.

【0002】[0002]

【従来の技術】使用済の原子燃料は、内部のウランやプ
ルトニウム等の成分を回収するために所定の再処理に付
される。
2. Description of the Related Art Spent nuclear fuel is subjected to a predetermined reprocessing in order to recover components such as uranium and plutonium therein.

【0003】従来の再処理はピューレックス法と呼ばれ
る方法によるもので、この方法は使用済の燃料棒を集合
体の状態で切断装置によって数cmの長さに切断し、こ
れを硝酸に浸漬することによって内部のペレットを溶解
せしめ、その後、溶媒抽出により上記ウランやプルトニ
ウム、その他の元素を回収するものである。
The conventional reprocessing is a method called the Purex method. This method cuts spent fuel rods in the state of an assembly into a length of several cm by a cutting device and immerses them in nitric acid. In this way, the internal pellets are dissolved, and then the uranium, plutonium and other elements are recovered by solvent extraction.

【0004】ところで、燃料棒の被覆管の表面には数μ
mから数十μmの硬いZrO2 層が形成されており、こ
のことから、上記切断工程において、切断装置の刃先の
損傷が多く、かつ高放射線レベルの場合であるために切
断刃の取替が困難であるという問題がある。
By the way, the surface of the cladding of the fuel rod is a few μm.
Since a hard ZrO 2 layer having a thickness of m to several tens of μm is formed, it is necessary to replace the cutting blade in the above cutting step because the cutting edge of the cutting device is often damaged and the radiation level is high. There is a problem that it is difficult.

【0005】また、上記ZrO2 層の内面はZr合金属
であるため切断面が変形しやすく、被覆管の端部をふさ
ぐ可能性が大きく、この場合、溶解時に薬液が切断管内
に浸透しにくくなり、さらに切断時の衝撃でセラミック
であるペレットが噛み込むとペレットの溶解が困難にな
る。
Further, since the inner surface of the ZrO 2 layer is a Zr compound metal, the cutting surface is likely to be deformed, and there is a high possibility that the end portion of the cladding tube will be blocked. In this case, it is difficult for the chemical solution to penetrate into the cutting tube during dissolution. When the pellets made of ceramic are bitten by the impact during cutting, it becomes difficult to dissolve the pellets.

【0006】そして、燃焼が進んだ燃料はペレットと被
覆管が強く接触しているために、切断しても薬液が被覆
管の切断部から内部へ浸透しにくくなり、やはりペレッ
トの溶解がなされにくいという問題がある。
Further, since the pellets and the cladding tube of the burned fuel are in strong contact with each other, it is difficult for the chemical solution to permeate the inside of the cladding tube from the cut portion even when the pellets are cut, and thus the pellets are hardly dissolved. There is a problem.

【0007】[0007]

【発明が解決しようとする課題】そこで、上記問題点を
克服するために、水素による被覆管の脆化が提案されて
いる。この被覆管を水素化する場合には、被覆管表面の
前記ZrO2 が今度はバリヤーとなって上記水素化の妨
げとなるため、酸化膜除去工程として事前に真空加熱炉
での500℃程度の加熱が提案されている。
Therefore, in order to overcome the above problems, it has been proposed to embrittle the cladding tube with hydrogen. When this cladding tube is hydrogenated, the ZrO 2 on the surface of the cladding tube becomes a barrier this time and hinders the hydrogenation. Heating is suggested.

【0008】しかしながら、特に高燃焼度用の使用済燃
料棒では、燃焼度が30GWd/tから60GWd/t
になり、上記酸化膜が100μm前後と厚くなることか
ら、上記通常の真空加熱では充分ではないことが判明し
た。
However, the burnup of spent fuel rods for high burnup is 30 GWd / t to 60 GWd / t.
Since the above oxide film becomes as thick as about 100 μm, it was found that the above-mentioned normal vacuum heating is not sufficient.

【0009】本発明は叙上の如き実状に対処し、特にジ
ルコニウム合金のβ変態を利用することによって、上記
高燃焼度用燃料棒においても上記酸化膜を好適に除去す
ることを目的とするものである。
The present invention addresses the above-mentioned actual situation, and particularly aims to remove the oxide film even in the above high burnup fuel rod by utilizing the β transformation of the zirconium alloy. Is.

【0010】[0010]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明の使用済原子燃料の前処理方法の特徴は、前述
のように燃料棒細断の前工程として、水素により燃料棒
被覆管の脆化を行う方法であって、上記被覆管を構成す
るジルコニウム合金のβ変態点以上の温度で上記燃料棒
を真空加熱し、のち水素気流中で上記燃料棒の冷却を行
うところにある。
That is, the feature of the pretreatment method for spent nuclear fuel of the present invention which meets the above-mentioned object is that the fuel rod cladding tube with hydrogen is used as a pre-step of the fuel rod shredding as described above. In the method of embrittlement, the fuel rod is vacuum heated at a temperature not lower than the β transformation point of the zirconium alloy forming the cladding tube, and then the fuel rod is cooled in a hydrogen stream.

【0011】また、上記本発明の方法において、上記真
空加熱の温度を約870〜1000℃とすると共に、こ
の温度の保持時間を約0.5 〜3時間とし、あるいは上記
水素気流中での冷却に際し、冷却時に上記被覆管の温度
がある領域で上昇するかもしくは一定となる温度滞留点
の終了の後に、さらに急速に燃料棒の冷却を行うことも
好適である。
In the method of the present invention, the temperature of the vacuum heating is set to about 870 to 1000 ° C., the holding time of this temperature is set to about 0.5 to 3 hours, or in the cooling in the hydrogen stream, It is also preferable to cool the fuel rods more rapidly after the end of the temperature retention point where the temperature of the cladding tube rises or becomes constant in a certain region during cooling.

【0012】[0012]

【作用】表面に酸化膜を有するジルコニウム合金を加熱
すると、酸化膜中の酸素はジルコニウム金属相へ拡散
し、金属相は酸素を含むα−Zr相へと変化する。
When the zirconium alloy having the oxide film on the surface is heated, oxygen in the oxide film diffuses into the zirconium metal phase, and the metal phase changes to the α-Zr phase containing oxygen.

【0013】一方、ジルコニウム合金は一般に870℃
前後で上記α相からβ相に変化するが、本発明では上記
酸素の拡散速度が、上記α相に比べβ相の方が約10倍
の速さがあることを見出している。
On the other hand, zirconium alloy is generally 870 ° C.
Although it changes from the α phase to the β phase before and after, the present invention has found that the diffusion rate of oxygen is about 10 times faster in the β phase than in the α phase.

【0014】すなわち、表面酸化膜中の酸素を金属母相
へ拡散させるためには上記β相の方が有利であり、従っ
て本発明はかかる作用を利用したことにより、燃料棒被
覆管の酸化膜をより早くかつ強力に消滅させることが可
能である。
That is, the β phase is more advantageous for diffusing oxygen in the surface oxide film into the metal matrix phase. Therefore, according to the present invention, the oxide film of the fuel rod cladding tube is utilized by utilizing such an action. Can be eliminated faster and more powerfully.

【0015】なお、真空加熱の温度を約870〜100
0℃、温度保持時間を約0.5 〜3時間とするのは、燃料
棒内の加圧ガスへの配慮であり、また冷却時に温度滞留
点から急冷するのは、充分な水素を必要量だけ早く効率
的に吸収させるための配慮である。
The vacuum heating temperature is about 870-100.
Keeping the temperature at 0 ° C and the temperature holding time at about 0.5 to 3 hours is to consider the pressurized gas in the fuel rod, and quenching from the temperature retention point at the time of cooling is sufficient hydrogen as quickly as necessary. This is a consideration for efficient absorption.

【0016】[0016]

【実施例】以下さらに本発明の実施例を説明する。EXAMPLES Examples of the present invention will be further described below.

【0017】使用済PWR燃料集合体の燃料棒細断の前
工程として、水素により燃料棒被覆管の脆化を行うに際
し、燃料棒の被覆管を構成するジルコニウム合金のβ変
態点約870℃以上の温度で上記燃料棒を真空加熱し、
のち水素気流中で上記燃料棒の冷却を行った。
When the fuel rod cladding tube is embrittled with hydrogen as a pre-step of shredding the fuel rod of the spent PWR fuel assembly, the β transformation point of the zirconium alloy constituting the cladding tube of the fuel rod is about 870 ° C. or more. Vacuum heating the fuel rod at a temperature of
After that, the fuel rods were cooled in a hydrogen stream.

【0018】一方、燃料棒は、特にPWR用燃料棒が初
期加圧約30kg/cm2 と高いために、高温長時間加
熱ではバースト破壊する恐れがある。そこで、外層に約
50μmの酸化膜を有するPWR燃料棒(初期加圧約3
0kg/cm2 )を、800℃、900℃、1000
℃、1100℃で夫々、真空中で2時間加熱したとこ
ろ、下記表1の如き結果を得た。
On the other hand, since the fuel rod for PWR, especially the fuel rod for PWR, has a high initial pressurization of about 30 kg / cm 2 , there is a risk of burst destruction when heated at high temperature for a long time. Therefore, a PWR fuel rod having an oxide film of about 50 μm in the outer layer (initial pressure of about 3
0 kg / cm 2 ) at 800 ° C, 900 ° C, 1000
When heated at 1100C for 2 hours in vacuum, the results shown in Table 1 below were obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】この結果をみると、β変態点を越える90
0℃以上の温度では、酸素の拡散が早く酸化膜がほぼ消
滅している。また、これらB〜Cの燃料棒では、被覆管
の表面に、酸化膜が被覆管の膨張によって破壊されたこ
とによる無数の亀裂が認められた。さらに上記高温の加
熱による被覆管の膨張によって被覆管とペレットの間隙
を大きくすることができ、これにより細断時のペレット
の分離や溶解時の薬液の細断片内への浸透を容易にする
ことができた。
From this result, it is found that the value exceeds 90 which exceeds the β transformation point.
At a temperature of 0 ° C. or higher, oxygen diffuses quickly and the oxide film almost disappears. Further, in these fuel rods B to C, numerous cracks were observed on the surface of the cladding tube due to the oxide film being destroyed by the expansion of the cladding tube. Further, the gap between the coating tube and the pellets can be enlarged by the expansion of the coating tube due to the heating at the above high temperature, which facilitates the separation of the pellets during shredding and the penetration of the chemical solution into the fine fragments during dissolution. I was able to.

【0021】実際の使用済燃料の酸化被膜は数10μm
〜100μmであり、50μmを越える部分も多いが、
上記膨張により無数の亀裂が加わり、新しい金属層が表
面に出るため900℃前後の加熱で目的は達せられると
考えられる。
The oxide film of the actual spent fuel is several 10 μm
~ 100 μm, and there are many parts over 50 μm,
Since the expansion causes countless cracks and a new metal layer appears on the surface, it is considered that the purpose can be achieved by heating at about 900 ° C.

【0022】他方、上記の如き試料を加熱状態から水素
雰囲気でゆるやかに冷却して行くと、下記の化学式1の
ように発熱量Qを生じるようになる。
On the other hand, when the sample as described above is gradually cooled from the heated state in a hydrogen atmosphere, a calorific value Q is generated as in the following chemical formula 1.

【0023】[0023]

【化1】Zr+H2 →ZrH2 +Q[Chemical formula 1] Zr + H 2 → ZrH 2 + Q

【0024】すなわち、上記化学式の発熱反応により、
冷却がキャンセルされて温度が一定に保たれる領域、温
度滞留点があり、ここで水素の吸収はほぼ終了したと判
断できるため、このあとは急速に冷却することにより、
被覆管に充分な水素を必要量だけ効率的に吸収させた上
で、余分な時間を省略することができる。
That is, by the exothermic reaction of the above chemical formula,
There is a region where the cooling is canceled and the temperature is kept constant, there is a temperature retention point, and it can be judged that the absorption of hydrogen has almost ended here, so after that, by rapidly cooling,
It is possible to efficiently absorb a sufficient amount of hydrogen in the cladding tube and to eliminate extra time.

【0025】なお、上記温度滞留点終了時までの冷却速
度は1℃/分〜20℃/分が適当であり、終了後の冷却
速度は20℃/分〜100℃/分が適当である。
The cooling rate until the end of the temperature retention point is appropriately 1 ° C./min to 20 ° C./min, and the cooling rate after the completion is suitably 20 ° C./min to 100 ° C./min.

【0026】また、上記真空加熱の温度は約870〜1
000℃、この温度の保持時間は約0.5 〜3時間が適当
である。
The vacuum heating temperature is about 870 to 1
A holding time of 000 ° C and this temperature of about 0.5 to 3 hours is suitable.

【0027】(実験例)長さ約20cm、表面の酸化膜
厚み約50μmのジルカロイ−4製の被覆管内にUO2
のペレットを約30kg/cm2 のHeと共に封入し、
水素置換可能な真空炉中で加熱を行った。図1にその温
度パターンを示す。なお、実験の手順は、
(Experimental Example) UO 2 was placed in a Zircaloy-4 cladding tube having a length of about 20 cm and a surface oxide film thickness of about 50 μm.
The pellets of about 30 kg / cm 2 together with He,
The heating was performed in a vacuum furnace capable of hydrogen substitution. FIG. 1 shows the temperature pattern. The procedure of the experiment is

【0028】 試料を炉内に封入し真空にする。 室温より950℃まで約30分で上昇させ、そのま
ま約1時間保持する。 約1時間保持後、炉内にArを投入し、次いで水素
を投入する。 10℃/分で冷却を行う。 550℃前後より試料の温度低下はゆるやかにな
り、30分後、約400℃になったところで、冷却速度
が大きくなったのを検知して自動的にヒーターを落とし
た。
The sample is sealed in a furnace and a vacuum is applied. The temperature is raised from room temperature to 950 ° C. in about 30 minutes, and kept for about 1 hour. After holding for about 1 hour, Ar is introduced into the furnace, and then hydrogen is introduced. Cool at 10 ° C / min. The temperature of the sample gradually decreased from around 550 ° C., and after 30 minutes, when it reached about 400 ° C., the increase in cooling rate was detected and the heater was automatically turned off.

【0029】取り出し後の試料の外径の伸び率は約60
%、酸化膜は消滅し、表面に無数のクラックが生じてい
た。実験後の検査では試料中の水素量は約1wt%であ
った。
The elongation rate of the outer diameter of the sample after taking out is about 60.
%, The oxide film disappeared, and numerous cracks were generated on the surface. In the inspection after the experiment, the amount of hydrogen in the sample was about 1 wt%.

【0030】[0030]

【発明の効果】以上説明したように、本発明の使用済燃
料の前処理方法は、燃料棒の被覆管を構成するジルコニ
ウム合金のβ変態点以上の温度で上記燃料棒を真空加熱
し、のち水素気流中で上記燃料棒の冷却を行うものであ
り、β金属母相の早い酸素の拡散速度を利用することに
より上記被覆管の酸化膜をより早くかつ強力に消滅させ
ることが可能で、さらに上記高温の加熱による被覆管の
膨張によって被覆管とペレットの間隙を大きくすること
ができ、これにより細断時のペレットの分離や溶解時の
薬液の細断片内への浸透を容易にするとの効果を奏する
ものである。
As described above, according to the method for pretreatment of spent fuel of the present invention, the fuel rod is vacuum heated at a temperature not lower than the β transformation point of the zirconium alloy forming the cladding of the fuel rod, and then The fuel rod is cooled in a hydrogen stream, and the oxide film of the cladding tube can be eliminated more quickly and strongly by utilizing the high oxygen diffusion rate of the β metal matrix. The expansion of the coating tube by heating at the above high temperature can increase the gap between the coating tube and the pellets, thereby facilitating the separation of the pellets during shredding and the penetration of the chemical solution into the fine fragments during dissolution. Is played.

【0031】そして上記水素気流中での冷却に際し、上
記被覆管の温度滞留点の終了の後に、さらに急速に燃料
棒の冷却を行うことにより、被覆管に必要かつ充分な水
素を効率的に吸収させると共に、余分な時間を自動的に
検知してこれを省略しうるとの効果を奏するものであ
る。
During the cooling in the hydrogen stream, the fuel rods are cooled more rapidly after the temperature retention point of the cladding tube is finished, so that the cladding tube can efficiently absorb necessary and sufficient hydrogen. In addition to that, it is possible to automatically detect the extra time and omit it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の方法によって処理した燃料棒の
温度変化を示すグラフである。
FIG. 1 is a graph showing a temperature change of a fuel rod treated by the method of the embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 再処理における燃料棒細断の前工程とし
て、水素により燃料棒被覆管の脆化を行う使用済原子燃
料の前処理方法において、上記被覆管を構成するジルコ
ニウム合金のβ変態点以上の温度で上記燃料棒を真空加
熱し、のち水素気流中で上記燃料棒の冷却を行うことを
特徴とする使用済原子燃料の前処理方法。
1. In a pretreatment method for spent nuclear fuel, which comprises embrittlement of a fuel rod cladding tube with hydrogen as a pre-step of shredding fuel rods in reprocessing, a β transformation point of a zirconium alloy constituting the cladding tube. A method for pretreatment of spent nuclear fuel, comprising heating the fuel rod in a vacuum at the above temperature and then cooling the fuel rod in a hydrogen stream.
【請求項2】 上記真空加熱の温度を約870〜100
0℃とすると共に、この温度の保持時間を約0.5 〜3時
間とする請求項1記載の使用済原子燃料の前処理方法。
2. The vacuum heating temperature is about 870-100.
The pretreatment method for spent nuclear fuel according to claim 1, wherein the temperature is maintained at 0 ° C and the temperature is maintained for about 0.5 to 3 hours.
【請求項3】 上記水素気流中での冷却に際し、上記被
覆管の温度滞留点の終了の後に、さらに急速に燃料棒の
冷却を行う請求項1または2記載の使用済原子燃料の前
処理方法。
3. The method for pretreatment of spent nuclear fuel according to claim 1, wherein the cooling of the fuel rod is further rapidly performed after the end of the temperature retention point of the cladding tube during the cooling in the hydrogen stream. .
JP6162695A 1994-06-20 1994-06-20 Preprocessing method for spent nuclear fuel Withdrawn JPH085781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162695A JPH085781A (en) 1994-06-20 1994-06-20 Preprocessing method for spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162695A JPH085781A (en) 1994-06-20 1994-06-20 Preprocessing method for spent nuclear fuel

Publications (1)

Publication Number Publication Date
JPH085781A true JPH085781A (en) 1996-01-12

Family

ID=15759546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162695A Withdrawn JPH085781A (en) 1994-06-20 1994-06-20 Preprocessing method for spent nuclear fuel

Country Status (1)

Country Link
JP (1) JPH085781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670005A (en) * 2020-12-18 2021-04-16 中广核研究院有限公司 Spent fuel rod treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670005A (en) * 2020-12-18 2021-04-16 中广核研究院有限公司 Spent fuel rod treatment method
CN112670005B (en) * 2020-12-18 2022-10-21 中广核研究院有限公司 Spent fuel rod treatment method

Similar Documents

Publication Publication Date Title
EP0622470A1 (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US5383228A (en) Method for making fuel cladding having zirconium barrier layers and inner liners
Cox et al. Iodine induced cracking of zircaloy fuel cladding
US5618356A (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
JP5961572B2 (en) Treatment of damaged or molten nuclear fuel
JPH05209257A (en) Method for annealing to improve nodular corrosion resistance of zircalloy
JPH085781A (en) Preprocessing method for spent nuclear fuel
JPH11231091A (en) Reprocessing method for spent nuclear fuel
Pickman Internal cladding corrosion effects
JPS5977392A (en) Method of processing nuclear fuel rod
FR2739216A1 (en) METHOD OF TREATING METALLIC ALUMINUM-BASED FUELS AND / OR NUCLEAR TARGETS WITH TETRAMETHYLAMMONIUM HYDROXIDE SOLUTIONS
US3154845A (en) Method of fabricating a fuel element
Fehrenbach et al. High-temperature transient fission-gas release from UO 2 fuel
Haurais Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor
JPH0821895A (en) Pre-treating method for spent nuclear fuel
Rubin Examination of PWR Core 1 Blanket Fuel Rods for Microstructure, Hydrogen Pickup, and Burst Strength
JPH085780A (en) Preprocessing method for spent nuclear fuel
Fenske et al. Effect of Burnup on the Response of Stainless Steel‐Qad Mixed‐Oxide Fuels to Simulated Thermal Transients
JPS61176888A (en) Pre-treatment method of light water reactor spent nuclear-fuel
US3352004A (en) Process for cladding uranium rods
JPS63247695A (en) Method of breaking spent nuclear fuel element
Bleiberg Development and Properties of Uranium-base Alloys Corrosion Resistant in High Temperature Water: Radiation stability of uranium-base alloys
Bottomley et al. Investigation of high temperature irradiated fuel-liquefied Zircaloy interactions in support of severe accident safety studies
Cox Environmentally induced cracking of zirconium alloys. II. Liquid metal embrittlement
Wood Review of session V of the ANS topical meeting, St. Charles, Il., USA, May 1977:''Mechanisms for pellet cladding interactions''

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904