JPH085682A - Method and apparatus for measuring electric resistance - Google Patents

Method and apparatus for measuring electric resistance

Info

Publication number
JPH085682A
JPH085682A JP6159231A JP15923194A JPH085682A JP H085682 A JPH085682 A JP H085682A JP 6159231 A JP6159231 A JP 6159231A JP 15923194 A JP15923194 A JP 15923194A JP H085682 A JPH085682 A JP H085682A
Authority
JP
Japan
Prior art keywords
voltage
conductor
measuring
resistance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6159231A
Other languages
Japanese (ja)
Other versions
JP3130209B2 (en
Inventor
Hideaki Kikuchi
秀昭 菊地
Kouken Kuruma
孝軒 車
Masato Araki
正任 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Electric Works Ltd
Original Assignee
Asahi Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Electric Works Ltd filed Critical Asahi Electric Works Ltd
Priority to JP06159231A priority Critical patent/JP3130209B2/en
Publication of JPH085682A publication Critical patent/JPH085682A/en
Application granted granted Critical
Publication of JP3130209B2 publication Critical patent/JP3130209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure the resistance at an objective section of a conductor under hot state. CONSTITUTION:The voltage v0 across an objective section of a conductor 10 is measured by touching the opposite ends of the section with measuring terminals 14, 14. First and second rectangular detection coils 16, 18, having identical shape and the number of turns, are then brought close to the conductor 10 while shifting by a predetermined dimension from each other and the voltages v1, v2 induced in the first and second coils 16, 18 are measured. The effective value I of AC current (i) flowing through the conductor 10 is then operated based on the voltages v1, v2. Subsequently, the phase difference theta' between the voltages v0 and v1 is operated and the phase difference 9 of the voltage drop e0, due to the measured voltage v0 and a resistance R0, is operated according to a formula; theta=90theta'. Finally, the resistance R0 is operated based on the effective value V0 of the voltage v0 and the effective value I of AC current (i).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接続部等の導体の抵抗
を、交流電流が流れる活線状態で測定できるようにした
電気抵抗測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric resistance measuring method capable of measuring the resistance of a conductor such as a connecting portion in a live state where an alternating current flows.

【0002】また、上記電気抵抗測定方法を用いて導体
の抵抗を測定するための電気抵抗測定装置に関するもの
である。
The present invention also relates to an electric resistance measuring device for measuring the resistance of a conductor by using the above electric resistance measuring method.

【0003】[0003]

【従来の技術】導体の抵抗を測定する従来の方法の1つ
として、導体を停電状態として、抵抗測定すべき箇所の
両端に電流印加用端子と電圧測定用端子をそれぞれ設
け、測定箇所に所定直流電流を外部から印加し、この直
流電流による電圧降下を測定し、電流と電圧から抵抗値
を算出するものが知られている。
2. Description of the Related Art As one of the conventional methods for measuring the resistance of a conductor, a conductor is put into a power failure state, and a current application terminal and a voltage measurement terminal are provided at both ends of a location where resistance is to be measured, and a predetermined measurement location is provided. It is known that a direct current is applied from the outside, the voltage drop due to this direct current is measured, and the resistance value is calculated from the current and the voltage.

【0004】また、活線状態のまま導体の抵抗を測定す
る方法としては、測定すべき箇所の両端に電圧測定用端
子を設け、導体に流れる交流電流をクランプメータ等で
測定し、導体に流れる交流電流による電圧降下を測定し
て抵抗値を算出するものがある。
Further, as a method of measuring the resistance of a conductor in a live state, voltage measuring terminals are provided at both ends of a portion to be measured, an alternating current flowing through the conductor is measured by a clamp meter or the like, and the current is passed through the conductor. There is one that calculates a resistance value by measuring a voltage drop due to an alternating current.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の停電状
態として導体の抵抗を測定する方法にあっては、測定用
端子を導体に接続する部分の抵抗が測定結果に大きな影
響を与え、誤差が大きい。また、送電線路や変電所設備
等の高圧の裸導体を停電状態とすれば、電力供給等に対
する影響が極めて大きく、実際問題として容易には測定
することができない。そこで、送電線路の新規な装架や
交換等の際に用いることができるにすぎない。
In the conventional method of measuring the resistance of the conductor in the power failure state as described above, the resistance of the portion connecting the measuring terminal to the conductor has a great influence on the measurement result, and the error is large. Further, if a high-voltage bare conductor such as a power transmission line or a substation facility is put into a power failure state, it has a great influence on power supply and the like, and cannot be easily measured as a practical problem. Therefore, it can only be used for new mounting or replacement of the transmission line.

【0006】また、上記した活線状態のまま導体の抵抗
を測定する方法にあっては、測定すべき抵抗による電圧
降下を正確に測定することができず、測定誤差が大き
い。これは、導体と電圧降下を測定するための回路によ
り1つの閉回路が形成され、この閉回路に、導体を流れ
る交流電流により導体の回りに生じる磁束によって誘導
起電力が生じ、この誘導起電力に電圧降下が加わった電
圧が測定されるためである。特に、導体の抵抗が小さけ
れば誘導起電力に対して相対的に抵抗による電圧降下が
小さく、誤差も大きなものとなる。
Further, in the method of measuring the resistance of the conductor in the above-described live state, the voltage drop due to the resistance to be measured cannot be accurately measured, and the measurement error is large. This is because one closed circuit is formed by a conductor and a circuit for measuring a voltage drop, and an induced electromotive force is generated in the closed circuit by a magnetic flux generated around the conductor by an alternating current flowing through the conductor. This is because the voltage to which a voltage drop is added is measured. In particular, if the resistance of the conductor is small, the voltage drop due to the resistance is small relative to the induced electromotive force, and the error is large.

【0007】したがって、活線状態のままで、導体の抵
抗を正確に測定できる電気抵抗測定方法およびそのため
の装置の開発が要望されていた。
Therefore, there has been a demand for the development of an electric resistance measuring method and an apparatus therefor capable of accurately measuring the resistance of a conductor in a live state.

【0008】本発明は、上記のごとき従来の事情に鑑み
てなされたもので、活線状態のままで導体の抵抗を正確
に測定し得る電気抵抗測定方法および電気抵抗測定装置
を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and provides an electric resistance measuring method and an electric resistance measuring apparatus capable of accurately measuring the resistance of a conductor in a live state. To aim.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の電気抵抗測定方法は、活線状態にある導
体の抵抗測定の対象となる区間の両端に測定端子を接続
して電圧を測定し、2つの検出コイルを、前記導体に流
れる交流電流により生ずる磁束が鎖交するように向けて
しかも前記導体への相対距離を所定寸法だけずらした状
態で前記導体に接近させて、これらの2つの検出コイル
に誘起される誘導起電力をそれぞれ測定し、これらの2
つの誘導起電力から前記検出コイルのいずれか一方と前
記導体との接近距離を演算し、この接近距離と当該検出
コイルに誘起された誘導起電力から前記導体に流れる前
記交流電流を演算し、前記抵抗測定の対象となる区間で
測定された電圧の波形と、前記検出コイルのいずれか一
方に誘起される誘導起電力の波形とから両波形の位相差
を検出し、前記測定された電圧と前記位相差から、抵抗
測定の対象となる区間で生ずる電圧降下を演算し、この
電圧降下と前記演算された前記交流電流とから、抵抗測
定の対象となる区間の抵抗が演算される。
In order to achieve the above object, the electric resistance measuring method of the present invention is a method in which a measuring terminal is connected to both ends of a section of a conductor which is in a live state and whose resistance is to be measured. And the two detection coils are brought close to the conductor with the magnetic flux generated by the alternating current flowing through the conductor interlinking and the relative distance to the conductor being shifted by a predetermined dimension. The induced electromotive force induced in each of the two detection coils of
Calculate the approach distance between any one of the detection coils and the conductor from one induced electromotive force, calculate the alternating current flowing in the conductor from the approach distance and the induced electromotive force induced in the detection coil, The waveform of the voltage measured in the section that is the target of resistance measurement, and the phase difference between both waveforms from the waveform of the induced electromotive force induced in any one of the detection coils, the measured voltage and the From the phase difference, the voltage drop that occurs in the section that is the target of resistance measurement is calculated, and the resistance of the section that is the target of resistance measurement is calculated from this voltage drop and the calculated alternating current.

【0010】そして、前記2つの検出コイルが、矩形コ
イルであるとともに、同じ寸法および同じ巻数で、しか
も前記導体に流れる交流電流により生ずる磁束の方向に
コイル軸を向けて配設しても良い。
Further, the two detection coils may be rectangular coils and may be arranged with the same size and the same number of turns, with the coil axes oriented in the direction of the magnetic flux generated by the alternating current flowing through the conductor.

【0011】さらに、前記2つの検出コイルに代えて、
2つのホール素子を、前記導体に流れる交流電流により
生ずる磁束により電圧が生ずるように向けて、しかも導
体への相対距離を所定寸法だけずらした状態で前記導体
に接近させ、これらの2つのホール素子に生ずる電圧を
それぞれ測定してこれらの電圧から前記交流電流を演算
し、また前記ホール素子に生じる電圧の波形と前記抵抗
測定の対象となる区間の両端で測定された電圧の波形と
から両波形の位相差を検出しても良い。
Further, instead of the two detection coils,
These two Hall elements are brought close to the conductors so that a voltage is generated by a magnetic flux generated by an alternating current flowing through the conductors, and the relative distance to the conductors is shifted by a predetermined dimension. To calculate the alternating current from these voltages, and to obtain both waveforms from the waveform of the voltage generated in the Hall element and the waveform of the voltage measured at both ends of the section subject to the resistance measurement. The phase difference of 1 may be detected.

【0012】また、本発明の電気抵抗測定装置は、活線
状態にある導体の抵抗測定の対象となる区間の両端に測
定端子を接続して電圧を測定する電圧測定手段と、2つ
の検出コイルを、前記導体に流れる交流電流により生ず
る磁束の方向にコイル軸を向けた姿勢でしかも前記導体
への相対距離を所定寸法だけずらした状態で、前記導体
に接近させ、これらの2つの検出コイルに誘起される誘
導起電力をそれぞれ測定する誘導起電力測定手段と、前
記電圧測定手段で測定される電圧の波形と、いずれか一
つの前記検出コイルに誘起される誘導起電力の波形とか
ら位相差を検出する位相差検出手段と、測定された2つ
の前記誘導起電力から、前記検出コイルのいずれか一方
と前記導体の接近距離を演算し、この接近距離と当該検
出コイルの誘導起電力から前記導体に流れる交流電流を
演算する電流演算手段と、前記電圧測定手段で測定され
た電圧と、前記位相差検出手段で検出された位相差から
前記抵抗測定の対象となる区間で生ずる電圧降下を演算
し、この電圧降下と前記電流演算手段で演算された前記
交流電流とから前記抵抗測定の対象となる区間の抵抗値
を演算する抵抗演算手段と、を備えて構成されている。
Further, the electric resistance measuring apparatus of the present invention comprises a voltage measuring means for measuring a voltage by connecting a measuring terminal to both ends of a section of a conductor in a live state where the resistance is to be measured, and two detecting coils. Is brought close to the conductor in a posture in which the coil axis is oriented in the direction of the magnetic flux generated by the alternating current flowing through the conductor, and the relative distance to the conductor is shifted by a predetermined dimension, and these two detection coils are provided. Phase difference from induced electromotive force measuring means for respectively measuring induced electromotive force, waveform of voltage measured by the voltage measuring means, and waveform of induced electromotive force induced in any one of the detection coils. From the two induced electromotive forces measured by the phase difference detection means for detecting the electric field, and the proximity distance between one of the detection coils and the conductor is calculated. A current calculation means for calculating an alternating current flowing through the conductor from a force, a voltage measured by the voltage measurement means, and a voltage generated in the section to be the resistance measurement target from the phase difference detected by the phase difference detection means. Resistance calculating means for calculating a drop and calculating a resistance value of a section to be the resistance measurement target from the voltage drop and the alternating current calculated by the current calculating means.

【0013】そして、前記2つの検出コイルに代えて、
2つのホール素子を前記導体への相対距離と所定寸法だ
けずらした状態で前記導体に接近させ、前記導体を流れ
る交流電流により生ずる磁界の強さに応じた電圧を生じ
るようにし、これらの2つのホール素子に生じる電圧を
ホール素子電圧測定手段でそれぞれ測定し、これらの電
圧から電流演算手段で前記交流電流を演算し、ホール素
子に生じる電圧の波形と前記抵抗測定の対象となる区間
の両端で測定された電圧の波形とから位相差検出手段で
両波形の位相差を検出するように構成しても良い。
And instead of the two detection coils,
The two Hall elements are moved close to the conductor in a state where they are displaced from each other by a predetermined distance from the relative distance to the conductor, and a voltage corresponding to the strength of a magnetic field generated by an alternating current flowing through the conductor is generated to generate these two elements. The voltage generated in the hall element is measured by the hall element voltage measuring means, and the alternating current is calculated by the current calculating means from these voltages, and the waveform of the voltage generated in the hall element and the both ends of the section to be the resistance measurement target are calculated. The phase difference detecting means may detect the phase difference between the two waveforms from the measured voltage waveform.

【0014】さらに、装置をセンサ部と計測部の2つに
分け、前記センサ部に少なくとも前記測定端子と2つの
検出コイルまたは2つのホール素子とを備え、前記計測
部に少なくとも前記電流演算手段と抵抗演算手段を備え
て構成することもできる。
Further, the apparatus is divided into a sensor section and a measurement section, the sensor section is provided with at least the measurement terminal and two detection coils or two Hall elements, and the measurement section is provided with at least the current calculation means. It can also be configured by including resistance calculation means.

【0015】またさらに、前記センサ部に電気−光変換
手段を設け、前記計測部に光−電気変換手段を設け、前
記電気−光変換手段と前記光−電気変換手段の間を光フ
ァイバーケーブルで接続し、前記センサ部で得られたデ
ータを光信号として前記計測部に伝送するように構成す
ることもできる。
Further, the sensor section is provided with electric-optical conversion means, the measuring section is provided with optical-electrical conversion means, and the electric-optical conversion means and the optical-electrical conversion means are connected by an optical fiber cable. However, the data obtained by the sensor unit may be transmitted to the measuring unit as an optical signal.

【0016】[0016]

【作 用】請求項1および3記載の電気抵抗測定方法に
あっては、活線状態のままで導体の抵抗測定ができる。
しかも、導体を流れる交流電流により生ずる誘導起電力
による測定誤差を生ずることがない。
[Operation] In the electric resistance measuring method according to the first and third aspects, the resistance of the conductor can be measured in a live state.
Moreover, the measurement error due to the induced electromotive force generated by the alternating current flowing through the conductor does not occur.

【0017】そして、請求項2記載の電気抵抗測定方法
にあっては、導体を流れる交流電流を演算するのに、2
つの同じ寸法と巻数の矩形の検出コイルを用いているの
で、交流電流を演算するための演算式が簡単なものとな
り、それだけ演算手段が簡単となるとともに迅速に演算
がなし得る。
In the electric resistance measuring method according to the second aspect, it is necessary to calculate the AC current flowing through the conductor by 2
Since the rectangular detection coil having the same size and the same number of turns is used, the calculation formula for calculating the alternating current becomes simple, and the calculation means becomes simple and the calculation can be performed quickly.

【0018】また、請求項4および5記載の電気抵抗測
定装置にあっては、測定端子と、2つの検出コイルまた
は2つのホール素子とを、導体に一側方から当接および
接近させることで、活線状態の導体の抵抗を測定し得
る。そこで、測定に必要となる動作が簡単であり、遠隔
操作棒等による操作を容易になし得る。
Further, in the electric resistance measuring apparatus according to the fourth and fifth aspects, the measuring terminal and the two detecting coils or the two Hall elements are brought into contact with and approach the conductor from one side. , The resistance of a live conductor can be measured. Therefore, the operation required for measurement is simple, and the operation with a remote control rod or the like can be easily performed.

【0019】さらに、請求項6記載の電気抵抗測定装置
にあっては、装置をセンサ部と計測部とに分けたので、
センサ部のみを遠隔操作棒等の先端に設けることがで
き、操作すべき部材の軽量化が図られる。しかも、計測
部を導体から離して設けることができ、計測部が導体の
周囲に生じる磁界により受ける悪影響を少なくし得る。
Further, in the electric resistance measuring apparatus according to the sixth aspect, the apparatus is divided into a sensor section and a measuring section.
Only the sensor portion can be provided at the tip of the remote control rod or the like, and the weight of the member to be operated can be reduced. Moreover, the measuring unit can be provided separately from the conductor, and the adverse effect of the magnetic field generated around the conductor on the measuring unit can be reduced.

【0020】またさらに、請求項7記載の電気抵抗測定
装置にあっては、光信号によってデータの伝送を行なう
ので、信号径路においてデータに電気的雑音が重畳され
ることがない。しかも、センサ部と計測部を電気的に絶
縁し得る。
Further, in the electric resistance measuring apparatus according to the seventh aspect, since the data is transmitted by the optical signal, the electric noise is not superimposed on the data in the signal path. Moreover, the sensor unit and the measuring unit can be electrically insulated.

【0021】[0021]

【実施例】以下、本発明の電気抵抗測定方法の一実施例
を図1乃至図3を参照して説明する。図1は、本発明の
電気抵抗測定方法の原理を説明するための図であり、図
2は、抵抗測定の対象となる区間の両端に測定端子を接
続させて電圧測定したときの測定電圧の内容を説明する
図であり、図3は、測定電圧の波形と誘導起電力の波形
との位相差を説明する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the electric resistance measuring method of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram for explaining the principle of the electric resistance measuring method of the present invention, and FIG. 2 shows the measured voltage when the voltage is measured by connecting the measuring terminals to both ends of the section for which the resistance is measured. FIG. 3 is a diagram for explaining the contents, and FIG. 3 is a diagram for explaining the phase difference between the waveform of the measured voltage and the waveform of the induced electromotive force.

【0022】まず、活線状態にある導体10の抵抗R0
が測定の対象となる区間の両端に、電圧測定手段12の
測定端子14,14が接続される。また、導体10と同
一平面上で、導体10に非接触で接近させて第1検出コ
イル16と第2検出コイル18とが配設される。これら
の第1と第2検出コイル16,18は、同じ縦と横のl
1×l2の寸法の矩形形状であり、同じ巻数Nを有する。
しかも、矩形形状の長辺を導体10に平行とし、第1と
第2検出コイル16,18はギャップGだけ離れて平行
に配置される。そして、コイル軸は、導体10に流れる
交流電流iにより導体10の周囲に生じる磁束の方向と
合致する姿勢とされる。さらに、第1と第2検出コイル
16,18には、磁束により誘起される誘導起電力を測
定する第1と第2誘導起電力測定手段20,22が介装
される。なお、導体10と第1検出コイル16の距離r
は未知数である。
First, the resistance R 0 of the conductor 10 in the hot line state
The measurement terminals 14 and 14 of the voltage measuring means 12 are connected to both ends of the section to be measured. Further, the first detection coil 16 and the second detection coil 18 are arranged on the same plane as the conductor 10 so as to approach the conductor 10 in a non-contact manner. These first and second detection coils 16 and 18 have the same vertical and horizontal l
It has a rectangular shape with dimensions of 1 × l 2 and has the same number of turns N.
Moreover, the long sides of the rectangular shape are parallel to the conductor 10, and the first and second detection coils 16 and 18 are arranged in parallel with a gap G therebetween. The coil axis is in a posture that matches the direction of the magnetic flux generated around the conductor 10 by the alternating current i flowing in the conductor 10. Further, the first and second detection coils 16 and 18 are provided with first and second induction electromotive force measuring means 20 and 22 for measuring induced electromotive force induced by magnetic flux. The distance r between the conductor 10 and the first detection coil 16
Is an unknown number.

【0023】かかる構成において、電圧測定手段12に
より測定される電圧V0は、導体10に流れる交流電流
iと測定されるべき抵抗R0による電圧降下E0と、導体
10と測定端子14,14および電圧測定手段12によ
り形成される閉回路に交流電流iによる磁束が鎖交して
誘起される誘導起電力E1が合成されたものである。こ
こで、誘導起電力E1は、電圧降下E0に対して90度位
相がずれたものであり、図2のごとく示される。そこ
で、電圧V0と誘導起電力E1の位相差および交流電流i
の実効値Iが測定できれば、抵抗R0を正確に演算し得
る。
In such a configuration, the voltage V 0 measured by the voltage measuring means 12 is the voltage drop E 0 due to the alternating current i flowing through the conductor 10 and the resistance R 0 to be measured, and the conductor 10 and the measuring terminals 14 and 14. And the induced electromotive force E 1 induced by the magnetic flux of the alternating current i interlinking with the closed circuit formed by the voltage measuring means 12. Here, the induced electromotive force E 1 is 90 ° out of phase with the voltage drop E 0 , and is shown as in FIG. Therefore, the phase difference between the voltage V 0 and the induced electromotive force E 1 and the alternating current i
If the effective value I of can be measured, the resistance R 0 can be accurately calculated.

【0024】交流電流iの実効値Iの測定には、第1と
第2検出コイル16,18の誘導起電力V1,V2から演
算により求める。ここで、V1,V2は数1,数2で示さ
れる。
The effective value I of the alternating current i is measured by calculation from the induced electromotive forces V 1 and V 2 of the first and second detection coils 16 and 18. Here, V 1 and V 2 are represented by Formula 1 and Formula 2 .

【数1】 [Equation 1]

【数2】 ここで、μ0は真空透磁率、Iは交流電流iの実効値、
fは交流電流iの周波数、Nは第1と第2検出コイルの
巻数である。
[Equation 2] Here, μ 0 is the vacuum permeability, I is the effective value of the alternating current i,
f is the frequency of the alternating current i, and N is the number of turns of the first and second detection coils.

【0025】そして、第1と第2検出コイル16,18
の誘導起電力V1とV2の比を求めれば数3となる。
Then, the first and second detection coils 16 and 18
If the ratio of the induced electromotive force V 1 to V 2 is calculated, the result is Equation 3.

【数3】 (Equation 3)

【0026】ここで、コイルの寸法l1とギャップGは
既知数であるから、外挿法等によってrを演算により求
めることができる。
Since the coil size l 1 and the gap G are known values, r can be calculated by extrapolation or the like.

【0027】さらに、数1は、数4と書き直すことがで
き、この数4に演算から求められたrを挿入すること
で、交流電流iの実効値Iが演算できる。
Further, the equation 1 can be rewritten as the equation 4, and the effective value I of the alternating current i can be computed by inserting the r obtained by the computation into the equation 4.

【数4】 [Equation 4]

【0028】なお、この交流電流Iを演算する技術は、
特許出願人が先に出願した特願平5−339492号に
詳記される。
The technique for calculating the alternating current I is as follows.
The details are described in Japanese Patent Application No. 5-339492 filed by the applicant of the patent.

【0029】また、電圧測定手段12の電圧V0の波形
と、第1検出コイル16の第1誘導起電力測定手段20
の誘導起電力V1の波形とから、位相差が求められる。
すなわち、図3に示すごとく、電圧V0の波形が零電圧
となる点P1,P2から周期が演算され、電圧V0の波形
が正から零電圧となる点P2と誘導起電力V1が正から零
電圧となる点P3の遅れθ′から、位相差が求められ
る。
Further, the waveform of the voltage V 0 of the voltage measuring means 12 and the first induced electromotive force measuring means 20 of the first detecting coil 16 are measured.
The phase difference is obtained from the waveform of the induced electromotive force V 1 of.
That is, as shown in FIG. 3, P 1 that waveform is the zero voltage of the voltage V 0, P 2 from the cycle are calculated, the voltage V 0 which waveform points is zero voltage from the positive P 2 and the induced electromotive force V The phase difference is obtained from the delay θ ′ at the point P 3 where 1 changes from positive to zero voltage.

【0030】そこで、測定されるべき抵抗R0による電
圧降下E0はE0=V0・sinθ′=V0・cosθと示
せる。ここでθ=90−θ′である。さらに、この電圧
降下E0と交流電流iの実効値Iから、抵抗R0はR0
0/Iで演算し得る。
Therefore, the voltage drop E 0 due to the resistance R 0 to be measured can be expressed as E 0 = V 0 · sin θ ′ = V 0 · cos θ. Here, θ = 90−θ ′. Further, from the voltage drop E 0 and the effective value I of the alternating current i, the resistance R 0 is R 0 =
It can be calculated by E 0 / I.

【0031】次に、上記電気抵抗測定方法の実施に用い
る電気抵抗測定装置につき、図4および図5を参照して
説明する。図4は、本発明の電気抵抗測定装置の一実施
例のブロック回路図であり、図5は、電気抵抗を測定す
るためのフローチャートの一例であり、(a)は全体の
工程を示し、(b)は位相差を演算する工程を示す。
Next, an electric resistance measuring apparatus used for carrying out the electric resistance measuring method will be described with reference to FIGS. 4 and 5. FIG. 4 is a block circuit diagram of an embodiment of the electric resistance measuring apparatus of the present invention, FIG. 5 is an example of a flowchart for measuring the electric resistance, and (a) shows the whole process, b) shows the step of calculating the phase difference.

【0032】図4において、遠隔操作棒(図示せず)の
先端部にセンサ部30が設けられる。このセンサ部30
には、導体10の抵抗R0が測定の対象となる区間の両
端に当接して電気接続される測定端子14,14が設け
られるとともに、第1検出コイル16と第2検出コイル
18が上記電気抵抗測定方法で説明したごとき形状およ
び姿勢で配設される。さらに、測定端子14,14と、
第1検出コイル16および第2検出コイル18の出力端
子がデータ変換部32に接続され、測定端子14,14
間の電圧V0の波形、第1と第2検出コイル16,18
に誘起される第1と第2誘導起電力V1,V2の波形が適
宜なデータにそれぞれ変換される。そして、データ変換
部32から出力される電気信号としてのデータが、電気
−光変換手段34に与えられ、データが光信号に変換さ
れて光ファイバーケーブル36を伝送されて計測部40
に与えられる。
In FIG. 4, a sensor unit 30 is provided at the tip of a remote control rod (not shown). This sensor unit 30
Is provided with measurement terminals 14 and 14 to which the resistance R 0 of the conductor 10 abuts on both ends of the section to be measured and is electrically connected, and the first detection coil 16 and the second detection coil 18 are electrically connected to each other. It is arranged in the shape and posture as described in the resistance measuring method. Furthermore, the measurement terminals 14 and 14,
The output terminals of the first detection coil 16 and the second detection coil 18 are connected to the data conversion section 32, and the measurement terminals 14, 14 are connected.
Waveform of voltage V 0 between, first and second detection coils 16, 18
The waveforms of the first and second induced electromotive forces V 1 and V 2 induced in the respective components are converted into appropriate data. Then, the data as an electric signal output from the data conversion unit 32 is given to the electric-optical conversion unit 34, the data is converted into an optical signal and transmitted through the optical fiber cable 36, and the measurement unit 40.
Given to.

【0033】そして、計測部40がセンサ部30とは別
体で構成され、光ファイバーケーブル36により接続さ
れている。計測部40には、光ファイバーケーブル36
の一端が接続される光−電気変換手段42が設けられ、
光信号として伝送されるデータが電気信号に再び変換さ
れる。さらに、電気信号に変換されたデータがデータ記
憶部44に与えられて一時的に記憶保存される。これら
のデータは、マイクロコンピュータ等からなる演算部4
6に与えられ、後述する手順で演算処理されて抵抗R0
および交流電流iの実効値I等が表示部48および測定
記憶部50に与えられる。抵抗R0および交流電流iの
実効値Iの表示および記憶保存は、操作部52の適宜な
指示等で行なわれる。
The measuring section 40 is formed separately from the sensor section 30 and is connected by an optical fiber cable 36. The measuring unit 40 has an optical fiber cable 36.
Is provided with an optical-electrical conversion means 42 to which one end of is connected,
The data transmitted as optical signals are converted back into electrical signals. Further, the data converted into the electric signal is given to the data storage unit 44 and temporarily stored and saved. These data are calculated by the arithmetic unit 4 including a microcomputer.
6 and is subjected to arithmetic processing in the procedure described later to obtain the resistance R 0.
The effective value I of the alternating current i and the like are given to the display unit 48 and the measurement storage unit 50. The display and storage of the effective value I of the resistance R 0 and the alternating current i are performed by an appropriate instruction from the operation unit 52.

【0034】センサ部30と計測部40には、それぞれ
適宜な駆動電源(図示せず)が内蔵されている。なお、
センサ部30にあっては、さらに別のコイルを設け、そ
のコイルの誘導起電力を駆動電源として利用しても良
い。
Each of the sensor section 30 and the measuring section 40 has an appropriate drive power source (not shown) built therein. In addition,
The sensor unit 30 may be provided with another coil and the induced electromotive force of the coil may be used as a drive power source.

【0035】そして、演算部46の演算処理手順の一例
は、図5(a),(b)に示すとおりである。すなわ
ち、全体の手順としては、図5(a)に示すごとく、位
相差θの演算および交流電流iの実効値Iの演算に必要
となる各演算式および演算式における定数が設定されて
初期化される(ステップ)。次いで、図5(b)で後
述するごとくして、位相差θが演算される(ステップ
)。さらに、測定端子14,14間の電圧V0および
第1と第2検出コイル16,18の第1と第2誘導起電
力V1,V2の実効値が演算される(ステップ)。そし
て、第1と第2誘導起電力V1とV2の比から、導体10
と第1検出コイル16の距離rが演算される(ステップ
)。この距離rと、第1または第2誘導起電力V1
2のいずれか一方とから、交流電流iの実効値Iが演
算される(ステップ)。また、電圧V0と位相差θと
から、抵抗R0による電圧降下E0が演算され(ステップ
)、さらにこの電圧降下E0と交流電流iの実効値I
とから、抵抗R0が演算される(ステップ)。
An example of the arithmetic processing procedure of the arithmetic unit 46 is as shown in FIGS. 5 (a) and 5 (b). That is, as a whole procedure, as shown in FIG. 5A, each calculation formula and constants in the calculation formula necessary for calculation of the phase difference θ and calculation of the effective value I of the alternating current i are set and initialized. Is done (step). Next, the phase difference θ is calculated as described later with reference to FIG. 5B (step). Furthermore, the voltage V 0 between the measurement terminals 14 and 14 and the effective values of the first and second induced electromotive forces V 1 and V 2 of the first and second detection coils 16 and 18 are calculated (step). Then, from the ratio of the first and second induced electromotive forces V 1 and V 2 , the conductor 10
And the distance r of the first detection coil 16 is calculated (step). This distance r and the first or second induced electromotive force V 1 ,
The effective value I of the alternating current i is calculated from either one of V 2 (step). Further, from the voltage V 0 and the phase difference theta, resistor R voltage drop E 0 by 0 is calculated (step), further the effective value I of the alternating current i The voltage drop E 0
Then, the resistance R 0 is calculated (step).

【0036】位相差θの演算にあっては、まず図3に示
すごとき電圧V0の零点P1,P2と第1または第2誘導
起電力V1またはV2の零点P3とが検出される(ステッ
プa)。そして、零点P1とP2の時間間隔から電圧V0
の周期が演算され(ステップb)、また零点P3の零点
2に対する遅れ時間が演算される(ステップc)。こ
れらの電圧V0の周期と、零点P3の遅れ時間から、電圧
0に対する誘導起電力V1,V2の位相差θ′が演算さ
れる(ステップd)。そして、誘導起電力V1,V2と抵
抗R0による電圧降下E0とは90度の位相差があること
から、電圧降下E0と電圧V0との位相差θがθ=90−
θ′として演算される(ステップe)。
[0036] In the calculation of the phase difference theta, firstly zero point P 1 of the voltage V 0 such shown in FIG. 3, P 2 and the first or second inductive electromotive force V 1 or zero P 3 of V 2 and detection (Step a). Then, the voltage V 0 is calculated from the time interval between the zero points P 1 and P 2.
Is calculated (step b), and the delay time of the zero point P 3 with respect to the zero point P 2 is calculated (step c). From the cycle of the voltage V 0 and the delay time of the zero point P 3 , the phase difference θ ′ between the induced electromotive forces V 1 and V 2 with respect to the voltage V 0 is calculated (step d). Then, the voltage drop E 0 by induced electromotive force V 1, V 2 and the resistor R 0 since there is a phase difference of 90 degrees, the phase difference theta between the voltage drop E 0 and the voltage V 0 θ = 90-
It is calculated as θ '(step e).

【0037】なお、図5(a)の手順において、ステッ
プにおいて、位相差θと電圧V0および交流電流iの
実効値Iが既に演算されていれば良く、位相差θの演算
に先だって、交流電流iの実効値Iの演算がなされても
良い。また、上記説明から明らかなように、機能的に
は、電圧測定手段12は、測定端子14,14と演算部
46で構成され、誘導起電力測定手段20,22は、第
1と第2検出コイル16,18と演算部46で構成さ
れ、位相差検出手段は、測定端子14,14と第1と第
2検出コイル16,18のいずれか一方と演算部46で
構成され、電流演算手段および抵抗演算手段は、演算部
46で構成されている。
In the procedure of FIG. 5A, it is sufficient that the phase difference θ, the voltage V 0 and the effective value I of the AC current i have already been calculated in the step, and the AC difference is calculated prior to the calculation of the phase difference θ. The effective value I of the current i may be calculated. Further, as apparent from the above description, functionally, the voltage measuring means 12 is composed of the measuring terminals 14 and 14 and the calculating part 46, and the induced electromotive force measuring means 20 and 22 are the first and second detecting means. The coils 16 and 18 and the calculation unit 46 are provided. The phase difference detection means is made up of the measurement terminals 14 and 14, one of the first and second detection coils 16 and 18, and the calculation unit 46. The resistance calculation means is composed of a calculation unit 46.

【0038】かかる構成にあっては、導体10に生ずる
磁束に晒されるセンサ部30と、ここで得られたデータ
を演算処理する計測部40を別体として離して設けるこ
とで、計測部40に対する磁界の悪影響を極力小さなも
のとすることができ、演算処理が雑音等の侵入による誤
りを生ずる虞なしに行なうことができ、それだけ測定精
度を向上させ得る。しかも、センサ部30と計測部40
を分けることで、センサ部30が先端に設けられた遠隔
操作棒の軽量化を図ることができ、操作性に優れたもの
である。また、センサ部30と計測部40を光ファイバ
ーケーブル36で接続することで、光ファイバーケーブ
ル36を伝送中のデータに対して電気的雑音の重畳がな
く、しかもセンサ部30と計測部40を電気的に絶縁で
き、安全に電気抵抗測定がなし得る。
In such a configuration, the sensor unit 30 exposed to the magnetic flux generated in the conductor 10 and the measuring unit 40 for calculating the data obtained here are separately provided, so that the measuring unit 40 can be provided. The adverse effect of the magnetic field can be made as small as possible, the arithmetic processing can be performed without the risk of causing an error due to intrusion of noise, etc., and the measurement accuracy can be improved accordingly. Moreover, the sensor unit 30 and the measuring unit 40
By separating the parts, the weight of the remote control rod provided with the sensor portion 30 at the tip can be reduced, and the operability is excellent. Further, by connecting the sensor unit 30 and the measuring unit 40 with the optical fiber cable 36, there is no superposition of electrical noise on the data being transmitted through the optical fiber cable 36, and the sensor unit 30 and the measuring unit 40 are electrically connected. It can be insulated, and the electrical resistance can be measured safely.

【0039】次に、本発明の電気抵抗測定方法および電
気抵抗測定装置の他の実施例につき、図6を参照して説
明する。図6は、本発明の電気抵抗測定装置の他の実施
例のブロック回路図である。図6において、図4と同一
部材等には同じ符号を付けて重複する説明を省略する。
Next, another embodiment of the electric resistance measuring method and the electric resistance measuring apparatus of the present invention will be described with reference to FIG. FIG. 6 is a block circuit diagram of another embodiment of the electric resistance measuring apparatus of the invention. In FIG. 6, the same members as those in FIG.

【0040】図6に示す電気抵抗測定装置にあって、図
4に示す装置と相違するところは、第1と第2検出コイ
ル16,18に代えて、第1と第2ホール素子60,6
2が用いられ、これらの第1と第2ホール素子60,6
2で生じた電圧が増幅部64で適宜に増幅されてデータ
変換部32に電圧V1,V2として与えられる。第1と第
2ホール素子60,62は、導体10に対して相対距離
がLだけ離されて、第1ホール素子60が導体10に近
接した状態で接近される。導体10と第1ホール素子6
0との距離rは未知数である。しかも、第1と第2ホー
ル素子60,62は、導体10に流れる交流電流iによ
り導体10の周囲に生じる磁束の方向に対して最大感度
となるような姿勢とされる。さらに、第1と第2ホール
素子60,62に生じた電圧が、増幅部64で適宜な利
得で増幅されてデータ変換部32に電圧V1,V2として
与えられる。なお、ホール素子電圧測定手段は、第1と
第2ホール素子60,62と増幅部64および演算部4
6で構成される。
The electric resistance measuring apparatus shown in FIG. 6 is different from the apparatus shown in FIG. 4 in that the first and second detection coils 16 and 18 are replaced by the first and second Hall elements 60 and 6.
2 are used, and these first and second Hall elements 60, 6
The voltage generated at 2 is appropriately amplified by the amplifier 64 and is given to the data converter 32 as voltages V 1 and V 2 . The first and second Hall elements 60 and 62 are separated from each other by a relative distance L with respect to the conductor 10, and the first Hall element 60 is close to the conductor 10 in a state of being close to the conductor 10. Conductor 10 and first Hall element 6
The distance r from 0 is an unknown number. Moreover, the first and second Hall elements 60 and 62 are set in such a posture that they have the maximum sensitivity with respect to the direction of the magnetic flux generated around the conductor 10 by the alternating current i flowing through the conductor 10. Further, the voltages generated in the first and second Hall elements 60 and 62 are amplified by the amplifying section 64 with an appropriate gain and given to the data converting section 32 as the voltages V 1 and V 2 . The Hall element voltage measuring means is composed of the first and second Hall elements 60, 62, the amplifying section 64, and the calculating section 4.
It is composed of 6.

【0041】ここで、第1ホール素子60の位置におけ
る磁界強度H1は数5と示され、第2ホール素子62の
位置における磁界強度H2は数6と示される。
Here, the magnetic field strength H 1 at the position of the first Hall element 60 is shown by Equation 5, and the magnetic field strength H 2 at the position of the second Hall element 62 is shown by Equation 6.

【数5】 (Equation 5)

【数6】 (Equation 6)

【0042】数5および数6から距離rと交流電流iの
実効値Iを求めると数7および数8となる。
The distance r and the effective value I of the alternating current i are obtained from the equations 5 and 6 to obtain the equations 7 and 8.

【数7】 (Equation 7)

【数8】 [Equation 8]

【0043】そこで、第1と第2ホール素子60,62
に加わる磁界強度と増幅部64から出力される電圧
1,V2を適宜な関係に予め設定することで、数7,数
8から導体10の交流電流iの実効値Iを演算すること
ができる。
Therefore, the first and second Hall elements 60, 62
The effective value I of the AC current i of the conductor 10 can be calculated from the equations 7 and 8 by presetting the magnetic field strength applied to the and the voltages V 1 and V 2 output from the amplifying section 64 in an appropriate relationship. it can.

【0044】ところで、第1と第2ホール素子60,6
2で出力される電圧は、交流電流iと同位相である。そ
こで、測定端子14,14で測定される電圧V0と、増
幅部64から出力される電圧V1,V2との位相差は、電
圧V0と抵抗R0による電圧降下E0との位相差θを示
す。
By the way, the first and second Hall elements 60, 6
The voltage output at 2 is in phase with the alternating current i. Therefore, position of the voltage V 0 that is measured by the measurement terminal 14 and 14, the phase difference between the voltage V 1, V 2 output from the amplification unit 64, a voltage drop E 0 by the voltage V 0 and the resistor R 0 The phase difference θ is shown.

【0045】したがって、第1と第2検出コイル16,
18を用いたものと同様に、図5に示す実施例にあって
も、位相差θと交流電流iの実効値Iが演算でき、抵抗
0を演算することができる。
Therefore, the first and second detection coils 16,
Similar to the case using 18, the phase difference θ and the effective value I of the alternating current i can be calculated and the resistance R 0 can be calculated also in the embodiment shown in FIG.

【0046】なお、位相差θの演算において、交流電流
iの周期が交流電流の周波数から既知であるならば、電
圧V0の零点P1,P2を測定せず、零点P2のみを検出し
ても良い。ここで電圧V0および電圧V1の零点は、零レ
ベルを波形が同方向で交叉する点を検出すれば良い。ま
た、上記実施例では、波形のデータをセンサ部30から
計測部40に伝送しているが、これに限られず、電圧V
0,V1,V2の実効電圧値および零点P1,P2,P3のデ
ータをセンサ部30から計測部40に伝送しても良い。
かかる構成では零検出手段がセンサ部30に設けられる
ことは勿論である。さらに、第1と第2検出コイル1
6,18は、矩形コイルに限られず、円形コイルや楕円
形コイルや三角形コイルであっても良い。また、第1と
第2検出コイル16,18が異なる寸法形状および巻数
であっても良い。誘導起電力を示す式が相違する等によ
り、交流電流iの実効値Iを求める演算式が相違するこ
とは勿論である。
In the calculation of the phase difference θ, if the period of the alternating current i is known from the frequency of the alternating current, the zero points P 1 and P 2 of the voltage V 0 are not measured and only the zero point P 2 is detected. You may. Here, as for the zero points of the voltage V 0 and the voltage V 1 , the point where the waveforms cross the zero level in the same direction may be detected. Further, in the above embodiment, the waveform data is transmitted from the sensor unit 30 to the measuring unit 40, but the present invention is not limited to this, and the voltage V
The effective voltage values of 0 , V 1 and V 2 and the data of the zero points P 1 , P 2 and P 3 may be transmitted from the sensor unit 30 to the measuring unit 40.
Of course, in such a configuration, the zero detecting means is provided in the sensor unit 30. Further, the first and second detection coils 1
6 and 18 are not limited to rectangular coils, but may be circular coils, elliptical coils, or triangular coils. Further, the first and second detection coils 16 and 18 may have different sizes and numbers of turns. It goes without saying that the calculation formula for obtaining the effective value I of the alternating current i is different due to the difference of the formula showing the induced electromotive force.

【0047】[0047]

【発明の効果】以上説明したところから明らかなよう
に、請求項1および3記載の本発明の電気抵抗測定方法
にあっては、抵抗測定の対象となる導体を活線状態のま
まで測定を行なうことができる。しかも、導体に流れる
交流電流により誘起される誘導起電力のために測定に誤
りを生ずることがなく、正確な測定が可能である。
As is apparent from the above description, in the electric resistance measuring method of the present invention according to claims 1 and 3, the conductor to be measured for resistance is measured in a live state. Can be done. Moreover, an accurate measurement is possible without causing an error in the measurement due to the induced electromotive force induced by the alternating current flowing through the conductor.

【0048】そして、請求項2記載の電気抵抗測定方法
にあっては、導体を流れる交流電流を、検出コイルの誘
導起電力から演算する演算式が簡単であり、それだけ演
算が容易かつ確実になし得る。しかも、演算式が簡単な
だけ演算手段も簡単なもので良い。
In the electric resistance measuring method according to the second aspect, the calculation formula for calculating the alternating current flowing through the conductor from the induced electromotive force of the detection coil is simple, and the calculation is performed easily and surely. obtain. Moreover, as the arithmetic expression is simple, the arithmetic means may be simple.

【0049】また、請求項4および5記載の本発明の電
気抵抗測定装置にあっては、測定端子と、2つの検出コ
イルまたは2つのホール素子とを、導体に一側方から当
接および接近させれば良く、測定のために必要となる装
置の移動操作が容易であり、遠隔操作棒等による操作に
好適である。
Further, in the electric resistance measuring apparatus of the present invention according to claims 4 and 5, the measuring terminal and the two detecting coils or the two hall elements are brought into contact with and approach the conductor from one side. Therefore, it is easy to move the device, which is necessary for the measurement, and it is suitable for the operation by a remote control rod or the like.

【0050】さらに、請求項6記載の電気抵抗測定装置
にあっては、装置をセンサ部と計測部に分けたので、遠
隔操作棒の先端にセンサ部のみを設けることができ、移
動操作する部材の軽量化が図れ、操作が容易となる。し
かも、計測部を導体から離して設けることができ、計測
部が磁界による悪影響を受ける虞が少なく、演算操作が
確実になし得る。
Further, in the electric resistance measuring apparatus according to the sixth aspect, since the apparatus is divided into the sensor section and the measuring section, only the sensor section can be provided at the tip of the remote control rod, and the member for moving operation can be provided. The weight can be reduced and the operation becomes easy. Moreover, the measuring unit can be provided separately from the conductor, the measuring unit is less likely to be adversely affected by the magnetic field, and the arithmetic operation can be reliably performed.

【0051】またさらに、請求項7記載の電気抵抗測定
装置にあっては、光信号によりデータを伝送するので、
信号径路でデータに電気的雑音が重畳されることがな
く、データを確実かつ正確に伝送し得る。また、センサ
部と計測部を電気的に絶縁することができ、高電圧によ
り計測部の演算手段等が破損する虞がない。
Furthermore, in the electric resistance measuring apparatus according to the seventh aspect, since data is transmitted by an optical signal,
Data can be transmitted reliably and accurately without electrical noise being superimposed on the data in the signal path. In addition, the sensor unit and the measuring unit can be electrically insulated, and there is no risk of damage to the calculation means of the measuring unit due to high voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気抵抗測定方法の原理を説明するた
めの図である。
FIG. 1 is a diagram for explaining the principle of the electric resistance measuring method of the present invention.

【図2】抵抗測定の対象となる区間の両端に測定端子を
接続させて電圧測定したときの測定電圧の内容を説明す
る図である。
FIG. 2 is a diagram illustrating the content of a measured voltage when a voltage is measured by connecting a measurement terminal to both ends of a resistance measurement target section.

【図3】測定電圧の波形と誘導起電力の波形との位相差
を説明する図である。
FIG. 3 is a diagram illustrating a phase difference between a waveform of a measured voltage and a waveform of an induced electromotive force.

【図4】本発明の電気抵抗測定装置の一実施例のブロッ
ク回路図である。
FIG. 4 is a block circuit diagram of an embodiment of an electric resistance measuring device of the present invention.

【図5】電気抵抗を測定するためのフローチャートの一
例であり、(a)は全体の工程を示し、(b)は位相差
を演算する工程を示す。
5A and 5B are an example of a flowchart for measuring electric resistance, in which FIG. 5A shows an entire process, and FIG. 5B shows a process of calculating a phase difference.

【図6】本発明の電気抵抗測定装置の他の実施例のブロ
ック回路図である。
FIG. 6 is a block circuit diagram of another embodiment of the electric resistance measuring apparatus of the invention.

【符号の説明】[Explanation of symbols]

10 導体 12 電圧測定手段 14 測定端子 16 第1検出コイル 18 第2検出コイル 20 第1誘導起電力測定手段 22 第2誘導起電力測定手段 30 センサ部 32 データ変換部 34 電気−光変換手段 36 光ファイバーケーブル 40 計測部 42 光−電気変換手段 44 データ記憶部 46 演算部 48 表示部 60 第1ホール素子 62 第2ホール素子 64 増幅部 10 conductor 12 voltage measuring means 14 measuring terminal 16 first detecting coil 18 second detecting coil 20 first induced electromotive force measuring means 22 second induced electromotive force measuring means 30 sensor section 32 data converting section 34 electric-optical converting means 36 optical fiber Cable 40 Measurement unit 42 Optical-electrical conversion means 44 Data storage unit 46 Calculation unit 48 Display unit 60 First Hall element 62 Second Hall element 64 Amplification unit

【手続補正書】[Procedure amendment]

【提出日】平成6年9月9日[Submission date] September 9, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接続部等の導体の抵抗
を、交流電流が流れる活線状態で測定できるようにした
電気抵抗測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric resistance measuring method capable of measuring the resistance of a conductor such as a connecting portion in a live state where an alternating current flows.

【0002】また、上記電気抵抗測定方法を用いて導体
の抵抗を測定するための電気抵抗測定装置に関するもの
である。
The present invention also relates to an electric resistance measuring device for measuring the resistance of a conductor by using the above electric resistance measuring method.

【0003】[0003]

【従来の技術】導体の抵抗を測定する従来の方法の1つ
として、導体を停電状態として、抵抗測定すべき箇所の
両端に電流印加用端子と電圧測定用端子をそれぞれ設
け、測定箇所に所定直流電流を外部から印加し、この直
流電流による電圧降下を測定し、電流と電圧から抵抗値
を算出するものが知られている。
2. Description of the Related Art As one of the conventional methods for measuring the resistance of a conductor, a conductor is put into a power failure state, and a current application terminal and a voltage measurement terminal are provided at both ends of a location where resistance is to be measured, and a predetermined measurement location is provided. It is known that a direct current is applied from the outside, the voltage drop due to this direct current is measured, and the resistance value is calculated from the current and the voltage.

【0004】また、活線状態のまま導体の抵抗を測定す
る方法としては、測定すべき箇所の両端に電圧測定用端
子を設け、導体に流れる交流電流をクランプメータ等で
測定し、導体に流れる交流電流による電圧降下を測定し
て抵抗値を算出するものがある。
Further, as a method of measuring the resistance of a conductor in a live state, voltage measuring terminals are provided at both ends of a portion to be measured, an alternating current flowing through the conductor is measured by a clamp meter or the like, and the current is passed through the conductor. There is one that calculates a resistance value by measuring a voltage drop due to an alternating current.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の停電状
態として導体の抵抗を測定する方法にあっては、測定用
端子を導体に接続する部分の抵抗が測定結果に大きな影
響を与え、誤差が大きい。また、送電線路や変電所設備
等の高圧の裸導体を停電状態とすれば、電力供給等に対
する影響が極めて大きく、実際問題として容易には測定
することができない。そこで、送電線路の新規な装架や
交換等の際に用いることができるにすぎない。
In the conventional method of measuring the resistance of the conductor in the power failure state as described above, the resistance of the portion connecting the measuring terminal to the conductor has a great influence on the measurement result, and the error is large. Further, if a high-voltage bare conductor such as a power transmission line or a substation facility is put into a power failure state, it has a great influence on power supply and the like, and cannot be easily measured as a practical problem. Therefore, it can only be used for new mounting or replacement of the transmission line.

【0006】また、上記した活線状態のまま導体の抵抗
を測定する方法にあっては、測定すべき抵抗による電圧
降下を正確に測定することができず、測定誤差が大き
い。これは、導体と電圧降下を測定するための回路によ
り1つの閉回路が形成され、この閉回路に、導体を流れ
る交流電流により導体の回りに生じる磁束によって誘導
起電力が生じ、この誘導起電力に電圧降下が加わった電
圧が測定されるためである。特に、導体の抵抗が小さけ
れば誘導起電力に対して相対的に抵抗による電圧降下が
小さく、誤差も大きなものとなる。
Further, in the method of measuring the resistance of the conductor in the above-described live state, the voltage drop due to the resistance to be measured cannot be accurately measured, and the measurement error is large. This is because one closed circuit is formed by a conductor and a circuit for measuring a voltage drop, and an induced electromotive force is generated in the closed circuit by a magnetic flux generated around the conductor by an alternating current flowing through the conductor. This is because the voltage to which a voltage drop is added is measured. In particular, if the resistance of the conductor is small, the voltage drop due to the resistance is small relative to the induced electromotive force, and the error is large.

【0007】したがって、活線状態のままで、導体の抵
抗を正確に測定できる電気抵抗測定方法およびそのため
の装置の開発が要望されていた。
Therefore, there has been a demand for the development of an electric resistance measuring method and an apparatus therefor capable of accurately measuring the resistance of a conductor in a live state.

【0008】本発明は、上記のごとき従来の事情に鑑み
てなされたもので、活線状態のままで導体の抵抗を正確
に測定し得る電気抵抗測定方法および電気抵抗測定装置
を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and provides an electric resistance measuring method and an electric resistance measuring apparatus capable of accurately measuring the resistance of a conductor in a live state. To aim.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の電気抵抗測定方法は、活線状態にある導
体の抵抗測定の対象となる区間の両端に測定端子を接続
して電圧を測定し、2つの検出コイルを、前記導体に流
れる交流電流により生ずる磁束が鎖交するように向けて
しかも前記導体への相対距離を所定寸法だけずらした状
態で前記導体に接近させて、これらの2つの検出コイル
に誘起される誘導起電力をそれぞれ測定し、これらの2
つの誘導起電力から前記検出コイルのいずれか一方と前
記導体との接近距離を演算し、この接近距離と当該検出
コイルに誘起された誘導起電力から前記導体に流れる前
記交流電流を演算し、前記抵抗測定の対象となる区間で
測定された電圧の波形と、前記検出コイルのいずれか一
方に誘起される誘導起電力の波形とから両波形の位相差
を検出し、前記測定された電圧と前記位相差から、抵抗
測定の対象となる区間で生ずる電圧降下を演算し、この
電圧降下と前記演算された前記交流電流とから、抵抗測
定の対象となる区間の抵抗が演算される。
In order to achieve the above object, the electric resistance measuring method of the present invention is a method in which a measuring terminal is connected to both ends of a section of a conductor which is in a live state and whose resistance is to be measured. And the two detection coils are brought close to the conductor with the magnetic flux generated by the alternating current flowing through the conductor interlinking and the relative distance to the conductor being shifted by a predetermined dimension. The induced electromotive force induced in each of the two detection coils of
Calculate the approach distance between any one of the detection coils and the conductor from one induced electromotive force, calculate the alternating current flowing in the conductor from the approach distance and the induced electromotive force induced in the detection coil, The waveform of the voltage measured in the section that is the target of resistance measurement, and the phase difference between both waveforms from the waveform of the induced electromotive force induced in any one of the detection coils, the measured voltage and the From the phase difference, the voltage drop that occurs in the section that is the target of resistance measurement is calculated, and the resistance of the section that is the target of resistance measurement is calculated from this voltage drop and the calculated alternating current.

【0010】そして、前記2つの検出コイルが、矩形コ
イルであるとともに、同じ寸法および同じ巻数で、しか
も前記導体に流れる交流電流により生ずる磁束の方向に
コイル軸を向けて配設しても良い。
Further, the two detection coils may be rectangular coils and may be arranged with the same size and the same number of turns, with the coil axes oriented in the direction of the magnetic flux generated by the alternating current flowing through the conductor.

【0011】さらに、前記2つの検出コイルに代えて、
2つのホール素子を、前記導体に流れる交流電流により
生ずる磁束により電圧が生ずるように向けて、しかも導
体への相対距離を所定寸法だけずらした状態で前記導体
に接近させ、これらの2つのホール素子に生ずる電圧を
それぞれ測定してこれらの電圧から前記交流電流を演算
し、また前記ホール素子に生じる電圧の波形と前記抵抗
測定の対象となる区間の両端で測定された電圧の波形と
から両波形の位相差を検出しても良い。
Further, instead of the two detection coils,
These two Hall elements are brought close to the conductors so that a voltage is generated by a magnetic flux generated by an alternating current flowing through the conductors, and the relative distance to the conductors is shifted by a predetermined dimension. To calculate the alternating current from these voltages, and to obtain both waveforms from the waveform of the voltage generated in the Hall element and the waveform of the voltage measured at both ends of the section subject to the resistance measurement. The phase difference of 1 may be detected.

【0012】また、本発明の電気抵抗測定装置は、活線
状態にある導体の抵抗測定の対象となる区間の両端に測
定端子を接続して電圧を測定する電圧測定手段と、2つ
の検出コイルを、前記導体に流れる交流電流により生ず
る磁束の方向にコイル軸を向けた姿勢でしかも前記導体
への相対距離を所定寸法だけずらした状態で、前記導体
に接近させ、これらの2つの検出コイルに誘起される誘
導起電力をそれぞれ測定する誘導起電力測定手段と、前
記電圧測定手段で測定される電圧の波形と、いずれか一
つの前記検出コイルに誘起される誘導起電力の波形とか
ら位相差を検出する位相差検出手段と、測定された2つ
の前記誘導起電力から、前記検出コイルのいずれか一方
と前記導体の接近距離を演算し、この接近距離と当該検
出コイルの誘導起電力から前記導体に流れる交流電流を
演算する電流演算手段と、前記電圧測定手段で測定され
た電圧と、前記位相差検出手段で検出された位相差から
前記抵抗測定の対象となる区間で生ずる電圧降下を演算
し、この電圧降下と前記電流演算手段で演算された前記
交流電流とから前記抵抗測定の対象となる区間の抵抗値
を演算する抵抗演算手段と、を備えて構成されている。
Further, the electric resistance measuring apparatus of the present invention comprises a voltage measuring means for measuring a voltage by connecting a measuring terminal to both ends of a section of a conductor in a live state where the resistance is to be measured, and two detecting coils. Is brought close to the conductor in a posture in which the coil axis is oriented in the direction of the magnetic flux generated by the alternating current flowing through the conductor, and the relative distance to the conductor is shifted by a predetermined dimension, and these two detection coils are provided. Phase difference from induced electromotive force measuring means for respectively measuring induced electromotive force, waveform of voltage measured by the voltage measuring means, and waveform of induced electromotive force induced in any one of the detection coils. From the two induced electromotive forces measured by the phase difference detection means for detecting the electric field, and the proximity distance between one of the detection coils and the conductor is calculated. A current calculation means for calculating an alternating current flowing through the conductor from a force, a voltage measured by the voltage measurement means, and a voltage generated in the section to be the resistance measurement target from the phase difference detected by the phase difference detection means. Resistance calculating means for calculating a drop and calculating a resistance value of a section to be the resistance measurement target from the voltage drop and the alternating current calculated by the current calculating means.

【0013】そして、前記2つの検出コイルに代えて、
2つのホール素子を前記導体への相対距離と所定寸法だ
けずらした状態で前記導体に接近させ、前記導体を流れ
る交流電流により生ずる磁界の強さに応じた電圧を生じ
るようにし、これらの2つのホール素子に生じる電圧を
ホール素子電圧測定手段でそれぞれ測定し、これらの電
圧から電流演算手段で前記交流電流を演算し、ホール素
子に生じる電圧の波形と前記抵抗測定の対象となる区間
の両端で測定された電圧の波形とから位相差検出手段で
両波形の位相差を検出するように構成しても良い。
And instead of the two detection coils,
The two Hall elements are moved close to the conductor in a state where they are displaced from each other by a predetermined distance from the relative distance to the conductor, and a voltage corresponding to the strength of a magnetic field generated by an alternating current flowing through the conductor is generated to generate these two elements. The voltage generated in the hall element is measured by the hall element voltage measuring means, and the alternating current is calculated by the current calculating means from these voltages, and the waveform of the voltage generated in the hall element and the both ends of the section to be the resistance measurement target are calculated. The phase difference detecting means may detect the phase difference between the two waveforms from the measured voltage waveform.

【0014】さらに、装置をセンサ部と計測部の2つに
分け、前記センサ部に少なくとも前記測定端子と2つの
検出コイルまたは2つのホール素子とを備え、前記計測
部に少なくとも前記電流演算手段と抵抗演算手段を備え
て構成することもできる。
Further, the apparatus is divided into a sensor section and a measurement section, the sensor section is provided with at least the measurement terminal and two detection coils or two Hall elements, and the measurement section is provided with at least the current calculation means. It can also be configured by including resistance calculation means.

【0015】またさらに、前記センサ部に電気−光変換
手段を設け、前記計測部に光−電気変換手段を設け、前
記電気−光変換手段と前記光−電気変換手段の間を光フ
ァイバーケーブルで接続し、前記センサ部で得られたデ
ータを光信号として前記計測部に伝送するように構成す
ることもできる。
Further, the sensor section is provided with electric-optical conversion means, the measuring section is provided with optical-electrical conversion means, and the electric-optical conversion means and the optical-electrical conversion means are connected by an optical fiber cable. However, the data obtained by the sensor unit may be transmitted to the measuring unit as an optical signal.

【0016】[0016]

【作 用】請求項1および3記載の電気抵抗測定方法に
あっては、活線状態のままで導体の抵抗測定ができる。
しかも、導体を流れる交流電流により生ずる誘導起電力
による測定誤差を生ずることがない。
[Operation] In the electric resistance measuring method according to the first and third aspects, the resistance of the conductor can be measured in a live state.
Moreover, the measurement error due to the induced electromotive force generated by the alternating current flowing through the conductor does not occur.

【0017】そして、請求項2記載の電気抵抗測定方法
にあっては、導体を流れる交流電流を演算するのに、2
つの同じ寸法と巻数の矩形の検出コイルを用いているの
で、交流電流を演算するための演算式が簡単なものとな
り、それだけ演算手段が簡単となるとともに迅速に演算
がなし得る。
In the electric resistance measuring method according to the second aspect, it is necessary to calculate the AC current flowing through the conductor by 2
Since the rectangular detection coil having the same size and the same number of turns is used, the calculation formula for calculating the alternating current becomes simple, and the calculation means becomes simple and the calculation can be performed quickly.

【0018】また、請求項4および5記載の電気抵抗測
定装置にあっては、測定端子と、2つの検出コイルまた
は2つのホール素子とを、導体に一側方から当接および
接近させることで、活線状態の導体の抵抗を測定し得
る。そこで、測定に必要となる動作が簡単であり、遠隔
操作棒等による操作を容易になし得る。
Further, in the electric resistance measuring apparatus according to the fourth and fifth aspects, the measuring terminal and the two detecting coils or the two Hall elements are brought into contact with and approach the conductor from one side. , The resistance of a live conductor can be measured. Therefore, the operation required for measurement is simple, and the operation with a remote control rod or the like can be easily performed.

【0019】さらに、請求項6記載の電気抵抗測定装置
にあっては、装置をセンサ部と計測部とに分けたので、
センサ部のみを遠隔操作棒等の先端に設けることがで
き、操作すべき部材の軽量化が図られる。しかも、計測
部を導体から離して設けることができ、計測部が導体の
周囲に生じる磁界により受ける悪影響を少なくし得る。
Further, in the electric resistance measuring apparatus according to the sixth aspect, the apparatus is divided into a sensor section and a measuring section.
Only the sensor portion can be provided at the tip of the remote control rod or the like, and the weight of the member to be operated can be reduced. Moreover, the measuring unit can be provided separately from the conductor, and the adverse effect of the magnetic field generated around the conductor on the measuring unit can be reduced.

【0020】またさらに、請求項7記載の電気抵抗測定
装置にあっては、光信号によってデータの伝送を行なう
ので、信号径路においてデータに電気的雑音が重畳され
ることがない。しかも、センサ部と計測部を電気的に絶
縁し得る。
Further, in the electric resistance measuring apparatus according to the seventh aspect, since the data is transmitted by the optical signal, the electric noise is not superimposed on the data in the signal path. Moreover, the sensor unit and the measuring unit can be electrically insulated.

【0021】[0021]

【実施例】以下、本発明の電気抵抗測定方法の一実施例
を図1乃至図3を参照して説明する。図1は、本発明の
電気抵抗測定方法の原理を説明するための図であり、図
2は、抵抗測定の対象となる区間の両端に測定端子を接
続させて電圧測定したときの測定電圧の内容を説明する
図であり、図3は、測定電圧の波形と誘導起電力の波形
との位相差を説明する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the electric resistance measuring method of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram for explaining the principle of the electric resistance measuring method of the present invention, and FIG. 2 shows the measured voltage when the voltage is measured by connecting the measuring terminals to both ends of the section for which the resistance is measured. FIG. 3 is a diagram for explaining the contents, and FIG. 3 is a diagram for explaining the phase difference between the waveform of the measured voltage and the waveform of the induced electromotive force.

【0022】まず、活線状態にある導体10の抵抗R
が測定の対象となる区間の両端に、電圧測定手段12の
測定端子14,14が接続される。また、導体10と同
一平面上で、導体10に非接触で接近させて第1検出コ
イル16と第2検出コイル18とが配設される。これら
の第1と第2検出コイル16,18は、同じ縦と横のl
×lの寸法の矩形形状であり、同じ巻数Nを有す
る。しかも、矩形形状の長辺を導体10に平行とし、第
1と第2検出コイル16,18はギャップGだけ離れて
平行に配置される。そして、コイル軸は、導体10に流
れる交流電流iにより導体10の周囲に生じる磁束の方
向と合致する、姿勢される。さらに、第1と第2検出コ
イル16,18には、磁束により誘起される誘導起電力
を測定する第1と第2誘導起電力測定手段20,22が
介装される。なお、導体10と第1検出コイル16の距
離rは未知数である。
First, the resistance R 0 of the conductor 10 in the hot line state
The measurement terminals 14 and 14 of the voltage measuring means 12 are connected to both ends of the section to be measured. Further, the first detection coil 16 and the second detection coil 18 are arranged on the same plane as the conductor 10 so as to approach the conductor 10 in a non-contact manner. These first and second detection coils 16 and 18 have the same vertical and horizontal l
It has a rectangular shape with dimensions of 1 × l 2 and has the same number of turns N. Moreover, the long sides of the rectangular shape are parallel to the conductor 10, and the first and second detection coils 16 and 18 are arranged in parallel with a gap G therebetween. Then, the coil axis is oriented so as to match the direction of the magnetic flux generated around the conductor 10 by the alternating current i flowing in the conductor 10. Further, the first and second detection coils 16 and 18 are provided with first and second induction electromotive force measuring means 20 and 22 for measuring induced electromotive force induced by magnetic flux. The distance r between the conductor 10 and the first detection coil 16 is an unknown number.

【0023】かかる構成において、電圧測定手段12に
より測定される電圧Vは、導体10に流れる交流電流
iと測定されるべき抵抗Rによる電圧降下eと、導
体10と測定端子14,14および電圧測定手段12に
より形成される閉回路に交流電流iによる磁束が鎖交し
て誘起される誘導起電力eが合成されたものである。
ここで、誘導起電力eは、電圧降下eに対して90
度位相がずれたものであり、v,e,eの実効値
をそれぞれV,E,Eとしてベクトル表示すれ
ば、図2のごとく示される。そこで、電圧vと誘導起
電力eの位相差および交流電流iが測定できれば、抵
抗Rを正確に演算し得る。
In such a configuration, the voltage V 0 measured by the voltage measuring means 12 is the voltage drop e 0 due to the alternating current i flowing through the conductor 10 and the resistance R 0 to be measured, and the conductor 10 and the measuring terminals 14 and 14. The induced electromotive force e 1 induced by the magnetic flux of the alternating current i interlinking with the closed circuit formed by the voltage measuring means 12 is synthesized.
Here, the induced electromotive force e 1 is 90 with respect to the voltage drop e 0 .
The phase is out of phase with each other, and if the effective values of v 0 , e 0 , and e 1 are vector-displayed as V 0 , E 0 , and E 1 , respectively, they are shown in FIG. Therefore, if the phase difference between the voltage v 0 and the induced electromotive force e 1 and the alternating current i can be measured, the resistance R 0 can be accurately calculated.

【0024】交流電流iの測定には、第1と第2検出コ
イル16,18の誘導起電力により発生する電圧v
から演算により求める。ここで、式の簡略化のため
にi,v,vの実効値をそれぞれI,V,V
すれば、V,Vは数1,数2で示される。
To measure the AC current i, the voltage v 1 , generated by the induced electromotive force of the first and second detection coils 16 and 18,
Calculated from v 2 . Here, assuming that the effective values of i, v 1 and v 2 are I, V 1 and V 2 , respectively, for simplification of the formula, V 1 and V 2 are represented by Formula 1 and Formula 2.

【数1】 [Equation 1]

【数2】 ここで、μは真空透磁率、fは交流電流iの周波数、
Nは第1と第2検出コイルの巻数である。
[Equation 2] Here, μ 0 is the vacuum permeability, f is the frequency of the alternating current i,
N is the number of turns of the first and second detection coils.

【0025】そして、第1と第2検出コイル16,18
に発生する電圧の実効値VとVの比を求めれば数3
となる。
Then, the first and second detection coils 16 and 18
If the ratio of the effective values V 1 and V 2 of the voltage generated at
Becomes

【数3】 (Equation 3)

【0026】ここで、コイルの寸法lとギャップGは
既知数であるから、外挿法等によってrを演算により求
めることができる。
Since the coil size l 1 and the gap G are known values, r can be calculated by extrapolation or the like.

【0027】さらに、数1は、数4と書き直すことがで
き、この数4に演算から求められたrを挿入すること
で、交流電流iの実効値Iが演算できる。
Further, the equation 1 can be rewritten as the equation 4, and the effective value I of the alternating current i can be computed by inserting the r obtained by the computation into the equation 4.

【数4】 [Equation 4]

【0028】なお、この交流電流Iを演算する技術は、
特許出願人が先に出願した特願平5−339492号に
詳記される。
The technique for calculating the alternating current I is as follows.
The details are described in Japanese Patent Application No. 5-339492 filed by the applicant of the patent.

【0029】また、電圧測定手段12の電圧vの波形
と、第1検出コイル16の第1誘導起電力測定手段20
の電圧vの波形とから、位相差が求められる。すなわ
ち、図3に示すごとく、電圧vの波形が零電圧となる
点P,Pから周期が演算され、電圧vの波形が正
から零電圧となる点Pと電圧vが正から零電圧とな
る点Pのずれ角θ′から、位相差が求められる。
Further, the waveform of the voltage v 0 of the voltage measuring means 12 and the first induced electromotive force measuring means 20 of the first detecting coil 16 are measured.
The phase difference is obtained from the waveform of the voltage v 1 of. That is, as shown in FIG. 3, the operation cycle from the voltage v P 1, P 2 that waveform is the zero voltage of 0 and P 2 and the voltage v 1 that waveform is zero voltage from the positive voltage v 0 The phase difference is obtained from the deviation angle θ ′ of the point P 3 at which the voltage changes from positive to zero voltage.

【0030】そこで、測定されるべき抵抗Rによる電
圧降下の実効値Eは、図2の関係からE=V・s
inθ′=V・cosθと示せる。ここでθ=90−
θ′である。さらに、この電圧降下Eと交流電流iの
実効値Iから、抵抗RはR=E/Iで演算し得
る。
Therefore, the effective value E 0 of the voltage drop due to the resistance R 0 to be measured is E 0 = V 0 · s from the relationship of FIG.
It can be shown that in θ ′ = V 0 · cos θ. Where θ = 90−
θ ′. Further, from the voltage drop E 0 and the effective value I of the alternating current i, the resistance R 0 can be calculated by R 0 = E 0 / I.

【0031】次に、上記電気抵抗測定方法の実施に用い
る電気抵抗測定装置につき、図4および図5を参照して
説明する。図4は、本発明の電気抵抗測定装置の一実施
例のブロック回路図であり、図5は、電気抵抗を測定す
るためのフローチャートの一例であり、(a)は全体の
工程を示し、(b)は位相差を演算する工程を示す。
Next, an electric resistance measuring apparatus used for carrying out the electric resistance measuring method will be described with reference to FIGS. 4 and 5. FIG. 4 is a block circuit diagram of an embodiment of the electric resistance measuring apparatus of the present invention, FIG. 5 is an example of a flowchart for measuring the electric resistance, and (a) shows the whole process, b) shows the step of calculating the phase difference.

【0032】図4において、遠隔操作棒(図示せず)の
先端部にセンサ部30が設けられる。このセンサ部30
には、導体10の抵抗Rが測定の対象となる区間の両
端に当接して電気接続される測定端子14,14が設け
られるとともに、第1検出コイル16と第2検出コイル
18が上記電気抵抗測定方法で説明したごとき形状およ
び姿勢で配設される。さらに、測定端子14,14と、
第1検出コイル16および第2検出コイル18の出力端
子がデータ変換部32に接続され、測定端子14,14
間の電圧vの波形、第1と第2検出コイル16,18
に誘起される電圧v,vの波形が適宜なデータにそ
れぞれ変換される。そして、データ変換部32から出力
される電気信号としてのデータが、電気−光変換手段3
4に与えられ、データが光信号に変換されて光ファイバ
ーケーブル36を伝送されて計測部40に与えられる。
In FIG. 4, a sensor unit 30 is provided at the tip of a remote control rod (not shown). This sensor unit 30
Is provided with measurement terminals 14 and 14 to which the resistance R 0 of the conductor 10 abuts at both ends of a section to be measured and is electrically connected thereto, and the first detection coil 16 and the second detection coil 18 are electrically connected to each other. It is arranged in the shape and posture as described in the resistance measuring method. Furthermore, the measurement terminals 14 and 14,
The output terminals of the first detection coil 16 and the second detection coil 18 are connected to the data conversion section 32, and the measurement terminals 14, 14 are connected.
Waveform of voltage v 0 between the first and second detection coils 16, 18
The waveforms of the voltages v 1 and v 2 induced in the are converted into appropriate data, respectively. Then, the data as the electric signal output from the data conversion unit 32 is converted into the electric-optical conversion means 3.
4, converted into an optical signal, transmitted through the optical fiber cable 36, and given to the measuring section 40.

【0033】そして、計測部40がセンサ部30とは別
体で構成され、光ファイバーケーブル36により接続さ
れている。計測部40には、光ファイバーケーブル36
の一端が接続される光−電気変換手段42が設けられ、
光信号として伝送されるデータが電気信号に再び変換さ
れる。さらに、電気信号に変換されたデータがデータ記
憶部44に与えられて一時的に記憶保存される。これら
のデータは、マイクロコンピュータ等からなる演算部4
6に与えられ、後述する手順で演算処理されて抵抗R
および交流電流iの実効値I等が表示部48および測定
記憶部50に与えられる。抵抗Rおよび交流電流iの
実効値Iの表示および記憶保存は、操作部52の適宜な
指示等で行なわれる。
The measuring section 40 is formed separately from the sensor section 30 and is connected by an optical fiber cable 36. The measuring unit 40 has an optical fiber cable 36.
Is provided with an optical-electrical conversion means 42 to which one end of is connected,
The data transmitted as optical signals are converted back into electrical signals. Further, the data converted into the electric signal is given to the data storage unit 44 and temporarily stored and saved. These data are calculated by the arithmetic unit 4 including a microcomputer.
6 and is subjected to arithmetic processing in the procedure described later to obtain the resistance R 0.
The effective value I of the alternating current i and the like are given to the display unit 48 and the measurement storage unit 50. The display and storage of the effective value I of the resistance R 0 and the alternating current i are performed by an appropriate instruction from the operation unit 52 or the like.

【0034】センサ部30と計測部40には、それぞれ
適宜な駆動電源(図示せず)が内蔵されている。なお、
センサ部30にあっては、さらに別のコイルを設け、そ
のコイルの誘導起電力を駆動電源として利用しても良
い。
Each of the sensor section 30 and the measuring section 40 has an appropriate drive power source (not shown) built therein. In addition,
The sensor unit 30 may be provided with another coil and the induced electromotive force of the coil may be used as a drive power source.

【0035】そして、演算部46の演算処理手順の一例
は、図5(a),(b)に示すとおりである。すなわ
ち、全体の手順としては、図5(a)に示すごとく、位
相差θの演算および交流電流iの実効値Iの演算に必要
となる各演算式および演算式における定数が設定されて
初期化される(ステップ)。次いで、図5(b)で後
述するごとくして、位相差θが演算される(ステップ
)。さらに、測定端子14,14間の電圧vおよび
第1と第2検出コイル16,18の電圧v,vの実
効値が演算される(ステップ)。そして、これらの電
圧v,vの実効値VとVの比から、導体10と
第1検出コイル16の距離rが演算される(ステップ
)。この距離rと、電圧v,vの実効値V,V
のいずれか一方とから、交流電流iの実効値Iが演算
される(ステップ)。また、電圧vの実効値V
位相差θとから、抵抗Rによる電圧降下Eが演算さ
れ(ステップ)、さらにこの電圧降下Eと交流電流
iの実効値Iとから、抵抗Rが演算される(ステップ
)。
An example of the arithmetic processing procedure of the arithmetic unit 46 is as shown in FIGS. 5 (a) and 5 (b). That is, as a whole procedure, as shown in FIG. 5A, each calculation formula and constants in the calculation formula necessary for calculation of the phase difference θ and calculation of the effective value I of the alternating current i are set and initialized. Is done (step). Next, the phase difference θ is calculated as described later with reference to FIG. 5B (step). Further, the effective values of the voltage v 0 between the measurement terminals 14 and 14 and the voltages v 1 and v 2 of the first and second detection coils 16 and 18 are calculated (step). Then, the distance r between the conductor 10 and the first detection coil 16 is calculated from the ratio of the effective values V 1 and V 2 of these voltages v 1 and v 2 (step). This distance r and effective values V 1 and V 2 of the voltages v 1 and v 2
The effective value I of the alternating current i is calculated from either of the two (step). Further, from the the effective value V 0 and the phase difference θ of the voltages v 0, the resistance R voltage drop E 0 by 0 is calculated (step), further a voltage drop E 0 and the effective value I of the alternating current i, resistance R 0 is calculated (step).

【0036】位相差θの演算にあっては、まず図3に示
すごとき電圧vの零点P,Pと電圧vまたはv
の零点Pとが検出される(ステップa)。そして、
零点PとPの時間間隔から電圧vの周期が演算さ
れ(ステップb)、また零点Pの零点Pに対する進
み時間が演算される(ステップc)。これらの電圧v
の周期と、零点Pの進み時間から、電圧vに対する
電圧v,vの位相差θ′が演算される(ステップ
d)。そして、電圧v,vと抵抗Rによる電圧降
下eとは90度の位相差があることから、電圧降下e
と電圧vとの位相差θがθ=90−θ′として演算
される(ステップe)。
In the calculation of the phase difference θ, first, the zero points P 1 and P 2 of the voltage v 0 and the voltage v 1 or v as shown in FIG.
The zero point P 3 of 2 is detected (step a). And
The period of the voltage v 0 is calculated from the time interval between the zeros P 1 and P 2 (step b), and the lead time of the zero P 3 with respect to the zero P 2 is calculated (step c). These voltages v 0
Based on the cycle and the lead time of the zero point P 3 , the phase difference θ ′ between the voltages v 1 and v 2 with respect to the voltage v 0 is calculated (step d). Since there is a phase difference of 90 degrees between the voltages v 1 and v 2 and the voltage drop e 0 due to the resistor R 0 , the voltage drop e
The phase difference θ between 0 and the voltage v 0 is calculated as θ = 90−θ ′ (step e).

【0037】なお、図5(a)の手順において、ステッ
プにおいて、位相差θと電圧vの実効値Vおよび
交流電流iの実効値Iが既に演算されていれば良く、位
相差θの演算に先だって、交流電流iの実効値Iの演算
がなされても良い。また、上記説明から明らかなよう
に、機能的には、電圧測定手段12は、測定端子14,
14と演算部46で構成され、誘導起電力測定手段2
0,22は、第1と第2検出コイル16,18と演算部
46で構成され、位相差検出手段は、測定端子14,1
4と第1と第2検出コイル16,18のいずれか一方と
演算部46で構成され、電流演算手段および抵抗演算手
段は、演算部46で構成されている。
[0037] Incidentally, in the procedure of FIG. 5 (a), in step, may be the effective value I rms V 0 and an alternating current i of the phase difference θ and a voltage v 0 is if already computed, the phase difference θ Prior to the calculation, the effective value I of the AC current i may be calculated. Further, as apparent from the above description, functionally, the voltage measuring means 12 includes the measuring terminal 14,
14 and a calculation unit 46, and the induced electromotive force measuring means 2
Reference numerals 0 and 22 are composed of first and second detection coils 16 and 18 and a calculation unit 46, and the phase difference detection means is the measurement terminals 14 and 1.
4 and any one of the first and second detection coils 16 and 18 and the calculation unit 46, and the current calculation unit and the resistance calculation unit are configured in the calculation unit 46.

【0038】かかる構成にあっては、導体10に生ずる
磁束に晒されるセンサ部30と、ここで得られたデータ
を演算処理する計測部40を別体として離して設けるこ
とで、計測部40に対する磁界の悪影響を極力小さなも
のとすることができ、演算処理が雑音等の侵入による誤
りを生ずる虞なしに行なうことができ、それだけ測定精
度を向上させ得る。しかも、センサ部30と計測部40
を分けることで、センサ部30が先端に設けられた遠隔
操作棒の軽量化を図ることができ、操作性に優れたもの
である。また、センサ部30と計測部40を光ファイバ
ーケーブル36で接続することで、光ファイバーケーブ
ル36を伝送中のデータに対して電気的雑音の重畳がな
く、しかもセンサ部30と計測部40を電気的に絶縁で
き、安全に電気抵抗測定がなし得る。
In such a configuration, the sensor unit 30 exposed to the magnetic flux generated in the conductor 10 and the measuring unit 40 for calculating the data obtained here are separately provided, so that the measuring unit 40 can be provided. The adverse effect of the magnetic field can be made as small as possible, the arithmetic processing can be performed without the risk of causing an error due to intrusion of noise, etc., and the measurement accuracy can be improved accordingly. Moreover, the sensor unit 30 and the measuring unit 40
By separating the parts, the weight of the remote control rod provided with the sensor portion 30 at the tip can be reduced, and the operability is excellent. Further, by connecting the sensor unit 30 and the measuring unit 40 with the optical fiber cable 36, there is no superposition of electrical noise on the data being transmitted through the optical fiber cable 36, and the sensor unit 30 and the measuring unit 40 are electrically connected. It can be insulated, and the electrical resistance can be measured safely.

【0039】次に、本発明の電気抵抗測定方法および電
気抵抗測定装置の他の実施例につき、図6を参照して説
明する。図6は、本発明の電気抵抗測定装置の他の実施
例のブロック回路図である。図6において、図4と同一
部材等には同じ符号を付けて重複する説明を省略する。
Next, another embodiment of the electric resistance measuring method and the electric resistance measuring apparatus of the present invention will be described with reference to FIG. FIG. 6 is a block circuit diagram of another embodiment of the electric resistance measuring apparatus of the invention. In FIG. 6, the same members as those in FIG.

【0040】図6に示す電気抵抗測定装置にあって、図
4に示す装置と相違するところは、第1と第2検出コイ
ル16,18に代えて、第1と第2ホール素子60,6
2が用いられ、これらの第1と第2ホール素子60,6
2で生じた電圧が増幅部64で適宜に増幅されてデータ
変換部32に電圧v,vとして与えられる。第1と
第2ホール素子60,62は、導体10に対して相対距
離がLだけ離されて、第1ホール素子60が導体10に
近接した状態で接近される。導体10と第1ホール素子
60との距離rは未知数である。しかも、第1と第2ホ
ール素子60,62は、導体10に流れる交流電流iに
より導体10の周囲に生じる磁束の方向に対して最大感
度となるような姿勢とされる。さらに、第1と第2ホー
ル素子60,62に生じた電圧が、増幅部64で適宜な
利得で増幅されてデータ変換部32に電圧v,v
して与えられる。なお、ホール素子電圧測定手段は、第
1と第2ホール素子60,62と増幅部64および演算
部46で構成される。
The electric resistance measuring apparatus shown in FIG. 6 is different from the apparatus shown in FIG. 4 in that the first and second detection coils 16 and 18 are replaced by the first and second Hall elements 60 and 6.
2 are used, and these first and second Hall elements 60, 6
The voltage generated at 2 is appropriately amplified by the amplification unit 64 and is given to the data conversion unit 32 as the voltages v 1 and v 2 . The first and second Hall elements 60 and 62 are separated from each other by a relative distance L with respect to the conductor 10, and the first Hall element 60 is close to the conductor 10 in a state of being close to the conductor 10. The distance r between the conductor 10 and the first hall element 60 is an unknown number. Moreover, the first and second Hall elements 60, 62 are set in such a posture as to have the maximum sensitivity with respect to the direction of the magnetic flux generated around the conductor 10 by the alternating current i flowing in the conductor 10. Further, the voltages generated in the first and second Hall elements 60 and 62 are amplified by the amplifying unit 64 with an appropriate gain and are given to the data converting unit 32 as the voltages v 1 and v 2 . The Hall element voltage measuring means is composed of the first and second Hall elements 60 and 62, the amplifying section 64, and the calculating section 46.

【0041】ここで、第1ホール素子60の位置におけ
る磁界強度Hは数5と示され、第2ホール素子62の
位置における磁界強度Hは数6と示される。
Here, the magnetic field strength H 1 at the position of the first Hall element 60 is shown by Equation 5, and the magnetic field strength H 2 at the position of the second Hall element 62 is shown by Equation 6.

【数5】 (Equation 5)

【数6】 (Equation 6)

【0042】数5および数6から距離rと交流電流iの
実効値Iを求めると数7および数8となる。
The distance r and the effective value I of the alternating current i are obtained from the equations 5 and 6 to obtain the equations 7 and 8.

【数7】 (Equation 7)

【数8】 [Equation 8]

【0043】そこで、第1と第2ホール素子60,62
に加わる磁界強度と増幅部64から出力される電圧の実
効値V,Vを適宜な関係に予め設定することで、数
7,数8から導体10の交流電流iの実効値Iを演算す
ることができる。
Therefore, the first and second Hall elements 60, 62
The effective value I of the alternating current i of the conductor 10 is calculated from the equations 7 and 8 by presetting the magnetic field strength applied to and the effective values V 1 and V 2 of the voltage output from the amplifying section 64 in advance. can do.

【0044】ところで、第1と第2ホール素子60,6
2で出力される電圧v,vは、交流電流iと同位相
である。そこで、測定端子14,14で測定される電圧
と、増幅部64から出力される電圧v,vとの
位相差は、電圧vと抵抗Rによる電圧降下eとの
位相差θを示す。
By the way, the first and second Hall elements 60, 6
The voltages v 1 and v 2 output at 2 have the same phase as the alternating current i. Therefore, position of the voltage v 0 to be measured by the measurement terminal 14 and 14, the phase difference between the voltage v 1, v 2 output from the amplification unit 64, a voltage drop e 0 according to the voltage v 0 and the resistor R 0 The phase difference θ is shown.

【0045】したがって、第1と第2検出コイル16,
18を用いたものと同様に、図5に示す実施例にあって
も、位相差θと交流電流iの実効値Iが演算でき、抵抗
を演算することができる。
Therefore, the first and second detection coils 16,
Similar to the case using 18, the phase difference θ and the effective value I of the alternating current i can be calculated and the resistance R 0 can be calculated also in the embodiment shown in FIG.

【0046】なお、位相差θの演算において、交流電流
iの周期が交流電流の周波数から既知であるならば、電
圧vの零点P,Pを測定せず、零点Pのみを検
出しても良い。ここで電圧vおよび電圧vの零点
は、零レベルを波形が同方向で交叉する点を検出すれば
良い。また、上記実施例では、波形のデータをセンサ部
30から計測部40に伝送しているが、これに限られ
ず、電圧v,v,vの電圧の実効値および零点P
,P,Pのデータをセンサ部30から計測部40
に伝送しても良い。かかる構成では零検出手段がセンサ
部30に設けられることは勿論である。さらに、第1と
第2検出コイル16,18は、矩形コイルに限られず、
円形コイルや楕円形コイルや三角形コイルであっても良
い。また、第1と第2検出コイル16,18が異なる寸
法形状および巻数であっても良い。誘導起電力を示す式
が相違する等により、交流電流iの実効値Iを求める演
算式が相違することは勿論である。
In the calculation of the phase difference θ, if the period of the alternating current i is known from the frequency of the alternating current, the zero points P 1 and P 2 of the voltage v 0 are not measured and only the zero point P 2 is detected. You may. Here, the zero point of the voltage v 0 and the voltage v 1 may be detected by detecting the point where the waveforms cross the zero level in the same direction. Further, in the above embodiment, the waveform data is transmitted from the sensor unit 30 to the measuring unit 40, but the present invention is not limited to this, and the effective values of the voltages v 0 , v 1 and v 2 and the zero point P.
The data of 1 , P 2 , and P 3 are transferred from the sensor unit 30 to the measuring unit 40.
May be transmitted to. Of course, in such a configuration, the zero detecting means is provided in the sensor unit 30. Furthermore, the first and second detection coils 16 and 18 are not limited to rectangular coils,
It may be a circular coil, an elliptical coil or a triangular coil. Further, the first and second detection coils 16 and 18 may have different sizes and numbers of turns. It goes without saying that the calculation formula for obtaining the effective value I of the alternating current i is different due to the difference of the formula showing the induced electromotive force.

【0047】[0047]

【発明の効果】以上説明したところから明らかなよう
に、請求項1および3記載の本発明の電気抵抗測定方法
にあっては、抵抗測定の対象となる導体を活線状態のま
まで測定を行なうことができる。しかも、導体に流れる
交流電流により誘起される誘導起電力のために測定に誤
りを生ずることがなく、正確な測定が可能である。
As is apparent from the above description, in the electric resistance measuring method of the present invention according to claims 1 and 3, the conductor to be measured for resistance is measured in a live state. Can be done. Moreover, an accurate measurement is possible without causing an error in the measurement due to the induced electromotive force induced by the alternating current flowing through the conductor.

【0048】そして、請求項2記載の電気抵抗測定方法
にあっては、導体を流れる交流電流を、検出コイルの誘
導電力から演算する演算式が簡単であり、それだけ演算
が容易かつ確実になし得る。しかも、演算式が簡単なだ
け演算手段も簡単なもので良い。
In the electric resistance measuring method according to the second aspect of the present invention, the calculation formula for calculating the alternating current flowing through the conductor from the induction power of the detection coil is simple, and the calculation can be performed easily and surely. . Moreover, as the arithmetic expression is simple, the arithmetic means may be simple.

【0049】また、請求項4および5記載の本発明の電
気抵抗測定装置にあっては、測定端子と、2つの検出コ
イルまたは2つのホール素子とを、導体に一側方から当
接および接近させれば良く、測定のために必要となる装
置の移動操作が容易であり、遠隔操作棒等による操作に
好適である。
Further, in the electric resistance measuring apparatus of the present invention according to claims 4 and 5, the measuring terminal and the two detecting coils or the two hall elements are brought into contact with and approach the conductor from one side. Therefore, it is easy to move the device, which is necessary for the measurement, and it is suitable for the operation by a remote control rod or the like.

【0050】さらに、請求項6記載の電気抵抗測定装置
にあっては、装置をセンサ部と計測部に分けたので、遠
隔操作棒の先端にセンサ部のみを設けることができ、移
動操作する部材の軽量化が図れ、操作が容易となる。し
かも、計測部を導体から離して設けることができ、計測
部が磁界による悪影響を受ける虞が少なく、演算操作が
確実になし得る。
Further, in the electric resistance measuring apparatus according to the sixth aspect, since the apparatus is divided into the sensor section and the measuring section, only the sensor section can be provided at the tip of the remote control rod, and the member for moving operation can be provided. The weight can be reduced and the operation becomes easy. Moreover, the measuring unit can be provided separately from the conductor, the measuring unit is less likely to be adversely affected by the magnetic field, and the arithmetic operation can be reliably performed.

【0051】またさらに、請求項7記載の電気抵抗測定
装置にあっては、光信号によりデータを伝送するので、
信号径路でデータに電気的雑音が重畳されることがな
く、データを確実かつ正確に伝送し得る。また、センサ
部と計測部を電気的に絶縁することができ、高電圧によ
り計測部の演算手段等が破損する虞がない。
Furthermore, in the electric resistance measuring apparatus according to the seventh aspect, since data is transmitted by an optical signal,
Data can be transmitted reliably and accurately without electrical noise being superimposed on the data in the signal path. In addition, the sensor unit and the measuring unit can be electrically insulated, and there is no risk of damage to the calculation means of the measuring unit due to high voltage.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 活線状態にある導体の抵抗測定の対象と
なる区間の両端に測定端子を接続して電圧を測定し、 2つの検出コイルを、前記導体に流れる交流電流により
生ずる磁束が鎖交するように向けてしかも前記導体への
相対距離を所定寸法だけずらした状態で前記導体に接近
させて、これらの2つの検出コイルに誘起される誘導起
電力をそれぞれ測定し、 これらの2つの誘導起電力から前記検出コイルのいずれ
か一方と前記導体との接近距離を演算し、この接近距離
と当該検出コイルに誘起された誘導起電力から前記導体
に流れる前記交流電流を演算し、 前記抵抗測定の対象となる区間で測定された電圧の波形
と、前記検出コイルのいずれか一方に誘起される誘導起
電力の波形とから両波形の位相差を検出し、 前記測定された電圧と前記位相差から、抵抗測定の対象
となる区間で生ずる電圧降下を演算し、 この電圧降下と前記演算された前記交流電流とから、抵
抗測定の対象となる区間の抵抗を演算することを特徴と
した電気抵抗測定方法。
1. A voltage is measured by connecting measuring terminals to both ends of a section of a conductor in a live state where resistance is measured, and two detection coils are connected to each other by a magnetic flux generated by an alternating current flowing through the conductor. The induced electromotive forces induced in these two detection coils are measured by approaching the conductors with the relative distance to the conductors shifted by a predetermined dimension, and measuring the induced electromotive forces induced in these two detection coils. The proximity distance between any one of the detection coils and the conductor is calculated from the induced electromotive force, and the alternating current flowing in the conductor is calculated from the proximity distance and the induced electromotive force induced in the detection coil, and the resistance Detecting the phase difference between the waveform of the voltage measured in the section to be measured and the waveform of the induced electromotive force induced in any one of the detection coils, the measured voltage and the From the phase difference, the voltage drop that occurs in the section that is the target of resistance measurement is calculated, and the resistance of the section that is the target of resistance measurement is calculated from this voltage drop and the calculated alternating current. Resistance measurement method.
【請求項2】 請求項1記載の電気抵抗測定方法におい
て、前記2つの検出コイルが、矩形コイルであるととも
に、同じ寸法および同じ巻数で、しかも前記導体に流れ
る交流電流により生ずる磁束の方向にコイル軸を向けて
配設することを特徴とした電気抵抗測定方法。
2. The electric resistance measuring method according to claim 1, wherein the two detection coils are rectangular coils, have the same size and the same number of turns, and are arranged in the direction of a magnetic flux generated by an alternating current flowing through the conductor. A method for measuring electric resistance, characterized in that the electric resistance is arranged with its axis facing.
【請求項3】 請求項1記載の電気抵抗測定方法におい
て、前記2つの検出コイルに代えて、2つのホール素子
を、前記導体に流れる交流電流により生ずる磁束により
電圧が生ずるように向けて、しかも導体への相対距離を
所定寸法だけずらした状態で前記導体に接近させ、これ
らの2つのホール素子に生ずる電圧をそれぞれ測定して
これらの電圧から前記交流電流を演算し、また前記ホー
ル素子に生じる電圧の波形と前記抵抗測定の対象となる
区間の両端で測定された電圧の波形とから両波形の位相
差を検出することを特徴とした電気抵抗測定方法。
3. The electric resistance measuring method according to claim 1, wherein instead of the two detection coils, two Hall elements are directed so that a voltage is generated by a magnetic flux generated by an alternating current flowing through the conductor, and The conductors are brought close to each other with their relative distances shifted by a predetermined dimension, the voltages generated in these two Hall elements are respectively measured, and the AC current is calculated from these voltages, and also generated in the Hall elements. A method for measuring electrical resistance, characterized in that a phase difference between both waveforms is detected from the waveform of the voltage and the waveform of the voltage measured at both ends of the section for which the resistance is measured.
【請求項4】 活線状態にある導体の抵抗測定の対象と
なる区間の両端に測定端子を接続して電圧を測定する電
圧測定手段と、 2つの検出コイルを、前記導体に流れる交流電流により
生ずる磁束の方向にコイル軸を向けた姿勢でしかも前記
導体への相対距離を所定寸法だけずらした状態で、前記
導体に接近させ、これらの2つの検出コイルに誘起され
る誘導起電力をそれぞれ測定する誘導起電力測定手段
と、 前記電圧測定手段で測定される電圧の波形と、いずれか
一つの前記検出コイルに誘起される誘導起電力の波形と
から位相差を検出する位相差検出手段と、 測定された2つの前記誘導起電力から、前記検出コイル
のいずれか一方と前記導体の接近距離を演算し、この接
近距離と当該検出コイルの誘導起電力から前記導体に流
れる交流電流を演算する電流演算手段と、 前記電圧測定手段で測定された電圧と、前記位相差検出
手段で検出された位相差から前記抵抗測定の対象となる
区間で生ずる電圧降下を演算し、この電圧降下と前記電
流演算手段で演算された前記交流電流とから前記抵抗測
定の対象となる区間の抵抗値を演算する抵抗演算手段
と、 を備えて構成することを特徴とした電気抵抗測定装置。
4. A voltage measuring means for measuring a voltage by connecting a measuring terminal to both ends of a section of a conductor in a live state where resistance is to be measured, and two detecting coils are provided by an alternating current flowing through the conductor. Measure the induced electromotive forces induced in these two detection coils by approaching the conductor with the coil axis oriented in the direction of the generated magnetic flux and with the relative distance to the conductor shifted by a predetermined dimension. Induced electromotive force measuring means, the waveform of the voltage measured by the voltage measuring means, and a phase difference detecting means for detecting a phase difference from the waveform of the induced electromotive force induced in any one of the detection coils, An approach distance between one of the detection coils and the conductor is calculated from the two measured induction electromotive forces, and an alternating current flowing through the conductor from the approach distance and the induced electromotive force of the detection coil. A current calculation means for calculating the voltage, the voltage measured by the voltage measurement means, and the phase difference detected by the phase difference detection means to calculate the voltage drop that occurs in the target section of the resistance measurement, and this voltage drop And a resistance calculation means for calculating a resistance value of a section for which the resistance is to be measured from the alternating current calculated by the current calculation means, and an electric resistance measuring device.
【請求項5】 請求項4記載の電気抵抗測定装置におい
て、前記2つの検出コイルに代えて、2つのホール素子
を前記導体への相対距離と所定寸法だけずらした状態で
前記導体に接近させ、前記導体を流れる交流電流により
生ずる磁界の強さに応じた電圧を生じるようにし、これ
らの2つのホール素子に生じる電圧をホール素子電圧測
定手段でそれぞれ測定し、これらの電圧から電流演算手
段で前記交流電流を演算し、ホール素子に生じる電圧の
波形と前記抵抗測定の対象となる区間の両端で測定され
た電圧の波形とから位相差検出手段で両波形の位相差を
検出するように構成することを特徴とした電気抵抗測定
装置。
5. The electric resistance measuring device according to claim 4, wherein, instead of the two detection coils, two Hall elements are brought close to the conductor in a state of being displaced by a predetermined distance from a relative distance to the conductor, A voltage corresponding to the strength of the magnetic field generated by the alternating current flowing through the conductor is generated, the voltages generated in these two Hall elements are measured by the Hall element voltage measuring means, and the current is calculated by the current calculation means from these voltages. An AC current is calculated, and the phase difference between the two waveforms is detected by the phase difference detection means from the waveform of the voltage generated in the Hall element and the waveform of the voltage measured at both ends of the section for which the resistance is measured. An electrical resistance measuring device characterized by the above.
【請求項6】 請求項4または5記載の電気抵抗測定装
置において、装置をセンサ部と計測部の2つに分け、前
記センサ部に少なくとも前記測定端子と2つの検出コイ
ルまたは2つのホール素子とを備え、前記計測部に少な
くとも前記電流演算手段と抵抗演算手段を備えて構成す
ることを特徴とした電気抵抗測定装置。
6. The electric resistance measuring apparatus according to claim 4 or 5, wherein the apparatus is divided into a sensor section and a measuring section, and the sensor section includes at least the measurement terminal and two detection coils or two Hall elements. An electric resistance measuring apparatus comprising:
【請求項7】 請求項6記載の電気抵抗測定装置におい
て、前記センサ部に電気−光変換手段を設け、前記計測
部に光−電気変換手段を設け、前記電気−光変換手段と
前記光−電気変換手段の間を光ファイバーケーブルで接
続し、前記センサ部で得られたデータを光信号として前
記計測部に伝送するように構成することを特徴とした電
気抵抗測定装置。
7. The electric resistance measuring apparatus according to claim 6, wherein the sensor section is provided with an electro-optical converting means, the measuring section is provided with an opto-electric converting means, and the electro-optical converting means and the opto-electric converting means are provided. An electrical resistance measuring device, characterized in that the electrical converting means are connected by an optical fiber cable, and the data obtained by the sensor section is transmitted as an optical signal to the measuring section.
JP06159231A 1994-06-17 1994-06-17 Electric resistance measuring method and electric resistance measuring device Expired - Fee Related JP3130209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06159231A JP3130209B2 (en) 1994-06-17 1994-06-17 Electric resistance measuring method and electric resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06159231A JP3130209B2 (en) 1994-06-17 1994-06-17 Electric resistance measuring method and electric resistance measuring device

Publications (2)

Publication Number Publication Date
JPH085682A true JPH085682A (en) 1996-01-12
JP3130209B2 JP3130209B2 (en) 2001-01-31

Family

ID=15689211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06159231A Expired - Fee Related JP3130209B2 (en) 1994-06-17 1994-06-17 Electric resistance measuring method and electric resistance measuring device

Country Status (1)

Country Link
JP (1) JP3130209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059576A3 (en) * 2003-12-19 2005-08-18 Advanced Analysis And Integrat Loop resistance tester
CN114487563A (en) * 2022-04-06 2022-05-13 南方电网数字电网研究院有限公司 Phase difference-based non-invasive voltage measurement method and device and voltage sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059576A3 (en) * 2003-12-19 2005-08-18 Advanced Analysis And Integrat Loop resistance tester
CN114487563A (en) * 2022-04-06 2022-05-13 南方电网数字电网研究院有限公司 Phase difference-based non-invasive voltage measurement method and device and voltage sensor
CN114487563B (en) * 2022-04-06 2022-07-05 南方电网数字电网研究院有限公司 Phase difference-based non-invasive voltage measurement method and device and voltage sensor

Also Published As

Publication number Publication date
JP3130209B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US7298141B2 (en) Fluxgate and fluxgate magnetometers
EP2998748B1 (en) Current measurement device and current calculation method
JPH07146315A (en) Ac current sensor
JPH08273952A (en) Plane current detector
CN110794193A (en) Flexible non-contact magnetic sensor array current measuring device and measuring method
US5532590A (en) Apparatus for measuring circuit parameters wherein errors due to transmission lines are prevented
KR20120101364A (en) Instrument and method for measuring the loss factor of an electrical apparatus
JP2008175532A (en) Electric power measuring apparatus
JPH085682A (en) Method and apparatus for measuring electric resistance
JP3137523B2 (en) Current measuring method and current measuring device
JP2555264B2 (en) Current sensor for reciprocating wire
KR100451480B1 (en) Clamp type current mesuring apparatus capable of measuring ac and dc current
US5184071A (en) Non-destructive eddy current test device using additive flux substractive flux switching
KR102597387B1 (en) Vehicle battery current sensing system
JPH1096756A (en) Detecting method for defect of insulated wire and device therefor
JP2671169B2 (en) AC resistance measurement method for conductors
JP3717753B2 (en) Magnetic sensor sensitivity calibration device
KR200283971Y1 (en) current measurement apparatus
JPS6230562B2 (en)
KR100448311B1 (en) current measurement apparatus
JP3068977B2 (en) Power multiplication circuit
JP3288836B2 (en) Electric resistance measuring method and electric resistance measuring device
JP2889252B2 (en) Power cable dielectric loss measuring device
JPS63313087A (en) Method for detecting buried metallic pipe or the like
JP2610833B2 (en) Short-circuit position detecting device and short-circuit position detecting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees