JP3137523B2 - Current measuring method and current measuring device - Google Patents

Current measuring method and current measuring device

Info

Publication number
JP3137523B2
JP3137523B2 JP05339492A JP33949293A JP3137523B2 JP 3137523 B2 JP3137523 B2 JP 3137523B2 JP 05339492 A JP05339492 A JP 05339492A JP 33949293 A JP33949293 A JP 33949293A JP 3137523 B2 JP3137523 B2 JP 3137523B2
Authority
JP
Japan
Prior art keywords
conductor
detection
unit
coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05339492A
Other languages
Japanese (ja)
Other versions
JPH07159449A (en
Inventor
秀昭 菊地
孝軒 車
Original Assignee
旭電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭電機株式会社 filed Critical 旭電機株式会社
Priority to JP05339492A priority Critical patent/JP3137523B2/en
Publication of JPH07159449A publication Critical patent/JPH07159449A/en
Application granted granted Critical
Publication of JP3137523B2 publication Critical patent/JP3137523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導体に流れる交流電流
を、導体に非接触で測定できるようにした電流測定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an alternating current flowing through a conductor without contacting the conductor.

【0002】また、上記電流測定方法を用いて交流電流
を測定するための電流測定装置に関するものである。
[0002] The present invention also relates to a current measuring device for measuring an alternating current using the above-described current measuring method.

【0003】[0003]

【従来の技術】導体に流れる交流電流を測定する装置と
して、いわゆるクランプメータがある。このクランプメ
ータは、導体の回りを囲む磁気コアと、この磁気コア内
の磁界強度を測定するためのホール素子等の磁界検出素
子とから構成される。そして、導体を囲むために、磁気
コアとして円筒形を半割にしたものが用いられる。
2. Description of the Related Art As a device for measuring an alternating current flowing through a conductor, there is a so-called clamp meter. The clamp meter includes a magnetic core surrounding a conductor and a magnetic field detecting element such as a Hall element for measuring a magnetic field intensity in the magnetic core. In order to surround the conductor, a magnetic core having a half-cylindrical shape is used.

【0004】[0004]

【発明が解決しようとする課題】従来のクランプメータ
にあっては、導線の回りを囲む必要から、導線の周囲に
空間がなければならず、絶縁性障壁等があると測定がで
きない。
In the conventional clamp meter, since it is necessary to surround the conductor, a space must be provided around the conductor, and measurement cannot be performed if there is an insulating barrier or the like.

【0005】また、送電線路や変電所設備等の高圧の裸
導体に対して、導線をクランプメータの磁気コアで囲む
作業を遠隔操作で行なうのは、安全性や作業性の面で困
難が伴なう。
[0005] In addition, it is difficult to remotely enclose a conductor with a magnetic core of a clamp meter for a high-voltage bare conductor such as a transmission line or a substation facility, in terms of safety and workability. Now.

【0006】本発明は、上記した従来のクランプメータ
による電流測定の事情に鑑みてなされたもので、電流測
定の対象となる導体に接近させて非接触で交流電流を測
定できるようにした電流測定方法および電流測定装置を
提供することを目的とする。
The present invention has been made in view of the circumstances of current measurement by the above-described conventional clamp meter, and has a current measurement method in which an AC current can be measured in a non-contact manner by approaching a conductor to be measured. It is an object to provide a method and a current measuring device.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の電流測定方法にあっては、同じ形状で同
じ巻数の2つの検出コイルを、電流測定の対象となる導
体に流れる交流電流により生ずる磁束の方向にコイル軸
を向けた同じ姿勢で、しかも前記導体への相対距離を所
定寸法ずらした状態で、前記導体に接近させ、前記2つ
の検出コイルに誘起される誘導起電力をそれぞれ測定
し、これらの2つの誘導起電力の比から前記検出コイル
のいずれか一方と前記導体との接近距離を演算し、この
接折距離と前記一方の検出コイルに誘起される前記誘導
起電力とから前記導体に流れる交流電流が演算される。
In order to achieve the above object, according to the current measuring method of the present invention, two detection coils having the same shape and the same number of windings are supplied to an AC current flowing through a conductor whose current is to be measured. With the same orientation with the coil axis oriented in the direction of the magnetic flux generated by the current, and with the relative distance to the conductor shifted by a predetermined dimension, the two electrodes are brought closer to the conductor and the induced electromotive force induced in the two detection coils is reduced. Each of them is measured and the approach distance between one of the detection coils and the conductor is calculated from the ratio of these two induced electromotive forces, and the bending distance and the induced electromotive force induced in the one detection coil are calculated. From this, the alternating current flowing through the conductor is calculated.

【0008】そして、前記検出コイルとして、一辺が前
記導体と平行となる矩形コイルを用いても良い。
[0008] A rectangular coil having one side parallel to the conductor may be used as the detection coil.

【0009】また、本発明の電流測定装置は、電流測定
の対象となる導体に接近させる検出部に、同じ形状で同
じ巻数の2つの検出コイルをコイル軸を平行にして側方
に並べて設けるとともに、これらの2つの検出コイルの
出力端間にそれぞれ介装された抵抗の両端電圧を測定す
る電圧測定部を設け、前記検出部を、前記導体に流れる
交流電流により生じる磁束の方向に前記検出コイルのコ
イル軸が向き、しかも前記2つの検出コイルの前記導体
への相対距離が所定寸法だけずれるようになし、中央処
理部に、前記電圧測定部で測定された2つの測定電圧の
比からいずれか一方の前記検出コイルと前記導体との接
近距離を演算しこの接近距離と当該検出コイルによる前
記測定電圧から前記交流電流の値を演算する演算処理部
を設けるとともに、この演算された交流電流値を表示す
る表示部を設けて構成される。
In the current measuring device of the present invention, two detecting coils having the same shape and the same number of turns are provided side by side with the coil axis parallel to a detecting portion which is brought close to a conductor to be measured. A voltage measuring unit that measures a voltage between both ends of a resistor interposed between the output terminals of the two detection coils, and sets the detection unit in a direction of a magnetic flux generated by an alternating current flowing through the conductor; And the relative distance of the two detection coils to the conductor is deviated by a predetermined dimension, and the central processing unit supplies any one of the ratios of the two measured voltages measured by the voltage measurement unit to the central processing unit. An arithmetic processing unit that calculates an approach distance between one of the detection coils and the conductor and calculates a value of the AC current from the approach distance and the measurement voltage by the detection coil; Configured to provide a display unit for displaying the computed AC current value.

【0010】そしてまた、前記検出部に前記電圧測定部
から出力される測定電圧に応じた電気信号を光信号に変
換する電気−光変換部を設け、前記検出部と前記中央処
理部間を接続する光ファイバーケーブルで前記光信号を
前記中央処理部に伝送し、前記中央処理部に前記光信号
を電気信号に再変換して前記演算処理部に与える光−電
気変換部を設けて構成することもできる。
Further, the detecting section is provided with an electro-optical converting section for converting an electric signal corresponding to a measured voltage outputted from the voltage measuring section into an optical signal, and connects between the detecting section and the central processing section. The optical signal is transmitted to the central processing unit by an optical fiber cable, and the central processing unit is provided with an optical-electrical conversion unit that reconverts the optical signal into an electric signal and provides the electric signal to the arithmetic processing unit. it can.

【0011】[0011]

【作 用】請求項1記載の電流測定方法にあっては、電
流測定の対象となる導体からの相対距離が所定寸法だけ
ずれている2つの同じ検出コイルに生ずる誘導起電力か
ら交流電流が演算できる。しかも、2つの検出コイルを
導体に非接触で接近させて、2つの検出コイルに誘導起
電力を生じさせれば良く、作業が容易であるとともに導
体の一方に空間があれば電流測定が可能である。
In the current measuring method according to the first aspect, an AC current is calculated from induced electromotive forces generated in two same detection coils whose relative distance from a conductor to be measured is shifted by a predetermined dimension. it can. In addition, it is only necessary to bring the two detection coils close to the conductor in a non-contact manner to generate an induced electromotive force in the two detection coils, so that the work is easy and the current can be measured if there is a space in one of the conductors. is there.

【0012】そして、請求項2記載の電流測定方法にあ
っては、検出コイルとして、導体に一辺が平行となる矩
形コイルを用いるので、導体に流れる交流電流により生
ずる磁界により検出コイルに生ずる誘導起電力の演算式
が他の形状の検出コイルより容易であり、それだけ演算
が容易かつ迅速になし得る。
According to the second aspect of the present invention, since a rectangular coil having one side parallel to the conductor is used as the detection coil, the induction coil generated in the detection coil by the magnetic field generated by the alternating current flowing through the conductor is used. The calculation formula of the electric power is easier than the detection coil of another shape, and the calculation can be easily and quickly performed.

【0013】また、請求項3記載の電流測定装置にあっ
ては、装置を検出部と中央処理部に分けているので、中
央処理部における演算処理が導体近くの磁界等による非
影響を受けにくい。
Further, in the current measuring device according to the third aspect, since the device is divided into a detecting unit and a central processing unit, the arithmetic processing in the central processing unit is hardly influenced by a magnetic field near the conductor. .

【0014】そしてまた、請求項4記載の電流測定装置
にあっては、検出部と中央処理部との間を光信号で伝達
するので、信号経路において信号に電気的雑音が重畳す
ることがない。しかも、高圧充電部の電流測定におい
て、検出部と中央処理部を充分に離し得るとともに電気
的に絶縁でき、安全に電流測定をなし得る。
Further, in the current measuring device according to the fourth aspect, since the optical signal is transmitted between the detection unit and the central processing unit, electric noise does not overlap with the signal in the signal path. . Moreover, in the current measurement of the high voltage charging unit, the detection unit and the central processing unit can be sufficiently separated and electrically insulated, so that the current measurement can be performed safely.

【0015】[0015]

【実施例】以下、本発明の電流測定方法の一実施例を図
1ないし図3を参照して説明する。図1は、本発明の電
流測定方法の原理を説明する平面図であり、図2は、図
1の側面図であり、図3は、電流測定方法の手順を示す
フローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the current measuring method according to the present invention will be described below with reference to FIGS. FIG. 1 is a plan view for explaining the principle of the current measuring method of the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a flowchart showing the procedure of the current measuring method.

【0016】まず、図1および図2により原理を説明す
る。電流測定の対象となる導体10に非接触で接近させ
て第1検出コイル12と第2検出コイル14とが配設さ
れる。これらの第1検出コイル12と第2検出コイル1
4は、縦と横のl×lの寸法が同じ矩形形状である
とともに同じ巻数Nである。しかも、矩形形状の一辺を
導体10に平行とし、導体10との相対距離が所定寸法
rだけずらされ、コイル軸が平行で導体10の周囲に生
じる磁束の方向と合致する姿勢とされる。なお、図にお
いて、r,rは導体10の中心から第1検出コイル
12と第2検出コイル14までの距離であるが、未知数
である。
First, the principle will be described with reference to FIGS. The first detection coil 12 and the second detection coil 14 are arranged in a non-contact manner close to the conductor 10 to be measured. These first detection coil 12 and second detection coil 1
Reference numeral 4 denotes a rectangular shape having the same vertical and horizontal dimensions of l 1 × l 2 and the same number of turns N. Moreover, one side of the rectangular shape is parallel to the conductor 10, the relative distance from the conductor 10 is shifted by a predetermined dimension r, and the coil axis is parallel and the posture matches the direction of the magnetic flux generated around the conductor 10. In the drawing, r 1 and r 2 are distances from the center of the conductor 10 to the first detection coil 12 and the second detection coil 14, but are unknown.

【0017】そこで、第1検出コイル12に生ずる誘導
起電力eは、数1と示される。
Therefore, the induced electromotive force e1 generated in the first detection coil 12 is expressed by the following equation ( 1 ).

【数1】 ここでμは真空透磁率、Iは交流電流iの最大値、
ωは角振動数であって交流電流iが商用周波数であれば
既知数として扱える。
(Equation 1) Here, μ 0 is the vacuum permeability, Im is the maximum value of the alternating current i,
ω is an angular frequency and can be treated as a known number if the AC current i is a commercial frequency.

【0018】また、第2検出コイル14に生ずる誘導起
電力eは、数2と示される。
Further, the induced electromotive force e2 generated in the second detection coil 14 is expressed by the following equation ( 2 ).

【数2】 (Equation 2)

【0019】そして、第1検出コイル12と第2検出コ
イル14の出力端間にそれぞれ抵抗R, Rを挿入
し、各抵抗R,Rの電圧降下v,vとして誘導
起電力がそれぞれ測定できる。このv,vを実効値
として、Iを導体10を流れる交流電流iの実効値と
し、ω=2πfとすれば、数1が数3と示され、数2が
数4と示される。そして、vとvの比を求めれば数
5となり、r=r+rであるから数6と書き直し得
る。この数6において、v,vの値は測定から求め
られ、r,1は既知数である。したがって、外挿法等
によってrを演算により求めることができる。
Then, resistors R 1 and R 2 are inserted between the output terminals of the first detection coil 12 and the second detection coil 14, respectively, and induced as voltage drops v 1 and v 2 of the resistors R 1 and R 2. The power can be measured individually. Assuming that v 1 and v 2 are the effective values, I is the effective value of the alternating current i flowing through the conductor 10, and ω = 2πf, Equation 1 is expressed as Equation 3 and Equation 2 is expressed as Equation 4. Then, if the ratio between v 1 and v 2 is obtained, the result becomes Expression 5, and since r 2 = r 1 + r, Expression 6 can be rewritten. In Equation 6, the values of v 1 and v 2 are obtained from the measurement, and r and 11 are known numbers. Therefore, r 1 can be obtained by calculation by an extrapolation method or the like.

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 (Equation 6)

【0020】さらに、数3は、数7と書き直すことがで
き、この数7に数6を用いて演算されたrを挿入する
ことで、交流電流iの実効値Iが演算できる。
Furthermore, the number 3, can be rewritten as Equation 7, by inserting r 1 that is calculated on the number 7 using 6, the effective value I of the alternating current i can be calculated.

【数7】 (Equation 7)

【0021】上記原理に基づいて、図3のごとき手順で
電流測定がなされる。まず、マイクロコンピュータ等の
演算処理部に予め、各演算式および第1検出コイル12
と第2検出コイル14等のデータl,l,r,N,
μ,f等が設定される(ステップ)。そして、第1
検出コイル12と第2検出コイル14を導体10に接折
させることで第1検出コイル12と第2検出コイル14
に誘導起電力e,eが生ずるが、適宜なところで、
,vを測定する(ステップ)。これらのv
から導体10と第1検出コイル12との間の距離r
を演算により求め(ステップ)、さらに交流電流i
の実効値Iを演算により求める(ステップ)。最後
に、この演算で求められた実効値Iを表示部で適宜に表
示する(ステップ)。
Based on the above principle, the current is measured in the procedure shown in FIG. First, each arithmetic expression and the first detection coil 12 are stored in advance in an arithmetic processing unit such as a microcomputer.
And data l 1 , l 2 , r, N,
μ 0 , f, etc. are set (step). And the first
By folding the detection coil 12 and the second detection coil 14 on the conductor 10, the first detection coil 12 and the second detection coil 14
Induced electromotive forces e 1 and e 2 are generated at
Measure v 1 and v 2 (step). These v 1 ,
v 2 , distance r between conductor 10 and first detection coil 12
1 is obtained by calculation (step), and the AC current i
An effective value I is obtained by calculation (step). Finally, the effective value I obtained by this calculation is appropriately displayed on the display unit (step).

【0022】かかる本発明の電流測定方法にあっては、
送電線路や変電所設備の高圧の裸導体等の導体10に流
れる交流電流iを、活線状態で測定することができる。
しかも、第1検出コイル12と第2検出コイル14とを
導体10に一方向から接近させるだけで良く、導体10
の周囲に従来のクランプメータ等のごとき空間を必要と
しない。さらに、第1検出コイル12と第2検出コイル
14とを接近させれば良く、導体10との接近距離を所
定寸法に規制する必要がないために、作業が簡単であ
り、それだけ遠隔操作棒による操作も容易であり、実用
上その効果が著しい。
In the current measuring method of the present invention,
The alternating current i flowing through the conductor 10 such as a high-voltage bare conductor of a transmission line or a substation facility can be measured in a live state.
Moreover, the first detection coil 12 and the second detection coil 14 need only be brought closer to the conductor 10 from one direction, and the conductor 10
No space such as a conventional clamp meter is required around the device. Furthermore, the first detection coil 12 and the second detection coil 14 need only be brought close to each other, and it is not necessary to regulate the approach distance to the conductor 10 to a predetermined size. The operation is easy, and the effect is remarkable in practical use.

【0023】次に、上記電流測定方法の実施に用いる電
流測定装置につき、図4を参照して説明する。図4は、
本発明の電流測定装置の一実施例のブロック回路図であ
る。
Next, a current measuring device used for carrying out the current measuring method will be described with reference to FIG. FIG.
It is a block circuit diagram of one example of a current measuring device of the present invention.

【0024】図4において、第1検出コイル12と第2
検出コイル14は、上記電流測定方法で説明したごとき
形状および姿勢で、検出部20に配設される。この検出
部20には、さらに電圧測定部22が設けられ、第1検
出コイル12と第2検出コイル14の出力端間にそれぞ
れ介装された抵抗R,Rの両端電圧が測定される。
抵抗R, Rの接続にはツイストペアまたは同軸ケ
ーブルが用いられて、雑音による影響を極力排除するよ
うなされる。さらに、検出部20に電気−光変換部24
が設けられ、電圧測定部22から抵抗R,Rの両端
電圧に応じて出力される電気信号が光信号に変換され
る。
In FIG. 4, the first detection coil 12 and the second
The detection coil 14 is provided in the detection unit 20 in the shape and the posture as described in the current measuring method. The detection unit 20 is further provided with a voltage measurement unit 22 for measuring the voltage across the resistors R 1 and R 2 interposed between the output terminals of the first detection coil 12 and the second detection coil 14, respectively. .
A twisted pair or a coaxial cable is used to connect the resistors R 1 and R 2 to minimize the influence of noise. Further, the detection unit 20 includes an electro-optical conversion unit 24.
Is provided, and an electric signal output from the voltage measurement unit 22 according to the voltage between both ends of the resistors R 1 and R 2 is converted into an optical signal.

【0025】なお、検出部20の筐体には、例えば絶縁
材からなり導体10の外周に当接してこれに容易に沿う
姿勢とし得る適宜な形状の当接部が設けられていて、こ
の当接部を導体10に当接させると、第1検出コイル1
2と第2検出コイル14が、おおよそ導体10に対して
図1および図2で示すごとき所望の配置と姿勢となるよ
うに構成されても良い。また、対象となる導体10が極
めて高圧で絶縁材による当接をも望ましくない場合に
は、他の適宜な手段で第1検出コイル12と第2検出コ
イル14の導体10に対する配置と姿勢が規制されるよ
うにすれば良い。
The housing of the detection unit 20 is provided with a contact portion of an appropriate shape which is made of, for example, an insulating material and which can be brought into contact with the outer periphery of the conductor 10 so as to easily follow the conductor. When the contact portion is brought into contact with the conductor 10, the first detection coil 1
The second detection coil 14 and the second detection coil 14 may be configured so as to have a desired arrangement and posture with respect to the conductor 10 as shown in FIGS. When the target conductor 10 is extremely high pressure and it is not desirable to make contact with the insulating material, the arrangement and posture of the first detection coil 12 and the second detection coil 14 with respect to the conductor 10 are regulated by other appropriate means. What should be done.

【0026】そして、中央処理部30が、検出部20と
は別体で離れて設けられ、検出部20と中央処理部30
の間が、電気−光変換部24から出力される光信号を伝
達するための光ファイバーケーブル40で接続される。
中央処理部30には、光ファイバーケーブル40で伝達
された光信号を電気信号に再変換する光−電気変換部3
2が設けられる。そして、中央処理部30には、演算処
理部34と表示部36および記憶部38も設けられてい
る。光信号から再変換された電気信号が、マイクロコン
ピュータ等からなる演算処理部34に与えられ、上記電
流測定方法で説明したごとき演算により導体10に流れ
る交流電流iの実効値Iを求め、この実効値Iが表示部
36で適宜に表示されるとともに、記憶部38に適宜に
記憶される。演算結果としての実効値Iを記憶部38に
記憶することは、後日に読み出して測定結果の再確認等
を行なうのに有効である。
The central processing unit 30 is provided separately from and separate from the detection unit 20, and the detection unit 20 and the central processing unit 30 are provided separately.
Are connected by an optical fiber cable 40 for transmitting an optical signal output from the electro-optical converter 24.
The central processing unit 30 includes an optical-electrical conversion unit 3 that reconverts the optical signal transmitted through the optical fiber cable 40 into an electric signal.
2 are provided. The central processing unit 30 is also provided with an arithmetic processing unit 34, a display unit 36, and a storage unit 38. The electrical signal reconverted from the optical signal is supplied to an arithmetic processing unit 34 including a microcomputer or the like, and the effective value I of the alternating current i flowing through the conductor 10 is obtained by the arithmetic operation described in the above-described current measuring method. The value I is appropriately displayed on the display unit 36 and stored in the storage unit 38 as appropriate. Storing the effective value I as the calculation result in the storage unit 38 is effective for reading out the data at a later date and reconfirming the measurement result.

【0027】検出部20と中央処理部30は、それぞれ
適宜な駆動電源(図示せず)が内蔵されている。また、
検出部20にあっては、さらに別のコイルを設け、この
コイルに生ずる誘導起電力を駆動電源として利用しても
良い。
The detection unit 20 and the central processing unit 30 each have an appropriate driving power supply (not shown). Also,
In the detection unit 20, another coil may be provided, and the induced electromotive force generated in this coil may be used as a driving power supply.

【0028】かかる構成にあっては、導体10に生ずる
磁束に晒される検出部20と、測定結果を演算処理する
中央処理部30を別体として離して設けることで、中央
処理部30に対する磁界の悪影響を極力小さなものと
し、測定精度の向上に寄与し得る。そして、検出部20
と中央処理部30との間を光ファイバーケーブル40を
介装して光信号で伝達するので、この信号の伝達経路で
電気的雑音が重畳されることがなく、測定精度を向上さ
せ得る。しかも、検出部20と中央処理部30を分ける
ことで、遠隔操作棒等を用いる場合に、遠隔操作棒の先
端に装置全体より軽量な検出部20を設ければ良く、そ
れだけ操作性に優れたものとなる。また、検出部20と
中央処理部30を充分に離すとともに電気的に絶縁で
き、安全に電流測定をなし得る。
In this configuration, the detection unit 20 exposed to the magnetic flux generated in the conductor 10 and the central processing unit 30 for performing arithmetic processing on the measurement result are separately provided, so that the magnetic field of the central processing unit 30 can be reduced. The adverse effect can be minimized, which can contribute to the improvement of measurement accuracy. Then, the detection unit 20
Since the optical signal is transmitted between the central processing unit 30 and the central processing unit 30 via the optical fiber cable 40, electric noise is not superimposed on the transmission path of the signal, and the measurement accuracy can be improved. In addition, by separating the detection unit 20 and the central processing unit 30, when a remote control rod or the like is used, the detection unit 20 which is lighter than the entire device may be provided at the tip of the remote control rod, and thus the operability is excellent. It will be. Further, the detection unit 20 and the central processing unit 30 can be sufficiently separated and electrically insulated, so that current can be safely measured.

【0029】なお、上記実施例の説明にあっては、第1
検出コイル12と第2検出コイル14に矩形コイルを用
いて説明したが、これに限られず、円形コイルや楕円形
コイルや三角コイル等を検出コイルとして用いることが
できる。これらの円形コイル等にあっては、それぞれ誘
導起電力e,eを示す式が数1,数2と相違し、交
流電流iの実効値Iを求める演算式が相違することは容
易に理解されるであろう。
In the description of the above embodiment, the first
Although the detection coil 12 and the second detection coil 14 have been described using rectangular coils, the present invention is not limited to this, and a circular coil, an elliptical coil, a triangular coil, or the like can be used as the detection coil. In these circular coils and the like, it is easy to see that the equations representing the induced electromotive forces e 1 and e 2 are different from Equations 1 and 2 , respectively, and that the equations for calculating the effective value I of the AC current i are different. Will be appreciated.

【0030】また、本発明の電流測定方法では、第1検
出コイル12と第2検出コイル14の誘導起電力の比か
ら第1検出コイル12と導体10との間の距離rを演
算しており(図3ステップ)、いいかえれば、交流電
流iが流れる導体10への接近距離を測定することがで
き、この演算距離を用いて近接センサ等として機能させ
ることもできる。
In the current measuring method according to the present invention, the distance r 1 between the first detection coil 12 and the conductor 10 is calculated from the ratio of the induced electromotive force between the first detection coil 12 and the second detection coil 14. In other words, the approach distance to the conductor 10 through which the AC current i flows can be measured, and in other words, the calculated distance can be used to function as a proximity sensor or the like.

【0031】さらに、図3ステップにおいて、第1検
出コイル12と導体10との間の距離rに代えて、第
2検出コイル14と導体10との間の距離rを演算す
るようにしても良いことは勿論である。
Furthermore, in FIG. 3 step, instead of the distance r 1 between the first detection coil 12 and the conductor 10, the distance r 2 between the second detection coil 14 and the conductor 10 so as to calculate Of course, it is also good.

【0032】[0032]

【発明の効果】以上説明したところから明らかなよう
に、請求項1記載の本発明の電流測定方法にあっては、
電流測定の対象となる導体に非接触で接近させること
で、交流電流を測定できる。そして、導体の一側方から
接近が図れれば良く、導体の周囲に空間が必要なく、測
定が絶縁障壁等で妨げられることがない。また、一側方
からの接近操作で良く、しかもその接近距離が所定寸法
に規制されることがないので、測定に必要となる動作が
簡単であるぶんだけ、遠隔操作棒等による操作が容易で
ある。
As is apparent from the above description, in the current measuring method according to the first aspect of the present invention,
An AC current can be measured by approaching the conductor to be measured for current in a non-contact manner. Then, it is sufficient that the conductor can be approached from one side of the conductor, no space is required around the conductor, and the measurement is not hindered by an insulating barrier or the like. In addition, since the approach operation from one side is sufficient and the approach distance is not restricted to a predetermined dimension, the operation required for the measurement is simple, and the operation using the remote control rod or the like is easy. is there.

【0033】そして、請求項2記載の電流測定方法にあ
っては、演算処理が容易であり、それだけ演算処理部と
して用いるマイクロコンピュータ等も簡単なもので良
く、交流電流の実効値の演算結果が迅速に得られる。ま
た、安価な装置で測定が可能である。
In the current measuring method according to the second aspect, the arithmetic processing is easy, and accordingly, a microcomputer or the like used as the arithmetic processing unit may be simple, and the arithmetic result of the effective value of the AC current may be reduced. Obtained quickly. In addition, measurement can be performed with an inexpensive device.

【0034】また、請求項3記載の本発明の電流測定装
置にあっては、検出部と中央処理部を別体として分ける
ことで、中央処理部を導体に生ずる磁界の影響のない位
置とすることができ、それだけ演算処理に雑音が混入し
て誤った演算がなされる虞がなく、測定結果の信頼性が
高いものとなる。また、導体に接近させる検出部を軽量
化でき、操作性に優れた検出部を構成できる。
In the current measuring apparatus according to the third aspect of the present invention, the detecting section and the central processing section are separated from each other so that the central processing section is located at a position free from the influence of the magnetic field generated in the conductor. Therefore, there is no possibility that an erroneous calculation is performed due to noise mixed in the calculation process, and the reliability of the measurement result is high. Further, the weight of the detection unit approaching the conductor can be reduced, and a detection unit excellent in operability can be configured.

【0035】そしてまた、請求項4記載の電流測定装置
にあっては、光信号で信号伝達を行なうので、信号の伝
達経路で電気的雑音が重畳されることがなく、測定結果
の精度が高いものとなる。しかも、中央処理部を検出部
から充分に離すとともに電気的に絶縁でき、安全に電流
測定を行なうことができる。
In the current measuring device according to the fourth aspect, since the signal is transmitted by the optical signal, electric noise is not superimposed on the signal transmission path, and the accuracy of the measurement result is high. It will be. In addition, the central processing unit can be sufficiently separated from the detection unit and electrically insulated, so that the current can be measured safely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電流測定方法の原理を説明する平面図
である。
FIG. 1 is a plan view illustrating the principle of a current measuring method according to the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】電流測定方法の手順を示すフローチャートであ
る。
FIG. 3 is a flowchart showing a procedure of a current measuring method.

【図4】本発明の電流測定装置の一実施例のブロック回
路図である。
FIG. 4 is a block circuit diagram of an embodiment of a current measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

10 導体 12 第1検出コイル 14 第2検出コイル 20 検出部 22 電圧測定部 24 電気−光変換部 30 中央処理部 32 光−電気変換部 34 演算処理部 36 表示部 40 光ファイバーケーブル R,R 抵抗10 the conductor 12 the first detection coil 14 and the second detection coil 20 detector 22 the voltage measuring unit 24 electro - optical conversion unit 30 central processing unit 32 light - electrical converter 34 arithmetic processing unit 36 display unit 40 the optical fiber cable R 1, R 2 resistance

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同じ形状で同じ巻数の2つの検出コイル
を、電流測定の対象となる導体に流れる交流電流により
生ずる磁束の方向にコイル軸を向けた同じ姿勢で、しか
も前記導体への相対距離を所定寸法ずらした状態で、前
記導体に接近させ、前記2つの検出コイルに誘起される
誘導起電力をそれぞれ測定し、これらの2つの誘導起電
力の比から前記検出コイルのいずれか一方と前記導体と
の接近距離を演算し、この接近距離と前記一方の検出コ
イルに誘起される前記誘導起電力とから前記導体に流れ
る交流電流を演算することを特徴とした電流測定方法。
1. A detection coil comprising two detection coils having the same shape and the same number of turns in the same position with the coil axis oriented in the direction of a magnetic flux generated by an alternating current flowing through a conductor to be measured, and a relative distance to the conductor. Are shifted by a predetermined dimension, approach the conductor, measure the induced electromotive force induced in the two detection coils, respectively, from the ratio of these two induced electromotive force, one of the detection coil and the A current measurement method comprising: calculating an approach distance to a conductor; and calculating an alternating current flowing through the conductor from the approach distance and the induced electromotive force induced in the one detection coil.
【請求項2】 請求項1記載の電流測定方法において、
前記検出コイルとして、一辺が前記導体と平行となる矩
形コイルを用いることを特徴とした電流測定方法。
2. The current measuring method according to claim 1, wherein
A current measuring method, wherein a rectangular coil having one side parallel to the conductor is used as the detection coil.
【請求項3】 電流測定の対象となる導体に接近させる
検出部に、同じ形状で同じ巻数の2つの検出コイルをコ
イル軸を平行にして側方に並べて設けるとともに、これ
らの2つの検出コイルの出力端間にそれぞれ介装された
抵抗の両端電圧を測定する電圧測定部を設け、 前記検出部を、前記導体に流れる交流電流により生じる
磁束の方向に前記検出コイルのコイル軸が向き、しかも
前記2つの検出コイルの前記導体への相対距離が所定寸
法だけずれるようになし、 中央処理部に、前記電圧測定部で測定された2つの測定
電圧の比からいずれか一方の前記検出コイルと前記導体
との接近距離を演算しこの接近距離と当該検出コイルに
よる前記測定電圧から前記交流電流の値を演算する演算
処理部を設けるとともに、この演算された交流電流値を
表示する表示部を設ける、 ことを特徴とした電流測定装置。
3. A detection unit for approaching a conductor to be measured for current is provided with two detection coils of the same shape and the same number of turns arranged side by side with the coil axes parallel to each other. A voltage measuring unit for measuring a voltage between both ends of a resistor interposed between the output terminals, wherein the coil axis of the detection coil is oriented in a direction of a magnetic flux generated by an alternating current flowing through the conductor, and The relative distance of the two detection coils to the conductor is shifted by a predetermined dimension, and the central processing unit supplies one of the detection coil and the conductor based on a ratio of the two measurement voltages measured by the voltage measurement unit. And an arithmetic processing unit for calculating a value of the AC current from the approach distance and the measured voltage by the detection coil, and calculating the calculated AC current value. Provided Shimesuru display unit, the current measuring device, wherein a.
【請求項4】 請求項3記載の電流測定装置において、
前記検出部に前記電圧測定部から出力される測定電圧に
応じた電気信号を光信号に変換する電気−光変換部を設
け、前記検出部と前記中央処理部間を接続する光ファイ
バーケーブルで前記光信号を前記中央処理部に伝送し、
前記中央処理部に前記光信号を電気信号に再変換して前
記演算処理部に与える光−電気変換部を設ける、ことを
特徴とした電流測定装置。
4. The current measuring device according to claim 3, wherein
An electric-optical conversion unit that converts an electric signal corresponding to a measured voltage output from the voltage measurement unit to an optical signal is provided in the detection unit, and the light is transmitted through an optical fiber cable that connects the detection unit and the central processing unit. Transmitting a signal to the central processing unit;
A current measuring device, wherein the central processing unit is provided with an optical-electrical conversion unit for converting the optical signal into an electric signal again and supplying the electric signal to the arithmetic processing unit.
JP05339492A 1993-12-03 1993-12-03 Current measuring method and current measuring device Expired - Fee Related JP3137523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05339492A JP3137523B2 (en) 1993-12-03 1993-12-03 Current measuring method and current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05339492A JP3137523B2 (en) 1993-12-03 1993-12-03 Current measuring method and current measuring device

Publications (2)

Publication Number Publication Date
JPH07159449A JPH07159449A (en) 1995-06-23
JP3137523B2 true JP3137523B2 (en) 2001-02-26

Family

ID=18327982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05339492A Expired - Fee Related JP3137523B2 (en) 1993-12-03 1993-12-03 Current measuring method and current measuring device

Country Status (1)

Country Link
JP (1) JP3137523B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748142B2 (en) * 1997-11-15 2011-08-17 株式会社丸友 Cleaning device
JP4586118B2 (en) * 2001-02-09 2010-11-24 株式会社エイコー Coil parts and electrical property extraction device
JP4004910B2 (en) * 2002-09-27 2007-11-07 古河電池株式会社 Method for measuring internal impedance of storage battery
JP4568030B2 (en) * 2004-05-31 2010-10-27 日機装株式会社 Coil for detection and canned motor pump using the same
JP4757621B2 (en) * 2005-12-15 2011-08-24 東京電力株式会社 Lightning strike information collection system
JP5814976B2 (en) 2013-05-15 2015-11-17 三菱電機株式会社 Current measuring device
JP6413317B2 (en) * 2014-04-22 2018-10-31 横河電機株式会社 Current sensor

Also Published As

Publication number Publication date
JPH07159449A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US7298141B2 (en) Fluxgate and fluxgate magnetometers
RU2009113018A (en) SENSOR, METHOD AND SYSTEM OF CURRENT CONTROL OF ELECTRIC TRANSMISSION LINES
JP2006343109A (en) Electric power measuring apparatus
JP3137523B2 (en) Current measuring method and current measuring device
JP2017032287A (en) Clamp type sensor and measuring device
IES69863B2 (en) Apparatus for measuring an A.C. current in a cable
EP0936469A3 (en) Loop resistance tester (LRT) for cable shield integrity monitoring
JP3288836B2 (en) Electric resistance measuring method and electric resistance measuring device
JP3130209B2 (en) Electric resistance measuring method and electric resistance measuring device
JP4733806B2 (en) Distribution line ground fault location method
JP2993819B2 (en) Power cable insulation diagnostic monitoring device
EP3153869B1 (en) Device and method for measuring the power consumption, contactless device and method for measuring power supply status
JPH1010186A (en) Method and apparatus for checking connection of connector pin in current sensor
JPH073346Y2 (en) Zero-phase current measuring device
JP2612252B2 (en) Cable dielectric loss measurement method
KR100546720B1 (en) A measuring equipment for change of resistance
GB2259780A (en) Sensing electric currents
JPH0413980A (en) Apparatus for measuring insulation deterioration of cable line
SU741162A1 (en) Ac transformer bridge for remote measurements
JPH02194371A (en) Measurement of dielectric loss of cable
JPH0862264A (en) Insulation resistance measuring device for power cable
JP2671169B2 (en) AC resistance measurement method for conductors
JPH03108675A (en) Measuring apparatus of dielectric loss of cable
JPS6396568A (en) Electroscope
Dinkel et al. Magnet Coil Shorted Turn Detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees