JPH0855620A - Electrode for organic electrolytic battery and organic electrolytic battery using the electrode - Google Patents

Electrode for organic electrolytic battery and organic electrolytic battery using the electrode

Info

Publication number
JPH0855620A
JPH0855620A JP6212035A JP21203594A JPH0855620A JP H0855620 A JPH0855620 A JP H0855620A JP 6212035 A JP6212035 A JP 6212035A JP 21203594 A JP21203594 A JP 21203594A JP H0855620 A JPH0855620 A JP H0855620A
Authority
JP
Japan
Prior art keywords
electrode
base material
polycarbodiimide resin
organic electrolyte
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6212035A
Other languages
Japanese (ja)
Other versions
JP3349270B2 (en
Inventor
Kazuo Saito
一夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP21203594A priority Critical patent/JP3349270B2/en
Publication of JPH0855620A publication Critical patent/JPH0855620A/en
Application granted granted Critical
Publication of JP3349270B2 publication Critical patent/JP3349270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery with high cycle characteristic and high Coulomb efficiency by using a base material obtained by heating a polycarbodiimide resin in an inert atmosphere at 350-900 deg.C. CONSTITUTION:A polycarbodiimide resin solution is prepared by reacting a mixture of 2,4-tolylenediisocyanate and 2,6-tolylenediioscyanate in tetrachloroethylene under a carbodiimidizing catalyst. A carbodiimid resin molding is heated to form a base material to be used. The heat treatment is conducted in vacuum or an inert atmosphere such as helium at 350-900 deg.C. The polycarbodiimide resin molding is not baked in this temperature range, but at less than 350 deg.C, conductivity is not obtained, and at higher than 900 deg.C, the molding does not act as an electrode. The base material is used as either one electrode of positive and negative electrodes together with an organic electrolyte in which an electrolyte is dissolved to constitute an organic electrolytic battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池として作用する
有機電解質電池用の電極及び該電極を用いた有機電解質
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an organic electrolyte battery which functions as a secondary battery and an organic electrolyte battery using the electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
有機電解質電池としてポリアセチレンを電極とする二次
電池が閉発され(特開昭56−186469号公報参
照)、二次有機電解質電池の研究が盛んに行われるよう
になったが、これらの電池において電極として用いられ
る導電性高分子化合物、例えばポリアセチレン、ポリア
ニリン、ポリパラフェニレンやポリビニルカルバゾール
等は、一般に酸化されやすく、二次電池用電極として使
用すると劣化が激しい等の欠点を有していた。
2. Description of the Related Art In recent years,
A secondary battery using polyacetylene as an electrode has been closed as an organic electrolyte battery (see Japanese Patent Application Laid-Open No. 56-186469), and research on secondary organic electrolyte batteries has been actively conducted. Conductive polymer compounds used as electrodes, such as polyacetylene, polyaniline, polyparaphenylene, polyvinylcarbazole, etc., are generally easily oxidized and have the drawbacks of being severely deteriorated when used as electrodes for secondary batteries.

【0003】又、最近になって、ポリアクリロニトリル
やレーヨン等の有機繊維を電極とする二次電池も開発さ
れているが、このような有機繊維は、有機電解質二次電
池用電極としては充放電クローン効率が低く、しかもサ
イクル特性も良好でないという不十分なものであった。
Recently, secondary batteries using organic fibers such as polyacrylonitrile and rayon as electrodes have been developed. Such organic fibers are charged and discharged as electrodes for organic electrolyte secondary batteries. The cloning efficiency was low and the cycle characteristics were not good, which was insufficient.

【0004】本発明は、このような従来技術の難点を解
消し、長時間の使用でも劣化することのない有機電解質
電池用電極及び該電極を用いた有機電解質電池を提供す
ることを目的としてなされた。
An object of the present invention is to solve the above problems of the prior art and to provide an electrode for an organic electrolyte battery which does not deteriorate even after long-term use and an organic electrolyte battery using the electrode. It was

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用した有機電解質電池用電極の構成は、ポ
リカルボジイミド樹脂を不活性雰囲気中で350乃至9
00℃に加熱して得られる基材よりなることを特徴とす
るものであり、又、上記目的を達成するために本発明が
採用した有機電解質電池の構成は、電極と有機電解質よ
りなる有機電解質電池において、ポリカルボジイミド樹
脂を不活性雰囲気中で350乃至900℃に加熱して得
られる基材を少なくとも一方の電極としたことを特徴と
するものである。
In order to achieve the above object, the structure of the electrode for an organic electrolyte battery adopted by the present invention is such that the polycarbodiimide resin is 350 to 9 in an inert atmosphere.
The organic electrolyte battery is characterized by comprising a base material obtained by heating to 00 ° C. Further, the structure of the organic electrolyte battery adopted by the present invention to achieve the above-mentioned object is an organic electrolyte comprising an electrode and an organic electrolyte. In the battery, the base material obtained by heating the polycarbodiimide resin to 350 to 900 ° C. in an inert atmosphere is used as at least one electrode.

【0006】即ち、本発明の発明者等は、耐熱性樹脂の
熱処理物の有機電解質電極への応用について鋭意検討を
行った結果、ポリカルポジイミド樹脂の熱処理物が電極
としての安定性にも優れ、有機電解質二次電池の電極と
して優れた性能を示すことを見い出し、本発明の完成に
至ったのである。
That is, the inventors of the present invention have made earnest studies on the application of a heat-treated resin of a heat-resistant resin to an organic electrolyte electrode, and as a result, the heat-treated product of a polycarbodiimide resin has excellent stability as an electrode. The inventors have found that they exhibit excellent performance as an electrode of an organic electrolyte secondary battery, and have completed the present invention.

【0007】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0008】本発明において使用する基材を得るための
ポリカルポジイミド樹脂は、加熱して電極の基材とした
場合に、得られる基材に強度が必ずしも要求されないの
で、広範囲の分子量のものを使用することができ、「分
子中に少なくとも2のカルボジイミド基を有し、分子量
が200乃至1,000,000、好ましくは5,00
0乃至500,000更に好ましくは50,000乃至
150,000のもの」と定義することができる。この
ようなポリカルポジイミド樹脂は、例えば特開昭51−
61599号公報に開示されている方法、或いは、特開
平2−292316号公報に開示されている方法等によ
って製造することができるものであって、例えば有機ジ
イソシアネートの脱二酸化炭素を伴う縮合反応により容
易に製造することができる。
The polycarbodiimide resin for obtaining the base material used in the present invention is not necessarily required to have strength when it is heated to be used as a base material for an electrode. It can be used, "having at least two carbodiimide groups in the molecule and having a molecular weight of 200 to 1,000,000, preferably 5,000.
0 to 500,000, and more preferably 50,000 to 150,000 ”. Such a polycarbodiimide resin is disclosed in, for example, Japanese Patent Application Laid-Open No. 51-
It can be produced by the method disclosed in Japanese Patent No. 61599, or the method disclosed in Japanese Patent Laid-Open No. 2-292316, and can be easily prepared, for example, by a condensation reaction involving decarbonization of organic diisocyanate. Can be manufactured.

【0009】上記ポリカルボジイミド樹脂の製造に使用
される有機ジイソシアネー卜としては、脂肪族系、脂環
式系、芳香族系或いは芳香−脂肪族系等のいずれの夕イ
プのものであってもよく、これらは、単独で用いても、
或いは、2種類以上を組み合わせて共重合体として使用
してもよい。
The organic diisocyanate used for producing the above polycarbodiimide resin may be any type of aliphatic, alicyclic, aromatic or aromatic-aliphatic type. , Even if used alone,
Alternatively, two or more kinds may be combined and used as a copolymer.

【0010】更に具体的には、2,4−トリレンジイソ
シアネート、2,6−トリレンジイソシアネート、2,
4−トリレンジイソシアネートと2,6−トリレンジイ
ソシアネートの混合物、粗トリレンジイソシアネー卜、
キシレンジイソシアネート、m−フエニルジイソシアネ
ート、ナフチレン−1,5−ジイソシアネート、4,
4’−ビフェニルジイソシアネートや3,3’−ジメト
キシ−4,4’ビフェニルジイソシアネート、或いはこ
れらの混合物を上記有機ジイソシアネートとして例示す
ることができる。
More specifically, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,
A mixture of 4-tolylene diisocyanate and 2,6-tolylene diisocyanate, crude tolylene diisocyanate,
Xylene diisocyanate, m-phenyl diisocyanate, naphthylene-1,5-diisocyanate, 4,
4'-biphenyl diisocyanate, 3,3'-dimethoxy-4,4 'biphenyl diisocyanate, or a mixture thereof can be exemplified as the organic diisocyanate.

【0011】従って、本発明で使用するポリカルボジイ
ミド樹脂には、式 −R−N=C=N− で示される少なくとも1種の繰リ返し単位からなる単独
重合体又は共重合体が包含され、有機ジイソシアネート
分子から2つのイソシアネート基(NCO)を除いた残
りの部分である上記有機ジイソシアネート残基Rは、好
適には芳香族ジイソシアネー卜残基である。
Therefore, the polycarbodiimide resin used in the present invention includes a homopolymer or a copolymer having at least one repeating unit represented by the formula -RN = C = N-. The above-mentioned organic diisocyanate residue R, which is the remaining part of the organic diisocyanate molecule excluding the two isocyanate groups (NCO), is preferably an aromatic diisocyanate residue.

【0012】又、上記ポリカルボジイミド樹脂は、その
分子量をモノイソシアネートの一種以上を用いて重縮合
を停止させる等して低下させたものでもよい。このよう
にポリカルボジイミドの端末を封止してその分子量を制
御するためのモノイソシアネートとしては、フェニルイ
ソイシアネー卜、(オルト、メ夕、パラ)−トリルイソ
シアネー卜、ジメチルフエニルイソシアネー卜、シクロ
ヘキシルイソシアネート、メチルイソシアネート等を例
示することができる。
Further, the polycarbodiimide resin may be one whose molecular weight is lowered by stopping the polycondensation with one or more monoisocyanates. Thus, as the monoisocyanate for sealing the end of the polycarbodiimide and controlling the molecular weight thereof, phenylisocyanate, (ortho, methan, para) -tolylisocyanate, dimethylphenylisocyanate is used. Examples thereof include cyclohexyl isocyanate and methyl isocyanate.

【0013】上記ポリカルボジイミド樹脂は、次いでフ
ィルム状、繊維状、粉状、シート状やその他適宜の成形
品に成形されるのであり、これらは無延伸であっても、
一軸延伸や二軸延伸されたものでも良い。
The above-mentioned polycarbodiimide resin is then formed into a film, fiber, powder, sheet, or any other suitable molded article, which is not stretched,
It may be uniaxially stretched or biaxially stretched.

【0014】上記ポリカルボジイミド樹脂成形品は、最
後に加熱されて本発明で使用される基材となるのであ
り、この加熱処理は、真空、窒素、アルゴン、ヘリウム
等の不活性雰囲気中で、350℃から900℃の間で行
われる。尚、この温度範囲での加熱処理は、ポリカルポ
ジイミド樹脂成形品を完全に焼成することはなく、加熱
温度が350℃より低温の場合は、充分な導電性が得ら
れないので電極として作用せず、又、加熱温度が900
℃よリ高温になると、理由は明らかでないが、これを電
極とした有機電解質電池が作用しない。
The above-mentioned polycarbodiimide resin molded article is finally heated to become a base material used in the present invention, and this heat treatment is carried out at 350 ° C. in an inert atmosphere such as vacuum, nitrogen, argon or helium. It is carried out between ℃ and 900 ℃. In addition, the heat treatment in this temperature range does not completely burn the polycarbodiimide resin molded article, and when the heating temperature is lower than 350 ° C., sufficient conductivity cannot be obtained, so that it does not act as an electrode. No, and the heating temperature is 900
When the temperature becomes higher than 0 ° C, the reason is not clear, but the organic electrolyte battery using this as an electrode does not work.

【0015】得られた基材は、有機電解質電池に用いら
れる電解質の溶媒に対しては不溶性を有し、又、電池と
して使用される−100乃至350℃の範囲の温度条件
では不融性を示すという、有機電解質電池用の電極とし
て好ましい特性を有している。尚、この基材にある程度
の強度が要求される場合は、原料であるポリカルボジイ
ミド樹脂に分子量が10,000以上のものを使用する
ことが好ましい。
The obtained base material is insoluble in the solvent of the electrolyte used in the organic electrolyte battery, and is infusible under the temperature condition of −100 to 350 ° C. used as the battery. That is, it has preferable characteristics as an electrode for an organic electrolyte battery. When the base material requires some strength, it is preferable to use a polycarbodiimide resin as a raw material having a molecular weight of 10,000 or more.

【0016】そして、上記基材を有機電解質を溶解した
電解液と共に正負両極又は正極及び負極のいずれか一方
の電極として使用することにより、本発明の有機電解質
電池を得ることができる。
Then, the organic electrolyte battery of the present invention can be obtained by using the above-mentioned base material together with an electrolytic solution in which an organic electrolyte is dissolved as an electrode for both positive and negative electrodes or one of a positive electrode and a negative electrode.

【0017】上記基材を正極として用いる場合、負極と
しては、Li,Na,K等のアルカリ金属、Mg,Ca
等のアルカリ土類金属、Zn,Pbのような活性金属、
AlのようなLiと合金を形成するような金属や合金、
ポリアセチレン等の共役系高分子を用いることができる
が、これらに限定されるものではない。
When the above base material is used as the positive electrode, the negative electrode may be an alkali metal such as Li, Na or K, Mg or Ca.
Alkaline earth metals such as, active metals such as Zn, Pb,
A metal or alloy that forms an alloy with Li, such as Al,
A conjugated polymer such as polyacetylene can be used, but is not limited thereto.

【0018】本発明の不溶不融性基材を負極として用い
る場合には、正極としてWO3,MgO3,V25のよう
な金属酸化物、TiS2,NbS2のような金属硫化物、
その他金属セレン化物、ポリアセチレン、ポリアニリン
等の共役系高分子を用いることができるが、これらに限
定されるものではない。
When the insoluble and infusible base material of the present invention is used as a negative electrode, a metal oxide such as WO 3 , MgO 3 , V 2 O 5 or a metal sulfide such as TiS 2 , NbS 2 is used as a positive electrode. ,
Other conjugated polymers such as metal selenides, polyacetylene, and polyaniline can be used, but are not limited to these.

【0019】又、電解質の溶媒としては、非プロトン性
有機溶媒が好ましく、例えばプロピレンカーボネート、
γ‐ブチルラクトン、ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルフォキシド、エチレンカー
ボネート、ジメトキシエタン、テトラヒドロフラン、塩
化メチレン又はこれらの2種以上の混合物等を挙げるこ
とができる。尚、これらの溶媒は使用する前に脱水や脱
酸素処理を施すことが好ましい。
Further, the solvent for the electrolyte is preferably an aprotic organic solvent, such as propylene carbonate,
Examples thereof include γ-butyl lactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, dimethoxyethane, tetrahydrofuran, methylene chloride, and mixtures of two or more thereof. In addition, it is preferable that these solvents are subjected to dehydration or deoxidation treatment before use.

【0020】電解液を得るためには、上記溶媒にイオン
を生成する化合物を溶解すればよく、このイオン生成す
る化合物としては、LiI,NaI,NH4I,LiC
lO4,LiAsF6,LiBF4,KPF4,NaP
6,(n−C494NClO4,(n−C494NA
sF6,(n−C494NPF6等を挙げることができ
る。
In order to obtain an electrolytic solution, a compound which produces ions may be dissolved in the above-mentioned solvent. The compounds which produce ions are LiI, NaI, NH 4 I and LiC.
lO 4 , LiAsF 6 , LiBF 4 , KPF 4 , NaP
F 6, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 NA
sF 6, may be mentioned (n-C 4 H 9) 4 NPF 6 or the like.

【0021】尚、この際の電解液中の電解質濃度には特
に制限はなく、使用する電解質の種類によって決定すれ
ばよいが、例えば0.001から10モル/lの範囲が
好ましい。
The concentration of the electrolyte in the electrolytic solution at this time is not particularly limited and may be determined depending on the type of the electrolyte used, but is preferably in the range of 0.001 to 10 mol / l.

【0022】以下に本発明を実施例により更に詳細に説
明するが、本発明はこれら実施例によって何ら限定され
るものではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0023】[0023]

【実施例】【Example】

実施例1 2,4−トリレンジイソシアネート/2,6−トリレン
ジイソシアネー卜の混合物、(80:20)〔TDI〕
54gを、テトラクロロエチレン500ml中で、カル
ボジイ化触媒(1−フェニル−3−メチルホスフォレン
オキサイド)0.12gと共に、120℃で5時間反応
させ、ポリカルボジイミド樹脂(分子量:60,00
0)溶液を得た。ガラスシャーレに反応液を流し、60
℃で5時間、120℃で10時間乾燥した後、1℃/時
間の昇温速度で200℃まで加熱し、硬化したフィルム
を得た。
Example 1 A mixture of 2,4-tolylene diisocyanate / 2,6-tolylene diisocyanate (80:20) [TDI].
54 g was reacted with 500 g of tetrachloroethylene together with 0.12 g of a carbodiation catalyst (1-phenyl-3-methylphosphorene oxide) at 120 ° C. for 5 hours to give a polycarbodiimide resin (molecular weight: 60,00).
0) A solution was obtained. Pour the reaction solution into a glass petri dish, 60
After drying at 5 ° C. for 5 hours and 120 ° C. for 10 hours, it was heated to 200 ° C. at a temperature rising rate of 1 ° C./hour to obtain a cured film.

【0024】得られたフィルムを窒素ガス中で2℃/分
の昇温速度で400、500、600、700、75
0、850℃まで昇温して不溶不融性基材とし、この不
溶不融性基材から10×10mmの小片を切り出し正極
とした。負極にはLi金属片を用い、LiClO4を1
モル/lを含むプロピレンカーボネー卜を電解液とし、
ビーカーを用いて二次電池を形成した。
The obtained film was heated in nitrogen gas at a temperature rising rate of 2 ° C./min to 400, 500, 600, 700, 75.
The temperature was raised to 0,850 ° C. to obtain an insoluble and infusible base material, and a small piece of 10 × 10 mm was cut out from this insoluble and infusible base material to obtain a positive electrode. LiCl 4 is used for the negative electrode, and 1 LiClO 4 is used.
Propylene Carbonate containing mol / l was used as electrolyte solution,
A secondary battery was formed using a beaker.

【0025】この二次電池を北斗電工製の充放電装置H
J−201Bに接続し、0.1mAで60分間充電し、
その後0.1mAで端子電圧1Vまで放電するというサ
イクルを1000サイクル繰り返した。この結果を表1
に示す。
This secondary battery is used as a charging / discharging device H manufactured by Hokuto Denko.
Connect to J-201B, charge at 0.1mA for 60 minutes,
Then, a cycle of discharging to a terminal voltage of 1 V at 0.1 mA was repeated 1000 times. Table 1 shows the results.
Shown in

【0026】比較例1 実施例1で得られたフィルムを窒素ガス中で2℃/分の
昇温速度で300、950、1100℃まで昇温して不
溶不融性基材とし、この不溶不融性基材から10×10
mmの小片を切り出し正極とした。負極にはLi金属片
を用い、LiClO4を1モル/lを含むプロピレンカ
ーボネー卜を電解液とし、ビーカーを用いて二次電池を
形成した。この二次電池を北斗電工製の充放電装置HJ
−201Bに接続し、実施例と同様の充放電サイクルを
繰り返した。この結果を表1に示す。
Comparative Example 1 The film obtained in Example 1 was heated to 300, 950, and 1100 ° C. at a heating rate of 2 ° C./min in nitrogen gas to obtain an insoluble and infusible substrate. 10 x 10 from fusible substrate
A small piece of mm was cut out and used as a positive electrode. A Li metal piece was used for the negative electrode, and a propylene carbonate containing 1 mol / l of LiClO 4 was used as an electrolytic solution, and a beaker was used to form a secondary battery. This secondary battery is a charging / discharging device HJ manufactured by Hokuto Denko.
It was connected to -201B and the same charging / discharging cycle as the example was repeated. Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例2 メチレンジフェニルジイソシアネー卜(MDI)50g
を、テトラヒドロフラン880mI中で、カルボジイミ
ド化触媒(1−フェニル−3−メチルホスフォレンオキ
サイド)0.12gと共に、68℃で15時間反応さ
せ、ポリカルボジイミド樹脂(分子量:110,00
0)溶液を得た。ガラスシャーレに反応液を展開し、4
0℃で10時間、120℃で5時間乾燥した後、1℃/
時間の昇温速度で200℃まで加熱し、硬化したフィル
ムを得た。
Example 2 50 g of methylene diphenyl diisocyanate (MDI)
Was reacted with 0.12 g of a carbodiimidization catalyst (1-phenyl-3-methylphosphorene oxide) in tetrahydrofuran 880 ml at 68 ° C. for 15 hours to give a polycarbodiimide resin (molecular weight: 110,00).
0) A solution was obtained. Spread the reaction solution on a glass dish and 4
After drying at 0 ° C for 10 hours and 120 ° C for 5 hours, 1 ° C /
A cured film was obtained by heating to 200 ° C. at a heating rate of time.

【0029】得られたフィルムを2℃/分の昇温速度で
400、500、600、700、750、850℃ま
で昇温して不溶不融性基材とし、この不溶不融性基材か
ら10×10mmの小片を切り出し正極とした。負極に
は実施例1で作成した750℃熱処理品を用い、LiB
4を1モル/lを含むγ−ブチルラクトンを電解液と
し、ビーカーを用いて二次電池を形成した。
The obtained film was heated to 400, 500, 600, 700, 750, 850 ° C. at a heating rate of 2 ° C./min to obtain an insoluble and infusible substrate. From this insoluble and infusible substrate A 10 × 10 mm piece was cut out to obtain a positive electrode. For the negative electrode, the 750 ° C. heat-treated product prepared in Example 1 was used.
Using γ-butyl lactone containing 1 mol / l of F 4 as an electrolytic solution, a beaker was used to form a secondary battery.

【0030】この二次電池を北斗電工製の充放電装置H
J−201Bに接続し0.1mAで60分間充電し、そ
の後0.1mAで端子電圧1Vまで放電するというサイ
クルを1000サイクル繰り返した。この結果を表2に
示す。
This secondary battery is used as a charging / discharging device H manufactured by Hokuto Denko.
A cycle of connecting to J-201B, charging at 0.1 mA for 60 minutes, and then discharging at 0.1 mA to a terminal voltage of 1 V was repeated 1000 times. The results are shown in Table 2.

【0031】比較例2 実施例2で得られたフィルムを窒素ガス中で2℃/分の
昇温速度で300、950、1100℃まで昇温して不
溶不融性基材とし、この不溶不融性基材から10×10
mmの小片を切り出し正極とした。負極には実施例1で
作成した750℃熱処理品を用い、LiBF4を1モル
/lを含むγ−ブチルラクトンを電解液とし、ビーカー
を用いて二次電池を形成した。この二次電池を北斗電工
製の充放電装置HJ−201Bに接続し、実施例と同様
の充放電サイクルを繰り返した。この結果を表2に示
す。
Comparative Example 2 The film obtained in Example 2 was heated to 300, 950 and 1100 ° C. at a heating rate of 2 ° C./min in nitrogen gas to obtain an insoluble and infusible substrate. 10 x 10 from fusible substrate
A small piece of mm was cut out and used as a positive electrode. The 750 ° C. heat-treated product prepared in Example 1 was used as the negative electrode, and γ-butyl lactone containing 1 mol / l of LiBF 4 was used as an electrolytic solution to form a secondary battery using a beaker. This secondary battery was connected to a charging / discharging device HJ-201B manufactured by Hokuto Denko, and the same charging / discharging cycle as in the example was repeated. The results are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例3 ジフェニルエーテルジイソシアネート50gを、テトラ
ヒドロフラン850ml中で、カルボジイミド化触媒
(1−フェニル−3−メチルホスフォレンオキサイド)
0.12gと共に、68℃で15時間反応させ、ポリカ
ルボジイミド樹脂(分子量:80,000)溶液を得
た。この溶液を用い乾式法により直径20ミクロメート
ルのポリカルボジイミド樹脂繊維を作成した。
Example 3 50 g of diphenyl ether diisocyanate was added to 850 ml of tetrahydrofuran to prepare a carbodiimidization catalyst (1-phenyl-3-methylphosphorene oxide).
It was made to react with 0.12 g at 68 ° C. for 15 hours to obtain a polycarbodiimide resin (molecular weight: 80,000) solution. Using this solution, a polycarbodiimide resin fiber having a diameter of 20 micrometers was prepared by a dry method.

【0034】得られた繊維を2℃/分の昇温速度で40
0、500、600、700、750、850℃まで昇
温して繊維状の不溶不融性基材とし、この繊維状の不溶
不融性基材1gを正極とした。負極にはAl−Li合金
を用い、LiAsF6を、1モル/lを含むジメチルス
ルフォキシドを電解液とし、ビーカーを用いて二次電池
を形成した。
The obtained fiber was heated to 40 ° C. at a heating rate of 2 ° C./min.
The temperature was raised to 0, 500, 600, 700, 750, 850 ° C. to obtain a fibrous insoluble infusible base material, and 1 g of this fibrous insoluble infusible base material was used as a positive electrode. The negative electrode using the Al-Li alloy, the LiAsF 6, dimethyl sulfoxide containing 1 mole / l and the electrolyte solution, to form a secondary battery using a beaker.

【0035】この二次電池を北斗電工製の充放電装装置
HJ−201Bに接続し0.1mAで60分間充電し、
その後0.1mAで端子電圧1Vまで放電するというサ
イクルを1000サイクル繰り返した。この結果を表3
に示す。
This secondary battery was connected to a charging / discharging device HJ-201B manufactured by Hokuto Denko and charged at 0.1 mA for 60 minutes,
Then, a cycle of discharging to a terminal voltage of 1 V at 0.1 mA was repeated 1000 times. The results are shown in Table 3.
Shown in

【0036】比較例3 実施例3で得られた繊維を2℃/分の昇温速度で30
0、950、1100℃まで昇温して繊維状の不溶不融
性基材とし、この繊維状の不溶不融性基材1gを正極と
した。負極にはAl−Li合金を用い、LiAsF
6を、1モル/lを含むジメチルスルフォキシドを電解
液とし、ビーカーを用いて二次電池を形成した。この二
次電池を北斗電工製の充放電装置HJ−201Bに接続
し、実施例と同様の充放電サイクルを繰り返した。この
結果を表3に示す。
COMPARATIVE EXAMPLE 3 The fiber obtained in Example 3 was heated to 30 ° C. at a heating rate of 2 ° C./min.
The temperature was raised to 0, 950, 1100 ° C. to obtain a fibrous insoluble infusible substrate, and 1 g of this fibrous insoluble infusible substrate was used as a positive electrode. Al-Li alloy is used for the negative electrode, and LiAsF is used.
6 was used as an electrolytic solution of dimethyl sulfoxide containing 1 mol / l, and a secondary battery was formed using a beaker. This secondary battery was connected to a charging / discharging device HJ-201B manufactured by Hokuto Denko, and the same charging / discharging cycle as in the example was repeated. The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】実施例4 アニリンを0.5モル/l含む1モル/lのHClO4
水溶液より白金電極上にポリアニリンを電位走査法によ
り合成した。このポリアニリンを正極とし、実施例1に
より作成した400、500、600、700、75
0、850℃で処理された不溶不融性基材を負極として
用い、(n−C494NClO4を0.7モル/l含む
プロピレンカーボネートを電解液として二次電池を構成
した。
Example 4 1 mol / l HClO 4 containing 0.5 mol / l of aniline
Polyaniline was synthesized from an aqueous solution on a platinum electrode by the potential scanning method. Using this polyaniline as a positive electrode, 400, 500, 600, 700, 75 prepared according to Example 1
A secondary battery was constructed by using an insoluble and infusible substrate treated at 0,850 ° C. as a negative electrode, and using propylene carbonate containing 0.7 mol / l of (nC 4 H 9 ) 4 NClO 4 as an electrolytic solution. .

【0039】この二次電池を北斗電工製の充放電装置H
J−201Bに接続し0.1mAで60分間充電し、そ
の後0.1mAで端子電圧1Vまで放電するというサイ
クルを100サイクル繰り返した。この結果を表4に示
す。
This secondary battery is used as a charging / discharging device H manufactured by Hokuto Denko.
A cycle of connecting to J-201B, charging at 0.1 mA for 60 minutes, and then discharging at 0.1 mA to a terminal voltage of 1 V was repeated 100 cycles. Table 4 shows the results.

【0040】比較例4 アニリンを0.5モル/l含む1モル/lのHClO4
水溶液より白金電極上にポリアニリンを電位走査法によ
り合成した。このポリアニリンを正極とし、比較例1に
より作成した300、950、1100℃で処理された
不溶不融性基材を負極として用い、(n−C494
ClO4を0.7モル/l含むプロピレンカーボネート
を電解液として二次電池を構成した。この二次電池を北
斗電工製の充放電装置HJ−201Bに接続し、実施例
と同様の充放電サイクルを繰り返した。この結果を表4
に示す。
Comparative Example 4 1 mol / l HClO 4 containing 0.5 mol / l of aniline
Polyaniline was synthesized from an aqueous solution on a platinum electrode by the potential scanning method. Using this polyaniline as the positive electrode and the insoluble and infusible base material prepared in Comparative Example 1 and treated at 300, 950 and 1100 ° C. as the negative electrode, (n-C 4 H 9 ) 4 N
A secondary battery was constructed using propylene carbonate containing 0.7 mol / l of ClO 4 as an electrolytic solution. This secondary battery was connected to a charging / discharging device HJ-201B manufactured by Hokuto Denko, and the same charging / discharging cycle as in the example was repeated. The results are shown in Table 4.
Shown in

【0041】[0041]

【表4】 [Table 4]

【0042】比較例5 p−キシリレンビスジエチルスルホニウムプロミド4g
をイオン交換水200mlに溶解した後、0℃に冷却し
た。スルホニウム塩に対し2倍量のOH-型に交換され
た強塩基性イオン交換樹脂(Amberlite IR
A−401)を徐々に加え、0−2℃で撹拌した。この
処理後、濾過によりイオン交換樹脂を取り出した。この
反応液に対し透析処理を1日行い、ついでこの液をガラ
スシヤレーに展開して溶剤を乾燥させ、高分子スルホニ
ウム塩フィルムを得た。このフィルムの両端を固定して
100℃に加熱後、フィルム固定治具をはずし、180
℃まで昇温した後、300℃で加熱しながら3倍に延伸
し、ポリ−P−フェニレンビニレンフィルムを得た。
Comparative Example 5 4 g of p-xylylenebisdiethylsulfonium bromide
Was dissolved in 200 ml of ion-exchanged water and then cooled to 0 ° C. Strongly basic ion exchange resin (Amberlite IR) exchanged with OH - type in twice the amount of sulfonium salt
A-401) was gradually added, and the mixture was stirred at 0-2 ° C. After this treatment, the ion exchange resin was taken out by filtration. The reaction solution was subjected to dialysis treatment for 1 day, and then the solution was spread on a glass shearer and the solvent was dried to obtain a polymer sulfonium salt film. After fixing both ends of this film and heating to 100 ° C, remove the film fixing jig and
After the temperature was raised to 300C, the film was stretched 3 times while heating at 300C to obtain a poly-P-phenylenevinylene film.

【0043】得られたフィルムを窒素ガス中で2℃/分
の昇温速度で300、400、500、600、70
0、750、850、950、1100℃まで昇温して
不溶不融性基材とし、この不溶不融性基材から10×1
0mmの小片を切り出し正極とした。負極にはLi金属
片を用い、LiClO4を1モル/lを含むプロピレン
カーボネートを電解液とし、ビーカーを用いて二次電池
を形成した。
The obtained film was heated in nitrogen gas at a heating rate of 2 ° C./min to 300, 400, 500, 600, 70.
The temperature is raised to 0, 750, 850, 950, 1100 ° C. to make an insoluble and infusible substrate, and 10 × 1 from this insoluble and infusible substrate
A 0 mm piece was cut out and used as a positive electrode. A Li metal piece was used for the negative electrode, propylene carbonate containing 1 mol / l of LiClO 4 was used as an electrolytic solution, and a beaker was used to form a secondary battery.

【0044】この二次電池を北斗電工製の充放電装置H
J−201Bに接続し0.1mAで60分間充電し、そ
の後0.1mAで端子電圧1Vまで放電するというサイ
クルをl000サイクル繰り返した。この結果を表5に
示す。
This secondary battery is used as a charging / discharging device H manufactured by Hokuto Denko.
The cycle of connecting to J-201B, charging at 0.1 mA for 60 minutes, and then discharging at 0.1 mA to a terminal voltage of 1 V was repeated 1000 times. The results are shown in Table 5.

【表5】 [Table 5]

【0045】[0045]

【発明の効果】上記表1乃至5から明らかなように、本
発明の実施例の有機電解質電池ではサイクルによる劣化
等は殆ど認められず、サイクル特性、クーロン効率共に
良好な電池として作動していることがわかった。
As is clear from Tables 1 to 5, the organic electrolyte batteries of the examples of the present invention show almost no deterioration due to cycling, and operate as batteries having good cycle characteristics and Coulombic efficiency. I understand.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリカルボジイミド樹脂を不活性雰囲気
中で350乃至900℃に加熱して得られる基材よりな
ることを特徴とする有機電解質電池用電極。
1. An electrode for an organic electrolyte battery comprising a base material obtained by heating a polycarbodiimide resin at 350 to 900 ° C. in an inert atmosphere.
【請求項2】 ポリカルボジイミド樹脂が、分子中に少
なくとも2のカルボジイミド基を有し、分子量が200
乃至1,000,000のものである請求項1に記載の
有機電解質電池用電極。
2. A polycarbodiimide resin has at least two carbodiimide groups in the molecule and has a molecular weight of 200.
The electrode for an organic electrolyte battery according to claim 1, which is from 1 to 1,000,000.
【請求項3】 電極と有機電解質よりなる有機電解質電
池において、ポリカルボジイミド樹脂を不活性雰囲気中
で350乃至900℃に加熱して得られる基材を少なく
とも一方の電極としたことを特徴とする有機電解質電
池。
3. An organic electrolyte battery comprising an electrode and an organic electrolyte, wherein a substrate obtained by heating a polycarbodiimide resin to 350 to 900 ° C. in an inert atmosphere is used as at least one electrode. Electrolyte battery.
【請求項4】 ポリカルボジイミド樹脂が、分子中に少
なくとも2のカルボジイミド基を有し、分子量が200
乃至1,000,000のものである請求項3に記載の
有機電解質電池。
4. The polycarbodiimide resin has at least two carbodiimide groups in the molecule and has a molecular weight of 200.
4. The organic electrolyte battery according to claim 3, which is from 1 to 1,000,000.
JP21203594A 1994-08-12 1994-08-12 Electrode for organic electrolyte battery and organic electrolyte battery using the electrode Expired - Lifetime JP3349270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21203594A JP3349270B2 (en) 1994-08-12 1994-08-12 Electrode for organic electrolyte battery and organic electrolyte battery using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21203594A JP3349270B2 (en) 1994-08-12 1994-08-12 Electrode for organic electrolyte battery and organic electrolyte battery using the electrode

Publications (2)

Publication Number Publication Date
JPH0855620A true JPH0855620A (en) 1996-02-27
JP3349270B2 JP3349270B2 (en) 2002-11-20

Family

ID=16615796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21203594A Expired - Lifetime JP3349270B2 (en) 1994-08-12 1994-08-12 Electrode for organic electrolyte battery and organic electrolyte battery using the electrode

Country Status (1)

Country Link
JP (1) JP3349270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315220A4 (en) * 2000-04-05 2005-11-16 Nitto Denko Corp Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315220A4 (en) * 2000-04-05 2005-11-16 Nitto Denko Corp Battery

Also Published As

Publication number Publication date
JP3349270B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US10892521B2 (en) Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
US8084160B2 (en) Method for purifying lithium sulfide
EP0552731B1 (en) Carbonaceous material and a cell using the same
EP3218947B1 (en) Energy storage device comprising a polyurethane separator
US6228532B1 (en) Lithium secondary cell
US4620944A (en) Macromolecular material of ionic conduction for producing electrolytes or electrodes
US7057880B2 (en) Secondary battery and capacitor utilizing indole compounds
EP0480909A2 (en) Porous active carbon prepared from aromatic condensation polymer and use thereof in electrodes for electrochemical cells
CN111786016B (en) Fluorine-containing polyurethane solid composite electrolyte and preparation method thereof
CN110071326A (en) Tensile polymer dielectric, electrode and copolymer, electrochemical appliance and the method for preparing tensile copolymer
Schwartz et al. Ferrocene-functionalized polyheteroacenes for the use as cathode active material in rechargeable batteries
CN114478985B (en) Polyurea-based solid polymer electrolyte and preparation method thereof
US5470674A (en) Electrolyte salts for power sources
US6680149B2 (en) Solid polymer electrolytes using polyether poly (N-substituted urethane)
JP3349270B2 (en) Electrode for organic electrolyte battery and organic electrolyte battery using the electrode
KR100480195B1 (en) Secondary battery and capacitor utilizing indole compounds
US4832869A (en) Highly conducting polymers and materials for polymeric batteries
JPS61163562A (en) Secondary cell
JPH08203525A (en) Electrode and nonaqueous solvent secondary battery
JP3723140B2 (en) Power storage device using quinoxaline compound
CN112382786A (en) Composition for forming solid polymer electrolyte, solid polymer electrolyte membrane, and lithium ion battery
Vani et al. Synthesis and Characterization of Poly (2-Chloroaniline), Its Starch and Silk Blends and ApplicationsIn Lithiumion Batteries
JPS5942784A (en) Battery
US6562520B1 (en) Polymer electrolyte and rechargeable cell comprising the same
CN117510924B (en) Hollow zirconium-based metal organic framework crosslinked composite solid electrolyte, preparation method and application