JPH0854914A - Control method in case of power failure and device therefor - Google Patents

Control method in case of power failure and device therefor

Info

Publication number
JPH0854914A
JPH0854914A JP6185716A JP18571694A JPH0854914A JP H0854914 A JPH0854914 A JP H0854914A JP 6185716 A JP6185716 A JP 6185716A JP 18571694 A JP18571694 A JP 18571694A JP H0854914 A JPH0854914 A JP H0854914A
Authority
JP
Japan
Prior art keywords
power
tool
power failure
motor
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6185716A
Other languages
Japanese (ja)
Other versions
JP3001377B2 (en
Inventor
Shinichi Kono
新一 河野
Junichi Tezuka
淳一 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP6185716A priority Critical patent/JP3001377B2/en
Publication of JPH0854914A publication Critical patent/JPH0854914A/en
Priority to US08/898,643 priority patent/US5814956A/en
Application granted granted Critical
Publication of JP3001377B2 publication Critical patent/JP3001377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50082UPS, no break to power actuator and move into safe condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50083Power loss, measures again loss of power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50222Stop machines, actuators until others reach common synchronization point

Abstract

PURPOSE:To prevent the breakage of a tool and a work in case of power failure mode by controlling a tool shaft feeding motor by the regeneration power generated in a motor deceleration mode to evacuate the tool at the time of power interruption. CONSTITUTION:When a power failure occurs in a machining operation state of a numerically controlled gear cutting machine, a power failure detector 20 detects this failure and outputs a power failure detection signal. A power supply regeneration power circuit 18 receives the power failure detection signal and stops an inverter function. Meanwhile a resistance discharge unit 19 is set in an enable state and discharges the extra regeneration power via a resistance. Furthermore a numerical controller 10 gives the commands to an amplifier 13 of a tool motor 16 and an amplifier 14 of a work motor 17 so that both motors are decelerated and stopped synchronously with each other. The controller 10 also instructs an amplifier 12 of a tool shaft feeding motor 15 to evacuate the tool into a safe area. Thus the regeneration power generated by both motors 16 and 17 are returned to a DC link part and used as a driving power supply of the motor 15. Then the tool is kept away from an interference position against a work.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は停電時制御方法及び装置
に関し、特に、歯車加工機(ホブ盤)、歯車研削盤など
のように、ワークと工具とを常に同期して運転する必要
のある機械において、加工中に停電があった場合の制御
についての停電時制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power failure control method and device, and more particularly, it is necessary to always operate a work and a tool in synchronization with each other, such as a gear processing machine (hobbing machine) and a gear grinding machine. The present invention relates to a control method and device at the time of power failure for control when a power failure occurs during machining.

【0002】[0002]

【従来の技術】数値制御工作機械は、ワーク及び工具を
それぞれ数値制御することによって、ワークを所定の形
状に加工していくが、中には、ワークと工具とを常に同
期して運転する必要のあるものがある。その典型的な例
として、歯車を加工するホブ盤がある。
2. Description of the Related Art A numerically controlled machine tool processes a workpiece into a predetermined shape by numerically controlling the workpiece and the tool, but in some cases, the workpiece and the tool must always be operated in synchronization with each other. There are some. A typical example is a hobbing machine that processes gears.

【0003】図5はホブ盤の加工概念を示す斜視図であ
る。この図において、1はワークであり、2はこのワー
ク1を加工する工具である。ワーク1はワーク用のサー
ボモータによって回転数が制御され、工具2は工具用の
スピンドルモータによってワーク用のサーボモータと同
期を保ちながら回転数が制御されている。工具2はま
た、工具軸送り用のサーボモータによってワーク1との
相対位置が制御されており、ワーク1に近づいたりワー
ク1から離れる方向に制御される。
FIG. 5 is a perspective view showing the concept of processing a hobbing machine. In this figure, 1 is a work, and 2 is a tool for machining the work 1. The rotation speed of the work 1 is controlled by the servo motor for the work, and the rotation speed of the tool 2 is controlled by the spindle motor for the tool while maintaining synchronization with the servo motor for the work. A relative position of the tool 2 with respect to the work 1 is controlled by a servomotor for feeding the tool axis, and the tool 2 is controlled to approach the work 1 or move away from the work 1.

【0004】工具2はホブと呼ばれる歯切工具で、ねじ
に幾すじかの縦みぞ(切刃みぞ)を入れて多くの切刃を
ねじすじ上に作った形状を有する。工具2はその刃すじ
の方向を歯切りしようとするワーク1の歯すじの方向に
合わせて設置される。この工具2を回転させると、刃が
次々に切り込んでワーク1を削るが、刃はねじに沿って
分布しているから、回転とともに切り込む刃は回転軸の
方向に移動する。したがって、ワーク1をこれに合わせ
て回転させれば、ワーク1は歯先部より歯底部へと次第
に歯が削りだされる。このように、工具2はワーク1と
同期を保ちながら回転することによって、歯車の加工を
することができる。加工が終了すれば、工具2は工具軸
送り用のサーボモータによってワーク1との干渉位置か
ら退避される。
The tool 2 is a gear cutting tool called a hob, and has a shape in which many vertical grooves (cutting edge grooves) are inserted in a screw to make many cutting edges on the screw threads. The tool 2 is installed in such a manner that the direction of the edge line of the tool 2 is aligned with the direction of the line of the workpiece 1 to be cut. When the tool 2 is rotated, the blades cut one after another to scrape the work 1, but since the blades are distributed along the screw, the cutting blades move in the direction of the rotation axis with the rotation. Therefore, if the work 1 is rotated in accordance with this, the teeth of the work 1 are gradually scraped from the tooth tip portion to the tooth bottom portion. In this manner, the tool 2 can be processed into a gear by rotating while being synchronized with the work 1. When the machining is completed, the tool 2 is retracted from the position where it interferes with the work 1 by the servomotor for feeding the tool axis.

【0005】[0005]

【発明が解決しようとする課題】ところで、ワークと工
具とを常に同期して運転する必要のある機械、たとえば
ホブ盤については、機械の加工中に停電が発生すると、
工具を回転駆動しているスピンドルモータ及びワークを
回転駆動しているサーボモータは、これらを回転制御し
ているアンプへの動力が切断されるため減速停止される
ことになる。しかもこの減速停止は、数値制御装置から
の回転数制御を受けていることに反して互いに勝手に停
止しようとするため、停止まで工具用のスピンドルモー
タ及びワーク用のサーボモータは非同期状態で動作する
ことになる。このように同期運転中に停電が起きると、
同期運転が保たれなくなるので、ワーク及び工具が破損
してしまうことがあるという問題点があった。
By the way, regarding a machine, such as a hobbing machine, in which it is necessary to always operate a work and a tool in synchronization with each other, when a power failure occurs during machining of the machine,
The spindle motor that rotationally drives the tool and the servo motor that rotationally drives the work are decelerated and stopped because the power to the amplifier that rotationally controls them is cut off. In addition, in this decelerated stop, the spindle motors for tools and the servomotors for workpieces operate in an asynchronous state until they stop, as opposed to being controlled by the numerical controller in order to stop each other. It will be. When a power failure occurs during synchronous operation like this,
Since the synchronous operation cannot be maintained, there is a problem that the work and the tool may be damaged.

【0006】本発明はこのような点に鑑みてなされたも
のであり、ワークと工具とを常に同期して運転する必要
のある機械において、停電発生時にワーク及び工具を破
損することなく停止させることができるような停電時制
御方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in a machine in which it is necessary to operate a work and a tool in synchronization with each other, the work and the tool can be stopped without being damaged when a power failure occurs. It is an object of the present invention to provide a control method at the time of power failure that enables the above.

【0007】[0007]

【課題を解決するための手段】本発明では上記課題を解
決するために、ワークと工具とが同期して数値制御され
る機械の停電時の制御を行う停電時制御方法において、
停電検出に応答して工具用モータ、ワーク用モータ及び
工具軸送り用モータを駆動するアンプと入力電源との間
に設置されている電源回生パワー回路の電源回生動作を
停止させ、前記アンプと前記電源回生パワー回路との間
に接続されたDCリンク部に抵抗放電ユニットを接続可
能にし、無停電電源装置によって電源バックアップされ
た数値制御装置により、前記工具用モータ及びワーク用
モータに対して互いに所定の同期を保ちながら減速する
指令を出し、前記工具用モータ及びワーク用モータの減
速動作によって発生される回生パワーを基に、前記数値
制御装置により前記工具軸送り用モータを駆動して、工
具をワークと干渉しない領域まで退避させる、ことから
なることを特徴とする停電時制御方法が提供される。
In order to solve the above problems, the present invention provides a power failure control method for performing a power failure control of a machine in which a work and a tool are numerically controlled in synchronization with each other.
In response to the power failure detection, the power regeneration operation of the power regeneration circuit which is installed between the amplifier for driving the tool motor, the work motor and the tool axis feeding motor and the input power source is stopped, and the amplifier and the aforesaid A resistance discharge unit can be connected to a DC link portion connected to a power regeneration circuit, and a numerical control device backed up by an uninterruptible power supply device provides a predetermined mutual control for the tool motor and the work motor. Is issued while decelerating while maintaining the synchronization of the tool motor, and based on the regenerative power generated by the decelerating operation of the tool motor and the work motor, the numerical controller drives the tool axis feed motor to drive the tool. There is provided a power failure control method characterized by comprising retracting to an area that does not interfere with a work.

【0008】[0008]

【作用】上述の手段によれば、同期運転中に停電が発生
すると、まず、電源回生パワー回路に対して回生パワー
が発生されてもそのパワーが入力電源側に戻されること
がないように電源回生動作を停止させ、次いで、DCリ
ンク部に抵抗放電ユニットが接続可能な状態にして余剰
の回生パワーが発生されたときにそれを抵抗放電できる
ようにし、そして、数値制御装置に対して工具用モータ
及びワーク用モータが互いに所定の同期を保ちながら減
速するようにし、これらモータの減速運転によって発生
される回生パワーで工具軸送り用モータを制御すること
で工具を安全な領域まで退避させるようにしている。
According to the above-mentioned means, when a power failure occurs during the synchronous operation, first, the power supply is prevented from being returned to the input power supply side even if the regenerative power is generated in the power supply regenerative power circuit. The regenerative operation is stopped, and then the resistance discharge unit can be connected to the DC link section so that the surplus regenerative power can be resistance-discharged when the regenerative power is generated. The motor and the work motor are decelerated while maintaining a predetermined synchronization with each other, and the tool shaft feed motor is controlled by the regenerative power generated by the deceleration operation of these motors so that the tool can be retracted to a safe area. ing.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の停電時制御方法の流れを示すフ
ローチャートである。この図において、停電時の制御を
行う本発明の停電時制御方法によれば、まず、ワークと
工具とが同期して数値制御されている機械において、加
工中に停電が発生したかどうかが監視されている(ステ
ップS1)。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing a flow of a power failure control method of the present invention. In this figure, according to the power failure control method of the present invention for controlling during power failure, first, in a machine in which a workpiece and a tool are numerically controlled in synchronization, it is monitored whether or not a power failure occurs during machining. (Step S1).

【0010】ステップS1において、もし停電が検出さ
れたならば、工具用モータ、ワーク用モータ及び工具軸
送り用モータのためのアンプに電源を供給している電源
回生パワー回路の電源回生動作を停止させる(ステップ
S2)。これによって、モータの減速時に発生する回生
パワーを停電中の入力電源に戻さないようにする。
If a power failure is detected in step S1, the power regeneration operation of the power regeneration circuit that supplies power to the amplifiers for the tool motor, work motor and tool axis feed motor is stopped. (Step S2). This prevents the regenerative power generated during motor deceleration from returning to the input power supply during a power failure.

【0011】次いで、電源回生パワー回路のDCリンク
部に抵抗放電ユニットを接続可能にして、回生パワーが
所定値以上発生した場合に、所定値以上の回生パワーに
ついてはこれを抵抗放電するようにする(ステップS
3)。
Then, a resistance discharge unit can be connected to the DC link portion of the power regenerative power circuit, and when regenerative power exceeds a predetermined value, the regenerative power above the predetermined value is resistance-discharged. (Step S
3).

【0012】停電時の動作を保証するため無停電電源装
置によって電源バックアップされた数値制御装置によ
り、工具用モータ及びワーク用モータに対して互いに所
定の同期を保ちながら減速する指令を出す(ステップS
4)。
The numerical control device whose power source is backed up by the uninterruptible power supply in order to guarantee the operation during a power failure issues a command to the tool motor and the work motor to decelerate while maintaining a predetermined synchronization with each other (step S).
4).

【0013】そして、工具用モータ及びワーク用モータ
を減速制御することによって発生される回生パワーを工
具軸送り用モータの動力源として使用し、工具をワーク
と干渉しない領域まで退避させるようにしている(ステ
ップS5)。
Then, the regenerative power generated by controlling the deceleration of the tool motor and the work motor is used as a power source of the tool shaft feed motor to retract the tool to a region where it does not interfere with the work. (Step S5).

【0014】図2は本発明の停電時制御装置の構成を示
すブロック図である。図において、10は数値制御装置
(CNC)であり、ホブ盤などの数値制御歯車工作機械
を制御する装置である。この数値制御装置10は、停電
発生時にも制御動作を続けることができるよう、無停電
電源装置11によって電源がバックアップされている。
数値制御装置10の制御出力はアンプ12、13、14
に接続され、これらアンプ12、13、14の出力はそ
れぞれ工具軸送り用モータ15、工具用モータ16、ワ
ーク用モータ17に接続されている。
FIG. 2 is a block diagram showing the configuration of the power failure control device of the present invention. In the figure, 10 is a numerical control device (CNC), which is a device for controlling a numerically controlled gear machine tool such as a hobbing machine. The numerical controller 10 is backed up by an uninterruptible power supply 11 so that the control operation can be continued even when a power failure occurs.
The control outputs of the numerical controller 10 are amplifiers 12, 13, 14
The outputs of these amplifiers 12, 13, and 14 are connected to a tool shaft feed motor 15, a tool motor 16, and a work motor 17, respectively.

【0015】電源回生パワー回路18は、その交流側端
子にたとえば三相交流の商用電源とする入力電源が接続
され、直流側端子にはコンデンサ(図示しない)によっ
て構成されるDCリンク部が接続されている。DCリン
ク部は各アンプ12、13、14及び抵抗放電ユニット
19に並列に接続されている。さらに、停電検出器(U
PS)20が備えられ、この入力は入力電源に接続さ
れ、出力は電源回生パワー回路18、数値制御装置10
及び抵抗放電ユニット19の制御入力に接続されてい
る。
In the power source regenerative power circuit 18, an input power source which is, for example, a three-phase AC commercial power source is connected to the AC side terminal thereof, and a DC link section constituted by a capacitor (not shown) is connected to the DC side terminal thereof. ing. The DC link section is connected in parallel to each of the amplifiers 12, 13, 14 and the resistance discharge unit 19. Furthermore, power failure detector (U
PS) 20 whose input is connected to the input power source and whose output is the power source regenerative power circuit 18 and the numerical controller 10.
And to the control input of the resistance discharge unit 19.

【0016】停電がなく数値制御歯車工作機械が正常に
加工中は、数値制御装置10により工具用モータ16及
びワーク用モータ17は常に同期して運転するように制
御され、工具軸送り用モータ15については工具を加工
開始時にワークに近づけたり加工終了時にワークから離
すように制御される。通常の制御時は、これら工具軸送
り用モータ15、工具用モータ16及びワーク用モータ
17は、アンプ12、13、14が電源回生パワー回路
18から電源供給を受けて駆動制御され、減速制御時に
は、工具軸送り用モータ15、工具用モータ16及びワ
ーク用モータ17より発生される回生パワーがアンプ1
2、13、14及び電源回生パワー回路18を介して入
力電源に帰還される。
While the numerically controlled gear machine tool is normally machined without a power failure, the numerical control device 10 controls the tool motor 16 and the work motor 17 so as to always operate in synchronization with each other. With regard to, the tool is controlled so as to be brought closer to the work at the start of machining or separated from the work at the end of machining. During normal control, the tool shaft feed motor 15, the tool motor 16 and the work motor 17 are driven and controlled by the amplifiers 12, 13 and 14 being supplied with power from the power regeneration circuit 18, and during deceleration control. The regenerative power generated by the tool shaft feed motor 15, the tool motor 16 and the work motor 17 is generated by the amplifier 1
It is fed back to the input power source through the power source regenerative power circuit 18, 2, 13, 14.

【0017】数値制御歯車工作機械の加工運転中に停電
が発生すると、停電検出器20が停電を検出して停電検
出信号を出力する。電源回生パワー回路18は停電検出
信号を受けると、その電源回生動作、すなわちインバー
タ機能を停止し、DCリンク部から入力電源へ回生パワ
ーが戻らないようにする。また、抵抗放電ユニット19
は停電検出信号を受けるとイネーブルにされ、余剰の回
生パワーを抵抗放電するよう動作する。さらに、数値制
御装置10は停電検出信号を受けると、工具用モータ1
6のアンプ13及びワーク用モータ17のアンプ14に
対して、相互に同期を保ちながら減速停止させるよう指
令するとともに、工具軸送り用モータ15のアンプ12
に対して、工具を安全な領域まで退避させるよう指令す
る。これにより、工具用モータ16及びワーク用モータ
17はこれらの制動制御により回生パワーを発生し、こ
の回生パワーはコンバータとして機能するアンプ13及
び14を介してDCリンク部へ戻される。DCリンク部
へ戻された回生パワーは、工具軸送り用モータ15の駆
動用電源として使用され、工具をワークとの干渉位置か
ら遠ざける方向に移動させる。
When a power failure occurs during the machining operation of the numerically controlled gear machine tool, the power failure detector 20 detects the power failure and outputs a power failure detection signal. When the power regenerative power circuit 18 receives the power failure detection signal, the power regenerative operation, that is, the inverter function is stopped so that the regenerative power is not returned from the DC link unit to the input power source. In addition, the resistance discharge unit 19
Is enabled when it receives a power failure detection signal, and operates to resistively discharge excess regenerative power. Further, when the numerical control device 10 receives the power failure detection signal, the tool motor 1
The amplifier 13 of 6 and the amplifier 14 of the work motor 17 are instructed to decelerate and stop while maintaining mutual synchronization, and the amplifier 12 of the tool axis feed motor 15
Command to retract the tool to a safe area. As a result, the tool motor 16 and the work motor 17 generate regenerative power by their braking control, and this regenerative power is returned to the DC link unit via the amplifiers 13 and 14 functioning as converters. The regenerative power returned to the DC link portion is used as a power source for driving the tool shaft feed motor 15 and moves the tool in a direction away from the interference position with the work.

【0018】図3は停電検出器の一実施例を示す回路図
である。この図において、停電検出器20はその交流入
力に入力電源を受ける三相整流用のブリッジ整流器Bを
有している。このブリッジ整流器Bには平滑用のコンデ
ンサCが接続され、そのコンデンサCには抵抗R1、R
2から成る分圧器が接続され、その分圧器の中点の接続
部には抵抗R3が接続されている。この抵抗R3の他端
はフォトカプラPCの発光ダイオードに接続されてい
る。フォトカプラPCの受光トランジスタはそのコレク
タに電源電圧+Vが供給され、エミッタは抵抗R4を介
して接地電圧0Vに接続されている。そのエミッタと抵
抗R4との接続部は、停電検出器20の出力を構成し、
停電時には停電検出信号が出力される。
FIG. 3 is a circuit diagram showing an embodiment of the power failure detector. In this figure, the power failure detector 20 has a bridge rectifier B for three-phase rectification which receives an input power source at its AC input. A smoothing capacitor C is connected to the bridge rectifier B, and resistors R1 and R are connected to the capacitor C.
A voltage divider composed of 2 is connected, and a resistor R3 is connected to the connection point at the midpoint of the voltage divider. The other end of the resistor R3 is connected to the light emitting diode of the photocoupler PC. The light receiving transistor of the photocoupler PC is supplied with the power supply voltage + V at its collector, and its emitter is connected to the ground voltage 0V through the resistor R4. The connection between the emitter and the resistor R4 constitutes the output of the power failure detector 20,
A power failure detection signal is output during a power failure.

【0019】停電のないときには、入力電源からの電圧
入力があるので、フォトカプラPCの発光ダイオードに
電流が流れている。したがって、受光トランジスタは導
通してそのエミッタ、すなわち停電検出器20の出力に
は、ほぼ+Vの電圧信号が現れている。停電があった場
合には、入力電源からの電圧入力はないので、フォトカ
プラPCの発光ダイオードに電流が流れない。したがっ
て、受光トランジスタは導通しないので、そのエミッ
タ、すなわち停電検出器20の出力は、ほぼ0Vの電圧
信号が現れることになる。この電圧信号が停電検出信号
である。
When there is no power failure, there is a voltage input from the input power source, so current is flowing through the light emitting diode of the photocoupler PC. Therefore, the light receiving transistor is rendered conductive, and a voltage signal of approximately + V appears at the emitter of the light receiving transistor, that is, the output of the power failure detector 20. When there is a power failure, there is no voltage input from the input power source, so no current flows through the light emitting diode of the photocoupler PC. Therefore, since the light receiving transistor does not conduct, a voltage signal of almost 0V appears at the emitter thereof, that is, the output of the power failure detector 20. This voltage signal is the power failure detection signal.

【0020】図4は抵抗放電ユニットの一実施例を示す
回路図である。この図において、抵抗放電ユニット19
は比較器CMPを有し、その反転入力には基準電圧源が
接続されている。基準電圧源は抵抗R5とツェナーダイ
オードZDとによって構成されている。比較器CMPの
非反転入力はDCリンク部の端子電圧を2つの抵抗R
6、R7によって構成される分圧器の中点に接続され
る。比較器CMPの出力は非反転入力との間に比較器C
MPのオン・オフ切り換えにヒステリシス特性を与える
抵抗R8が接続され、電源電圧+Vとの間にはプルアッ
プ抵抗R9が接続されている。比較器CMPの出力はま
た、ANDゲートGの一方の入力に接続されている。A
NDゲートGの他方の入力には停電検出信号がインバー
タIを介して入力されるよう接続されている。そして、
ANDゲートGの出力はスイッチング素子とするパワー
トランジスタTrのベースに接続されている。パワート
ランジスタTrはそのコレクタに放電抵抗ユニット19
の放電抵抗Rの一端が接続され、放電抵抗Rの他端とパ
ワートランジスタTrのエミッタとはこれらの間にDC
リンク部の端子電圧が印加されるよう接続される。
FIG. 4 is a circuit diagram showing an embodiment of the resistance discharge unit. In this figure, the resistance discharge unit 19
Has a comparator CMP, to the inverting input of which a reference voltage source is connected. The reference voltage source is composed of a resistor R5 and a Zener diode ZD. The non-inverting input of the comparator CMP connects the terminal voltage of the DC link unit with two resistors R
6, R7 is connected to the middle point of the voltage divider. The output of the comparator CMP is connected to the non-inverting input of the comparator C.
A resistor R8 that gives a hysteresis characteristic to ON / OFF switching of MP is connected, and a pull-up resistor R9 is connected to the power supply voltage + V. The output of the comparator CMP is also connected to one input of the AND gate G. A
A power failure detection signal is connected to the other input of the ND gate G via an inverter I. And
The output of the AND gate G is connected to the base of a power transistor Tr which serves as a switching element. The power transistor Tr has a discharge resistance unit 19 at its collector.
One end of the discharge resistance R of the power transistor Tr is connected between the other end of the discharge resistance R and the emitter of the power transistor Tr.
It is connected so that the terminal voltage of the link part is applied.

【0021】抵抗放電ユニット19は、停電時以外はイ
ンバータIの入力にHレベルの信号を受けており、した
がって、ANDゲートGの一方の入力にはインバータI
によって反転されたLレベルの信号が入力されることに
なるので、ANDゲートGの出力は常にLレベルの信号
となり、パワートランジスタTrがオン制御されること
はない。
The resistance discharge unit 19 receives an H level signal at the input of the inverter I except when there is a power failure. Therefore, one input of the AND gate G receives the inverter I.
Since the inverted L level signal is input by, the output of the AND gate G is always an L level signal, and the power transistor Tr is not ON-controlled.

【0022】停電発生時は、インバータIの入力にLレ
ベルの停電検出信号を受けることになる。すると、AN
DゲートGの一方の入力はインバータIによって反転さ
れたHレベルの信号になるので、ANDゲートGは比較
器CMPの出力状態によってパワートランジスタTrを
制御することになる。
When a power failure occurs, the input of the inverter I receives the L level power failure detection signal. Then AN
Since one input of the D gate G becomes an H level signal inverted by the inverter I, the AND gate G controls the power transistor Tr according to the output state of the comparator CMP.

【0023】DCリンク部の端子電圧が基準電圧源によ
って定められる電圧以上の場合、比較器CMPの出力は
Hレベルとなり、パワートランジスタTrはオン制御さ
れる。これにより、DCリンク部の端子電圧は放電抵抗
Rに印加され、消費されることになる。すなわち、放電
抵抗Rが発電機として作用するモータの負荷となり、こ
れによってモータは減速される。
When the terminal voltage of the DC link section is equal to or higher than the voltage determined by the reference voltage source, the output of the comparator CMP becomes H level and the power transistor Tr is ON-controlled. As a result, the terminal voltage of the DC link section is applied to the discharge resistance R and consumed. That is, the discharge resistance R becomes a load of the motor that acts as a generator, and the motor is decelerated by this.

【0024】抵抗放電によりDCリンク部の端子電圧が
基準電圧源によって定められる電圧以下になると、比較
器CMPの出力はLレベルとなり、パワートランジスタ
Trはオフ制御される。これにより、DCリンク部の端
子電圧は放電抵抗Rにて消費されなくなる。
When the terminal voltage of the DC link section becomes equal to or lower than the voltage determined by the reference voltage source due to resistance discharge, the output of the comparator CMP becomes L level and the power transistor Tr is turned off. As a result, the terminal voltage of the DC link unit is not consumed by the discharge resistance R.

【0025】抵抗放電がなくなると、DCリンク部の端
子電圧は回復し、再び端子電圧が所定の電圧以上になる
と、抵抗放電が再開される。このようにして、DCリン
ク部の端子電圧が、所定の電圧以上では抵抗放電をする
とともに所定の電圧以下には下がらないようにすること
で、DCリンク部の端子電圧を入力電源として使用して
いる工具軸送り用モータ15の動作を保証するようにし
ている。
When the resistance discharge disappears, the terminal voltage of the DC link portion recovers, and when the terminal voltage becomes equal to or higher than a predetermined voltage, the resistance discharge is restarted. In this way, the terminal voltage of the DC link unit is used as the input power source by preventing the terminal discharge of the DC link unit from being lower than the predetermined voltage while causing the resistance discharge. The operation of the tool shaft feed motor 15 is ensured.

【0026】[0026]

【発明の効果】以上説明したように本発明では、同期運
転中に停電が発生すると、工具用モータ及びワーク用モ
ータを互いに所定の同期を保ちながら減速させ、これら
モータの減速運転時に得られる回生パワーで工具軸送り
用モータを制御して工具を安全な領域まで退避させるよ
うにしている。これにより、ワークと工具とが同期して
数値制御される機械において停電が発生しても、工具及
びワークを破損する事がなくなる。
As described above, in the present invention, when a power failure occurs during the synchronous operation, the tool motor and the work motor are decelerated while maintaining a predetermined synchronization with each other, and the regenerative operation obtained during the deceleration operation of these motors is performed. Power is used to control the tool shaft feed motor to retract the tool to a safe area. As a result, even if a power failure occurs in a machine in which the work and the tool are numerically controlled in synchronization, the tool and the work will not be damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の停電時制御方法の流れを示すフローチ
ャートである。
FIG. 1 is a flowchart showing the flow of a power failure control method of the present invention.

【図2】本発明の停電時制御装置の構成を示すブロック
図である。
FIG. 2 is a block diagram showing a configuration of a power failure control device of the present invention.

【図3】停電検出器の一実施例を示す回路図である。FIG. 3 is a circuit diagram showing an embodiment of a power failure detector.

【図4】抵抗放電ユニットの一実施例を示す回路図であ
る。
FIG. 4 is a circuit diagram showing an embodiment of a resistance discharge unit.

【図5】ホブ盤の加工概念を示す斜視図である。FIG. 5 is a perspective view showing a concept of processing a hobbing machine.

【符号の説明】[Explanation of symbols]

10 数値制御装置(CNC) 11 無停電電源装置 12、13、14 アンプ 15 工具軸送り用モータ 16 工具用モータ 17 ワーク用モータ 18 電源回生パワー回路 19 抵抗放電ユニット 20 停電検出器 10 Numerical Control Unit (CNC) 11 Uninterruptible Power Supply 12, 13, 14 Amplifier 15 Tool Axis Feed Motor 16 Tool Motor 17 Work Motor 18 Power Regeneration Power Circuit 19 Resistance Discharge Unit 20 Power Failure Detector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ワークと工具とが同期して数値制御され
る機械の停電時の制御を行う停電時制御方法において、 停電検出に応答して工具用モータ、ワーク用モータ及び
工具軸送り用モータを駆動するアンプと入力電源との間
に設置されている電源回生パワー回路の電源回生動作を
停止させ、 前記アンプと前記電源回生パワー回路との間に接続され
たDCリンク部に抵抗放電ユニットを接続可能にし、 無停電電源装置によって電源バックアップされた数値制
御装置により、前記工具用モータ及びワーク用モータに
対して互いに所定の同期を保ちながら減速する指令を出
し、 前記工具用モータ及びワーク用モータの減速動作によっ
て発生される回生パワーを基に、前記数値制御装置によ
り前記工具軸送り用モータを駆動して、工具をワークと
干渉しない領域まで退避させる、 ことからなることを特徴とする停電時制御方法。
1. A power failure control method for performing a power failure control of a machine in which a work and a tool are numerically controlled in synchronization with each other, wherein a tool motor, a work motor, and a tool axis feed motor are responsive to a power failure detection. The power regeneration operation of the power regeneration power circuit installed between the amplifier for driving the power source and the input power source is stopped, and the resistance discharge unit is connected to the DC link section connected between the amplifier and the power regeneration power circuit. A numerical control device that can be connected and whose power is backed up by an uninterruptible power supply issues a command to the tool motor and the work motor to decelerate while maintaining predetermined synchronization with each other, and the tool motor and the work motor Based on the regenerative power generated by the deceleration operation of the tool, the numerical control device drives the tool shaft feed motor to move the tool to and from the workpiece. Power failure control method characterized by retracting to a region that does not consist.
【請求項2】 前記抵抗放電ユニットを接続可能にする
ステップは、前記工具用モータ及びワーク用モータから
の回生パワーが所定値以上になったとき、前記抵抗放電
ユニットを接続して前記回生パワーを抵抗放電するよう
にしたことを特徴とする請求項1記載の停電時制御方
法。
2. The step of enabling connection of the resistance discharge unit includes connecting the resistance discharge unit to supply the regenerative power when the regenerative power from the tool motor and the work motor exceeds a predetermined value. 2. The power failure control method according to claim 1, wherein the discharge is performed by resistance discharge.
【請求項3】 ワークと工具とが同期して数値制御され
る機械の停電時の制御を行う停電時制御装置において、 入力電源の停電を検出する停電検出装置と、 ワーク、工具及び工具軸送り用のアンプ及びモータが制
御可能に接続されていて、前記停電検出装置からの停電
検出信号に応答して前記ワーク用及び工具用のモータを
減速制御するとともに、前記工具軸送り用のモータを駆
動して工具をワークと干渉しない領域まで退避させる、
数値制御装置と、 交流の入力電源を直流電圧に変換したり前記モータの制
動制御によって発生された回生パワーを変換して入力電
源側に戻す機能を有し、前記停電検出装置から停電検出
信号を受けたときには前記回生パワーを変換する機能が
停止される、電源回生パワー回路と、 前記電源回生パワー回路と前記アンプとの接続部である
DCリンク部に接続され、前記停電検出装置からの停電
検出信号に応答して、前記工具用及びワーク用のモータ
からの回生パワーが所定値以上になったとき、前記DC
リンク部の回生パワーを抵抗放電させる、抵抗放電ユニ
ットと、 を備えていることを特徴とする停電時制御装置。
3. A power failure control device for detecting a power failure of an input power source in a power failure control device for controlling a machine during a power failure in which a work and a tool are numerically controlled synchronously, and a work, a tool and a tool axis feed. An amplifier and a motor for control are connected in a controllable manner, and decelerate the work and tool motors in response to a power failure detection signal from the power failure detection device, and drive the tool axis feeding motor. And retract the tool to the area where it does not interfere with the work,
It has a numerical control device and a function to convert AC input power to DC voltage or to convert regenerative power generated by braking control of the motor and return it to the input power supply side. When the power is received, the function for converting the regenerative power is stopped, and the power regenerative power circuit is connected to the DC link unit that is the connection between the power regenerative power circuit and the amplifier, and the power failure detection device detects a power failure. In response to the signal, when the regenerative power from the tool and work motors exceeds a predetermined value, the DC
A power failure control device comprising: a resistance discharge unit that resistance-discharges the regenerative power of the link section.
【請求項4】 前記数値制御装置は、無停電電源装置が
接続されていて電源バックアップされていることを特徴
とする請求項3記載の停電時制御装置。
4. The power failure control device according to claim 3, wherein an uninterruptible power supply device is connected to the numerical control device for power backup.
【請求項5】 前記ワークと工具とが同期して数値制御
される機械は、歯車加工機であることを特徴とする請求
項3記載の停電時制御装置。
5. The power failure control device according to claim 3, wherein the machine in which the work and the tool are numerically controlled in synchronization is a gear processing machine.
【請求項6】 前記ワークと工具とが同期して数値制御
される機械は、歯車研削盤であることを特徴とする請求
項3記載の停電時制御装置。
6. The power failure control device according to claim 3, wherein the machine in which the work and the tool are numerically controlled in synchronization is a gear grinding machine.
JP6185716A 1994-08-08 1994-08-08 Power outage control method and device Expired - Fee Related JP3001377B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6185716A JP3001377B2 (en) 1994-08-08 1994-08-08 Power outage control method and device
US08/898,643 US5814956A (en) 1994-08-08 1997-07-22 Method and apparatus for control in power failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185716A JP3001377B2 (en) 1994-08-08 1994-08-08 Power outage control method and device

Publications (2)

Publication Number Publication Date
JPH0854914A true JPH0854914A (en) 1996-02-27
JP3001377B2 JP3001377B2 (en) 2000-01-24

Family

ID=16175607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185716A Expired - Fee Related JP3001377B2 (en) 1994-08-08 1994-08-08 Power outage control method and device

Country Status (2)

Country Link
US (1) US5814956A (en)
JP (1) JP3001377B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037466A1 (en) * 1997-02-19 1998-08-27 Mitsubishi Denki Kabushiki Kaisha Personal computer-incorporated numerical controller
US6626735B2 (en) 2000-10-03 2003-09-30 Nippei Toyama Corporation Method of stopping machining operation in machine tool and machining controlling apparatus for implementing the same
JP2013538550A (en) * 2010-09-03 2013-10-10 トラネ アンド トラネ アクティーゼルスカブ Assembly comprising a moving part and a brakeable or dampening part and method for braking a moving part
DE102013106326A1 (en) 2012-06-25 2014-01-02 Fanuc Corporation Motor control device for reducing the power consumption by the control power supply in case of power failure
DE102013010272A1 (en) 2012-06-25 2014-01-02 Fanuc Corporation A motor control device that reduces the power consumed by a control power source during power failure
DE102013011483A1 (en) 2012-07-17 2014-01-23 Fanuc Corporation Drive device for a motor with a storage unit for electrical energy
KR101412378B1 (en) * 2011-08-18 2014-06-25 화낙 코퍼레이션 Positioning device that performs retracting action using air balance
JP2015232838A (en) * 2014-06-10 2015-12-24 ファナック株式会社 Motor control device and motor control method protecting tool and work-piece during outage
DE102015014701A1 (en) 2014-11-21 2016-05-25 Fanuc Corporation Numerical control device for retraction control
JP2016197996A (en) * 2016-08-31 2016-11-24 ファナック株式会社 Motor control device capable of taking measures against power failure
US9960721B2 (en) 2013-04-10 2018-05-01 Fanuc Corporation Motor control device provided with power failure management
WO2020188616A1 (en) * 2019-03-15 2020-09-24 株式会社Fuji Servo amplifier system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526800B1 (en) * 1998-04-08 2003-03-04 Lillbacka Jetair Oy Sheet fabrication center and methods therefor of optimally fabricating worksheets
US6291951B1 (en) * 2000-03-21 2001-09-18 Valiant Machine & Tool Inc. Holding brake control circuit for servo-motor
DE10018774B4 (en) * 2000-04-15 2005-08-25 Koenig & Bauer Ag Method and circuit arrangement for position-controlled stopping of rotating components in shaftless drives in the event of power failure
US7130169B2 (en) * 2002-04-10 2006-10-31 Texas Instruments Incorporated Short circuit protection for a power isolation device and associated diode
KR100488528B1 (en) * 2003-05-16 2005-05-11 삼성전자주식회사 Power supply device for motor
AT502079B1 (en) * 2004-05-28 2007-05-15 Knapp Logistik Automation SHELVING SYSTEM WITH ENERGY RECYCLING
DE102004057814B4 (en) * 2004-11-30 2014-02-06 Daimler Ag Method for controlling the position of workpiece and tool with a robot in a processing machine
US7781912B2 (en) * 2006-05-15 2010-08-24 Bloom Energy Corporation Uninterruptible power supply with opto-electric couplers for detecting the status of each source
JP4838782B2 (en) * 2007-09-20 2011-12-14 オークマ株式会社 Machine tool numerical control device
CN101436939A (en) * 2007-11-13 2009-05-20 鸿富锦精密工业(深圳)有限公司 Sensing apparatus for AC power supply
JP2009225497A (en) * 2008-03-13 2009-10-01 Fanuc Ltd Servo amplifier having power regenerating function
US8324846B2 (en) * 2008-09-15 2012-12-04 Caterpillar Inc. Electric drive retarding system and method
JP5395720B2 (en) 2010-03-29 2014-01-22 オークマ株式会社 Power failure control device
JP5291812B2 (en) * 2012-01-31 2013-09-18 ファナック株式会社 Motor drive control device for limiting motor output
JP6051021B2 (en) 2012-08-09 2016-12-21 日本電産サンキョー株式会社 Industrial robot and control method for industrial robot
JP5602890B2 (en) 2013-01-29 2014-10-08 ファナック株式会社 Motor control device having power storage device and resistance discharge device
JP5628954B2 (en) * 2013-03-29 2014-11-19 ファナック株式会社 Motor control device for synchronously controlling a plurality of motors
JP5845321B1 (en) * 2014-07-08 2016-01-20 ファナック株式会社 System for calculating screw pitch
JP6675259B2 (en) * 2016-04-20 2020-04-01 株式会社マキタ Electric work machine
DE102017119932A1 (en) * 2016-09-01 2018-03-01 Johnson Electric S.A. Motor driver circuit, application device comprising this and braking method for a motor
JP7104613B2 (en) * 2018-12-05 2022-07-21 オークマ株式会社 Machine tool control device
CN111262477A (en) * 2020-01-17 2020-06-09 珠海格力电器股份有限公司 Regenerative braking circuit and air conditioner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991352A (en) * 1975-06-19 1976-11-09 Westinghouse Electric Corporation Apparatus and method for reducing effective inductance in a dynamic braking circuit
FR2493629A1 (en) * 1980-10-30 1982-05-07 Jeumont Schneider CONTROL CIRCUIT FOR TENSILE OR BRAKING OPERATION OF A DC MOTOR
DD154556A1 (en) * 1980-11-14 1982-03-31 Joachim Ebermann TWIST CONTROLLER ON TOOLING MACHINES WITH A CIRCUIT ARRANGEMENT FOR DAMAGE PROCESSING
US4423363A (en) * 1981-07-27 1983-12-27 General Electric Company Electrical braking transitioning control
JPS58154380A (en) * 1982-03-09 1983-09-13 Mitsubishi Electric Corp Controller for ac elevator
US4672177A (en) * 1985-11-12 1987-06-09 International Business Machines Corporation Environmental sensor control of a heated fuser
JPS63137597U (en) * 1987-02-26 1988-09-09
DE4011598A1 (en) * 1990-04-10 1991-10-17 Rieter Ag Maschf TEXTILE MACHINE, PARTICULAR RING SPINNING MACHINE
JPH0544118A (en) * 1991-07-31 1993-02-23 Howa Mach Ltd Controller in roving frame
US5228814A (en) * 1991-11-25 1993-07-20 The Gleason Works Gear hobbing machine
US5291106A (en) * 1992-11-23 1994-03-01 General Motors Corporation Single current regulator for controlled motoring and braking of a DC-fed electric motor
US5473238A (en) * 1993-10-18 1995-12-05 Allegro Microsystems, Inc. Disc drive power management system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2337617A (en) * 1997-02-19 1999-11-24 Mitsubishi Denki Kabushiki Kaisha Personal computer-incorporated numerical controller
GB2337617B (en) * 1997-02-19 2002-08-14 Mitsubishi Electric Corp Personal computer built-in numerical control system
DE19882121B3 (en) * 1997-02-19 2011-11-24 Mitsubishi Denki K.K. In a personal computer built-in numerical control system
WO1998037466A1 (en) * 1997-02-19 1998-08-27 Mitsubishi Denki Kabushiki Kaisha Personal computer-incorporated numerical controller
US6626735B2 (en) 2000-10-03 2003-09-30 Nippei Toyama Corporation Method of stopping machining operation in machine tool and machining controlling apparatus for implementing the same
JP2013538550A (en) * 2010-09-03 2013-10-10 トラネ アンド トラネ アクティーゼルスカブ Assembly comprising a moving part and a brakeable or dampening part and method for braking a moving part
KR101412378B1 (en) * 2011-08-18 2014-06-25 화낙 코퍼레이션 Positioning device that performs retracting action using air balance
US8793988B2 (en) 2011-08-18 2014-08-05 Fanuc Corporation Positioning device that performs retracting action using air balance
US8878388B2 (en) 2012-06-25 2014-11-04 Fanuc Corporation Motor control device that decreases power consumed by control power source when power fails
DE102013010272A1 (en) 2012-06-25 2014-01-02 Fanuc Corporation A motor control device that reduces the power consumed by a control power source during power failure
US8823306B2 (en) 2012-06-25 2014-09-02 Fanuc Corporation Motor control device that decreases power consumed by control power source when power fails
DE102013106326B4 (en) * 2012-06-25 2017-10-05 Fanuc Corporation Motor control device for reducing the power consumption by the control power supply in case of power failure
DE102013106326A1 (en) 2012-06-25 2014-01-02 Fanuc Corporation Motor control device for reducing the power consumption by the control power supply in case of power failure
DE102013010272B4 (en) * 2012-06-25 2020-09-03 Fanuc Corporation Motor control device that reduces the energy consumed by a control power source in the event of a power failure
DE102013011483A1 (en) 2012-07-17 2014-01-23 Fanuc Corporation Drive device for a motor with a storage unit for electrical energy
US9054620B2 (en) 2012-07-17 2015-06-09 Fanuc Corporation Motor driving device including electric storage device
US9960721B2 (en) 2013-04-10 2018-05-01 Fanuc Corporation Motor control device provided with power failure management
JP2015232838A (en) * 2014-06-10 2015-12-24 ファナック株式会社 Motor control device and motor control method protecting tool and work-piece during outage
DE102015007225B4 (en) * 2014-06-10 2017-03-09 Fanuc Corporation Motor control system and method with protection of the tool and the workpiece in the event of a power failure
US10012974B2 (en) 2014-06-10 2018-07-03 Fanuc Corporation Motor control system and motor control method which protect tool and workpiece at time of power outage
CN105629884A (en) * 2014-11-21 2016-06-01 发那科株式会社 Numerical controller for retraction control
US10007248B2 (en) 2014-11-21 2018-06-26 Fanuc Corporation Numerical controller for retraction control
DE102015014701A1 (en) 2014-11-21 2016-05-25 Fanuc Corporation Numerical control device for retraction control
JP2016197996A (en) * 2016-08-31 2016-11-24 ファナック株式会社 Motor control device capable of taking measures against power failure
WO2020188616A1 (en) * 2019-03-15 2020-09-24 株式会社Fuji Servo amplifier system
JPWO2020188616A1 (en) * 2019-03-15 2021-10-14 株式会社Fuji Servo amplifier system
CN113545184A (en) * 2019-03-15 2021-10-22 株式会社富士 Servo amplifier system
CN113545184B (en) * 2019-03-15 2022-12-13 株式会社富士 Servo amplifier system

Also Published As

Publication number Publication date
JP3001377B2 (en) 2000-01-24
US5814956A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP3001377B2 (en) Power outage control method and device
JP3369346B2 (en) Power outage control device
CN102205512B (en) Control device for machine tool
US4985841A (en) Tapping control system
JPH06284764A (en) Position controller for servomotor
JP3472433B2 (en) Power failure fall prevention control device
US10012974B2 (en) Motor control system and motor control method which protect tool and workpiece at time of power outage
GB2088592A (en) Machine tool control
JPH08149870A (en) Emergency stopping circuit of synchronous motor
JPH10271866A (en) Power supply circuit
JPH11202926A (en) Method and device for feed speed control in numerical control
JPH03178721A (en) Synchronous tapping device of numerically controlled machine tool
JPS6317561B2 (en)
JPH05305554A (en) Nc machine tool and tool breakage preventing method for nc machine tool
JP2527588B2 (en) Spindle motor control method for machine tools and its control device
JPS62224519A (en) Rigid tapping control system
JPH0258053B2 (en)
JP2650771B2 (en) Electric discharge machining method and equipment
JPS62228345A (en) Control circuit for a.c. motor
JPS58132440A (en) Control of machine tool
JPH0217237A (en) Method for controlling brake of gravity shaft
JPH1071440A (en) Feeder control device for press
KR200146990Y1 (en) Position control function of milling machine by manual pulse device
JPH0421377A (en) Dynamic brake unit for synchronous motor
JPH05301147A (en) Lathe and small diameter drill machining method in lathe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees