JPH0854600A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPH0854600A
JPH0854600A JP18712594A JP18712594A JPH0854600A JP H0854600 A JPH0854600 A JP H0854600A JP 18712594 A JP18712594 A JP 18712594A JP 18712594 A JP18712594 A JP 18712594A JP H0854600 A JPH0854600 A JP H0854600A
Authority
JP
Japan
Prior art keywords
voltage
scanning
liquid crystal
crystal display
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18712594A
Other languages
Japanese (ja)
Other versions
JP3088910B2 (en
Inventor
Aya Kawaji
彩 河路
Katsuhiko Kumakawa
克彦 熊川
Yoshinori Furubayashi
好則 古林
Yoneji Takubo
米治 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP06187125A priority Critical patent/JP3088910B2/en
Publication of JPH0854600A publication Critical patent/JPH0854600A/en
Application granted granted Critical
Publication of JP3088910B2 publication Critical patent/JP3088910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a driving method which can depress the occurrence of luminance irregularity in liquid crystal display devices irrespective of the display pattern. CONSTITUTION:In the voltage impressed on the scanning electrodes, non-scanning voltage periods (quiescent period) are placed between the scanning pulses (a) and (b), and between the scanning pulses (b) and (c). And as seen in (d), (e), (f), the voltage impressed on the signal electrodes gives the drive waveforms which have quiescent periods where the potential is the same as the non- scanning voltage in the scanning electrode drive irrespective of displayed data. By this, the switching times (frequency component) of each signal voltage waveform are the same and luminance irregularity is mitigated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、マトリクス型の液晶
表示装置の駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving method of a matrix type liquid crystal display device.

【0002】[0002]

【従来の技術】従来のマトリクス型液晶表示装置の駆動
方法としては、非選択期間に印加する実効電圧を一定に
する電圧平均化法が一般的である(例えば特開昭50−
68419号公報)。例えば、図15のパターンを表示
した場合について説明する。図15において、1,2,
3は画素、100,110,120,130,140,
150,160は走査電極、200,210,220は
信号電極であり、図中、走査電極と信号電極の交差部分
(画素)における斜線部は黒表示、斜線のない部分は白
表示を示す。図16は図15の走査電極100に関わる
部分の等価回路を示している。また、図17は従来の電
圧平均化法における印加電圧波形図で、(a),
(b),(c)はそれぞれ図15の走査電極100,1
10,120に印加する走査電極印加電圧波形図、同図
(d),(e),(f)はそれぞれ信号電極200,2
10,220に印加する信号電極印加電圧波形図であ
る。
2. Description of the Related Art As a conventional driving method of a matrix type liquid crystal display device, a voltage averaging method is generally used in which an effective voltage applied during a non-selection period is constant (for example, Japanese Patent Laid-Open No. Sho 50-50).
No. 68419). For example, a case where the pattern of FIG. 15 is displayed will be described. In FIG. 15, 1, 2,
3 is a pixel, 100, 110, 120, 130, 140,
Reference numerals 150 and 160 denote scanning electrodes, and reference numerals 200, 210, and 220 denote signal electrodes. In the drawing, the shaded portions at the intersections (pixels) of the scan electrodes and the signal electrodes indicate black display, and the portions without hatching indicate white display. FIG. 16 shows an equivalent circuit of a portion related to the scan electrode 100 of FIG. FIG. 17 is a waveform diagram of applied voltage in the conventional voltage averaging method.
15B and 15C are scan electrodes 100 and 1 of FIG. 15, respectively.
Waveforms of voltage applied to the scanning electrodes applied to the electrodes 10 and 120, (d), (e), and (f) of FIG.
FIG. 6 is a waveform diagram of voltage applied to signal electrodes applied to 10, 220.

【0003】走査電極と信号電極との交差点におけるそ
れぞれの電位差が各画素に印加される。画素のON(オ
ン)/OFF(オフ)は信号電極印加電圧により決定
し、これと走査電極印加電圧パルスとの差により、ON
/OFF実効値をとる。
Each potential difference at the intersection of the scan electrode and the signal electrode is applied to each pixel. ON / OFF of the pixel is determined by the voltage applied to the signal electrode, and turned on by the difference between this and the voltage pulse applied to the scan electrode.
/ OFF Takes the effective value.

【0004】[0004]

【発明が解決しようとする課題】この従来の電圧平均化
法においては、図17(d),(e),(f)に示すよ
うに表示パターンによって信号電極印加電圧波形が異な
ったものとなる。また実際に各画素に印加される電圧
は、パネルの電極抵抗や液晶容量の影響のため、これら
の異なった各信号電極印加電圧波形により複雑に歪んで
しまう。このため印加すべき実効電圧とは異なった実効
電圧が加わり、表示むらとなって画質が著しく低下して
しまうという問題点を有していた。
In this conventional voltage averaging method, the signal electrode applied voltage waveform differs depending on the display pattern as shown in FIGS. 17 (d), (e) and (f). . Further, the voltage actually applied to each pixel is complicatedly distorted by these different signal electrode applied voltage waveforms due to the influence of the electrode resistance of the panel and the liquid crystal capacitance. Therefore, there is a problem that an effective voltage different from the effective voltage to be applied is applied, resulting in display unevenness and the image quality is significantly deteriorated.

【0005】次にその内容について説明する。図16の
等価回路に示すようにノード101,102,103に
おける走査電圧は、図18(a)に示すように、走査電
極100の抵抗Rおよび画素容量Cにより信号電圧の変
化時に歪みが生じる。ここで、ノード99と101の間
の抵抗に比べ、ノード101と103の間の抵抗は小さ
く、101,102,103の電位はほぼ等しい。ま
た、ノード201,211,221は図18(b),
(c),(d)に示すように、信号電極の抵抗rおよび
画素容量Cにより波形の歪みが生じる。このため、図1
5の画素1,2,3に印加される電圧は、図18
(e),(f),(g)のようになり、同じON実効値
をとらなければいけないものが、実際は異なった実効値
をとり、輝度むらの原因となる。この現象は、表示容量
の増加に伴う駆動周波数の高周波化および電圧抵抗の増
加等によってより顕著になる。
Next, the contents will be described. As shown in the equivalent circuit of FIG. 16, the scan voltages at the nodes 101, 102, and 103 are distorted when the signal voltage changes due to the resistance R of the scan electrode 100 and the pixel capacitance C, as shown in FIG. Here, the resistance between the nodes 101 and 103 is smaller than the resistance between the nodes 99 and 101, and the potentials of 101, 102, and 103 are substantially equal. Further, the nodes 201, 211, 221 are shown in FIG.
As shown in (c) and (d), the waveform r is distorted by the resistance r of the signal electrode and the pixel capacitance C. For this reason,
The voltage applied to the pixels 1, 2, and 3 of FIG.
(E), (f), (g), which have to take the same ON effective value, actually have different effective values, which causes uneven brightness. This phenomenon becomes more remarkable as the drive frequency becomes higher and the voltage resistance increases as the display capacity increases.

【0006】これらの歪量を計算するため、いま1つの
信号電圧の変化による走査電圧の歪量および信号電圧の
歪量をそれぞれ1単位と仮定すると、各表示データによ
り歪量が異なっている非選択期間taにおける2フィー
ルドでの画素電圧(走査側印加電圧−信号側印加電圧)
歪量は、それぞれ−28,−20,−8となり(歪量差
最大20)、本来同じ輝度であるべき画素1,2,3に
印加される実効電圧は異なり、輝度むらが生じてしま
う。
In order to calculate these distortion amounts, assuming that the distortion amount of the scanning voltage and the distortion amount of the signal voltage due to the change of one signal voltage are each one unit, the distortion amount differs depending on each display data. Pixel voltage in two fields in the selection period ta (scanning side applied voltage-signal side applied voltage)
The distortion amounts are −28, −20, and −8 (distortion amount maximum 20), and the effective voltages applied to the pixels 1, 2, and 3 which should originally have the same brightness are different, and uneven brightness occurs.

【0007】また、上記走査電圧の歪量を除去するため
に走査電極の歪電圧を検出し、この検出された走査電圧
歪量をもとに走査電圧に補正電圧をフィードバックする
方法がある(例えば、特願62−74607号、また
「単純マトリクスLCDのクロストーク表示むら低減の
ための新駆動法」,電子情報通信学会信学技報199
2,41ページ)。しかし、この方法では走査電圧の歪
に起因する輝度むらは除去できるが、各信号電圧波形の
切り替わり回数差(周波数成分差)に起因する輝度むら
は完全には除去することができない。また次に、信号電
圧波形の切り替わり回数差を均一化するために、1走査
期間(1走査線を選択している期間)の整数倍で全駆動
の極性を反転してやるという方法がある(例えば特開昭
60−19195号公報)。しかしこの方法では、設定
した極性反転周期によって走査線フリッカーが生じた
り、またこれらを回避する極性反転周期にすると信号電
圧波形の切り替わり回数差が表示パターンによっては均
一にならなく、やはり輝度むらが生じる結果となってい
た。
In addition, there is a method of detecting the distortion voltage of the scanning electrode in order to remove the distortion amount of the scanning voltage and feeding back the correction voltage to the scanning voltage based on the detected distortion amount of the scanning voltage (for example, , Japanese Patent Application No. 62-74607, "New driving method for reducing crosstalk unevenness of simple matrix LCD", IEICE Technical Bulletin 199
2, 41). However, although this method can remove the brightness unevenness caused by the distortion of the scanning voltage, it cannot completely remove the brightness unevenness caused by the difference in the number of switching of each signal voltage waveform (frequency component difference). Next, in order to equalize the difference in the number of times the signal voltage waveforms are switched, there is a method of inverting the polarity of all driving in an integral multiple of one scanning period (a period in which one scanning line is selected) (for example, (Kaisho 60-19195). However, in this method, scanning line flicker occurs due to the polarity inversion cycle that has been set, and when the polarity inversion cycle is used to avoid these, the difference in the number of times the signal voltage waveform switches is not uniform depending on the display pattern, and brightness unevenness also occurs. It was a result.

【0008】また、図19に示すような中間調表示を行
う場合を考える。図19において、図15と対応する部
分には同一符号を付し、図中、走査電極と信号電極の交
差部分(画素)における実線の斜線部は黒表示、点線の
斜線部は中間調表示、斜線のない部分は白表示を示す。
図20は図19に示すパターンを表示するため印加電圧
波形図で、(a),(b),(c)はそれぞれ走査電極
100,110,120に印加する走査電極印加電圧波
形図、同図(d),(e),(f)はそれぞれ信号電極
200,210,220に印加する信号電極印加電圧波
形図である。この場合の画素1,2,3の走査電極側の
電圧波形を図21(a)に、画素1,2,3の信号電極
側の電圧波形を図21(b),(c),(d)に、画素
1,2,3に印加される電圧波形を図21(e),
(f),(g)に示す。
Further, consider the case where the halftone display as shown in FIG. 19 is performed. In FIG. 19, portions corresponding to those in FIG. 15 are denoted by the same reference numerals, and in the drawing, solid line shaded portions at intersections (pixels) of scan electrodes and signal electrodes are black, dotted shaded portions are halftone display. Areas without diagonal lines show white display.
FIG. 20 is an applied voltage waveform diagram for displaying the pattern shown in FIG. 19, and (a), (b), and (c) are scan electrode applied voltage waveform diagrams applied to the scan electrodes 100, 110, and 120, respectively. (D), (e), (f) are signal electrode applied voltage waveform diagrams applied to the signal electrodes 200, 210, 220, respectively. In this case, the voltage waveforms on the scanning electrode side of the pixels 1, 2 and 3 are shown in FIG. 21A, and the voltage waveforms on the signal electrode side of the pixels 1, 2 and 3 are shown in FIGS. 21B, 21C and 21D. ), The voltage waveforms applied to the pixels 1, 2 and 3 are shown in FIG.
Shown in (f) and (g).

【0009】図20に示すように、1走査期間内におい
てON,OFFデータを階調レベルに応じて切り換える
ことにより中間調を表示するパルス幅変調方式では、階
調データにより信号波形が1走査期間内において切り替
わる時と切り替わらない時が生じ、これによる周波数成
分の違いから上記と同様、図21に示すように階調パタ
ーンにより各画素での電圧歪量が異なり、輝度むらが生
じていた。
As shown in FIG. 20, in the pulse width modulation method in which halftone is displayed by switching ON / OFF data according to a gradation level within one scanning period, a signal waveform is generated by the gradation data during one scanning period. There are times when switching occurs and times when switching does not occur, and due to the difference in frequency component due to this, as in the above case, the amount of voltage distortion in each pixel differs depending on the gradation pattern, resulting in uneven brightness.

【0010】この発明の目的は、上記問題点を解決し、
表示パターンに関係なく、輝度むらの発生を抑制できる
液晶表示装置の駆動方法を提供することである。
An object of the present invention is to solve the above problems,
It is an object of the present invention to provide a driving method of a liquid crystal display device capable of suppressing the occurrence of uneven brightness regardless of the display pattern.

【0011】[0011]

【課題を解決するための手段】請求項1記載の液晶表示
装置の駆動方法は、走査電極群に順次印加する走査パル
スにおける第1の走査パルスとつぎの第2の走査パルス
との間に非走査電圧期間を設け、この非走査電圧期間に
非走査電圧と同電圧を信号電極群に印加することを特徴
とする。
According to a first aspect of the present invention, there is provided a method of driving a liquid crystal display device, wherein a first scan pulse and a second scan pulse in a scan pulse sequentially applied to a scan electrode group are not provided between the first scan pulse and the second scan pulse. A scanning voltage period is provided, and the same voltage as the non-scanning voltage is applied to the signal electrode group during this non-scanning voltage period.

【0012】請求項2記載の液晶表示装置の駆動方法
は、走査電極群に順次印加する走査パルスにおける第1
の走査パルスを印加する第1の期間と第1の走査パルス
のつぎの第2の走査パルスを印加する第2の期間とに跨
がる所定の期間に、非走査電圧と同電圧を信号電極群に
印加することを特徴とする。請求項3記載の液晶表示装
置の駆動方法は、走査電極群に順次印加する走査パルス
における第1の走査パルスとつぎの第2の走査パルスと
の間に非走査電圧期間を設け、この非走査電圧期間を跨
ぐ所定の期間に非走査電圧と同電圧を信号電極群に印加
することを特徴とする。
According to a second aspect of the present invention, there is provided a driving method of a liquid crystal display device, wherein the first scanning pulse is sequentially applied to the scanning electrode group.
The non-scanning voltage is applied to the signal electrode for a predetermined period spanning a first period for applying the second scanning pulse and a second period for applying the second scanning pulse subsequent to the first scanning pulse. It is characterized by applying to a group. The liquid crystal display driving method according to claim 3, wherein a non-scanning voltage period is provided between a first scanning pulse and a next second scanning pulse in the scanning pulse sequentially applied to the scanning electrode group, and the non-scanning voltage period is set. It is characterized in that the same voltage as the non-scanning voltage is applied to the signal electrode group in a predetermined period spanning the voltage period.

【0013】請求項4記載の液晶表示装置の駆動方法
は、請求項1,2または3記載の液晶表示装置の駆動方
法において、信号電圧の変化による走査電極の歪み電圧
と同等な歪み電圧が発生する検出電極を走査電極群を設
けた第2の基板に設け、検出電極に発生した歪み電圧を
もとに走査電極群に電圧補正を行うものである。請求項
5記載の液晶表示装置の駆動方法は、請求項1,2また
は3記載の液晶表示装置の駆動方法において、走査電極
上の給電・終電方向の1画素当りの抵抗を5Ω以下とし
た液晶表示装置を駆動するものである。
According to a fourth aspect of the present invention, there is provided a driving method of the liquid crystal display device according to the first, second or third aspect, in which a distortion voltage equal to the distortion voltage of the scanning electrodes due to a change in signal voltage is generated. The detection electrodes are provided on the second substrate provided with the scanning electrode group, and the voltage is corrected for the scanning electrode group based on the strain voltage generated in the detection electrode. According to a fifth aspect of the present invention, there is provided a liquid crystal display device driving method according to the first, second or third aspect, wherein the resistance per pixel in the power supply / final direction on the scanning electrode is 5Ω or less. It drives a display device.

【0014】請求項6記載の液晶表示装置の駆動方法
は、請求項1,2または3記載の液晶表示装置の駆動方
法において、パルス幅変調方式により中間調を表示する
とともに、各走査期間の中程の所定の期間に非走査電圧
と同電圧を信号電極群に印加することを特徴とする。請
求項7記載の液晶表示装置の駆動方法は、請求項1,2
または3記載の液晶表示装置の駆動方法において、信号
電圧の変化による走査電極の歪み電圧と同等な歪み電圧
が発生する検出電極を走査電極群を設けた第2の基板に
設け、検出電極に発生した歪み電圧をもとに走査電極群
に電圧補正を行い、パルス幅変調方式により中間調を表
示するとともに、各走査期間の中程の所定の期間に非走
査電圧と同電圧を信号電極群に印加することを特徴とす
る。
According to a sixth aspect of the present invention, there is provided a method of driving a liquid crystal display device according to the first, second or third aspect, in which halftones are displayed by a pulse width modulation method and each of the scanning periods is performed. The same voltage as the non-scanning voltage is applied to the signal electrode group during a predetermined period. A method for driving a liquid crystal display device according to claim 7 is the method according to claim 1 or 2.
Alternatively, in the method for driving the liquid crystal display device according to the item 3, a detection electrode that generates a distortion voltage equivalent to the distortion voltage of the scanning electrode due to a change in signal voltage is provided on the second substrate provided with the scanning electrode group, and is generated on the detection electrode. Voltage correction is performed on the scanning electrode group based on the distorted voltage, halftone is displayed by the pulse width modulation method, and the same voltage as the non-scanning voltage is applied to the signal electrode group during a predetermined period in the middle of each scanning period. It is characterized by applying.

【0015】請求項8記載の液晶表示装置の駆動方法
は、請求項1,2または3記載の液晶表示装置の駆動方
法において、走査電極上の給電・終電方向の1画素当り
の抵抗を5Ω以下とした液晶表示装置を駆動し、パルス
幅変調方式により中間調を表示するとともに、各走査期
間の中程の所定の期間に非走査電圧と同電圧を信号電極
群に印加することを特徴とする。
The driving method of the liquid crystal display device according to an eighth aspect is the driving method of the liquid crystal display device according to the first, second or third aspect, wherein the resistance per pixel on the scanning electrode in the power supply / final direction is 5Ω or less. The liquid crystal display device is driven to display halftones by the pulse width modulation method, and the same voltage as the non-scanning voltage is applied to the signal electrode group during a predetermined period in the middle of each scanning period. .

【0016】[0016]

【作用】液晶表示装置を駆動する際の電圧歪みにより生
じる輝度むらには2つの原因が存在する。1つは各信号
電圧波形の表示パターンによる切り替わり回数差(周波
数成分差)による電圧歪差であり、もう1つは、信号電
圧の変化による走査電圧の歪である。
There are two causes for uneven brightness caused by voltage distortion when driving a liquid crystal display device. One is the voltage distortion difference due to the switching frequency difference (frequency component difference) depending on the display pattern of each signal voltage waveform, and the other is the scanning voltage distortion due to the signal voltage change.

【0017】この発明の駆動方法によれば、第1の走査
パルスと第2の走査パルスの間、あるいは第1の走査パ
ルスと第2の走査パルスを跨いだ期間に、走査電極群に
印加する非走査電圧と同電圧を信号電極群に印加するこ
とにより、信号電圧による切り替わり回数差(周波数成
分差)に起因する電圧歪差を表示パターンにかかわらず
一定にし、大表示容量のパネルにおいても輝度むらの少
ない高品位の表示を可能とすることができる。特に、第
1の走査パルスと第2の走査パルスの間に、走査電極群
に印加する非走査電圧と同電圧を信号電極群に印加する
方法では、ON/OFF実効値比を従来と同等にとれる
ため、従来のコントラストを保持した状態で、輝度むら
のない表示を可能とすることができる。
According to the driving method of the present invention, the voltage is applied to the scan electrode group between the first scan pulse and the second scan pulse or in the period when the first scan pulse and the second scan pulse are straddled. By applying the same voltage as the non-scanning voltage to the signal electrode group, the voltage distortion difference due to the switching frequency difference (frequency component difference) due to the signal voltage is made constant regardless of the display pattern, and brightness is maintained even in a large display capacity panel. It is possible to achieve high-quality display with less unevenness. Particularly, in the method of applying the same voltage as the non-scanning voltage applied to the scanning electrode group to the signal electrode group between the first scanning pulse and the second scanning pulse, the ON / OFF effective value ratio is made equal to that of the conventional one. Therefore, it is possible to perform display without brightness unevenness while maintaining the conventional contrast.

【0018】さらに、信号電圧の変化による走査電極の
歪み電圧と同等な歪み電圧が発生する検出電極を設け、
この検出電極に発生した歪み電圧をもとに走査電極群に
電圧補正を行うこと、あるいは、走査電極上の給電・終
電方向の1画素当りの抵抗を5Ω以下とすることによ
り、信号電極の電圧の変化による走査電極の電圧の歪量
を大幅に軽減でき、上記2つの原因を同時に改善するこ
とにより2つの相乗効果が現れ、表示パターンによらず
輝度むらのないより高品位の表示を可能とすることがで
きる。
Further, a detection electrode for generating a strain voltage equivalent to the strain voltage of the scanning electrode due to the change of the signal voltage is provided,
The voltage of the signal electrode is corrected by correcting the voltage of the scanning electrode group based on the distortion voltage generated in the detection electrode, or by setting the resistance per pixel in the feeding / finding direction on the scanning electrode to 5Ω or less. It is possible to significantly reduce the amount of distortion of the voltage of the scanning electrode due to the change of the above. By simultaneously improving the above two causes, two synergistic effects appear, and it is possible to achieve higher quality display without brightness unevenness regardless of the display pattern. can do.

【0019】さらに、パルス幅変調方式により中間調を
表示するとともに、各走査期間の中程の所定の期間に非
走査電圧と同電圧を信号電極群に印加することにより、
どんな中間調データによっても信号電圧の1走査期間内
における切り替わり回数を同じとし、中間調表示を含め
たあらゆる表示パターンにかかわらず、輝度むらのない
高品位の表示を可能とすることができる。
Further, by displaying a halftone by the pulse width modulation method and applying the same voltage as the non-scanning voltage to the signal electrode group in a predetermined period in the middle of each scanning period,
The number of times the signal voltage is switched in one scanning period is the same for any halftone data, and high-quality display with no brightness unevenness can be achieved regardless of any display pattern including halftone display.

【0020】[0020]

【実施例】【Example】

(第1の実施例)以下、この発明の第1の実施例の液晶
表示装置の駆動方法について、図面を参照しながら説明
する。図1および図2はこの発明の第1の実施例の液晶
表示装置の駆動方法における電圧波形図で、図1の
(a),(b),(c)はそれぞれ図15での走査電極
100,110,120に印加する走査電極印加電圧波
形図、図1(d),(e),(f)はそれぞれ信号電極
200,210,220に印加する信号電極印加電圧波
形図で、各画素にはそれぞれの電位差が印加される。図
2(a)は図16のノード101,102,103にお
ける走査電圧波形、図2(b),(c),(d)はノー
ド201,211,221における信号電圧波形、図2
(e),(f),(g)は図15の画素1,2,3に印
加される電圧波形を示す。
(First Embodiment) A method of driving a liquid crystal display device according to a first embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are voltage waveform diagrams in a method of driving a liquid crystal display device according to a first embodiment of the present invention. (A), (b), and (c) of FIG. 1 are scan electrode 100 in FIG. , 110, and 120 are waveform diagrams of scan electrode applied voltage, and FIGS. 1D, 1E, and 1F are signal electrode applied voltage waveform diagrams applied to the signal electrodes 200, 210, and 220, respectively. Are applied with respective potential differences. 2A is a scan voltage waveform at the nodes 101, 102, and 103 of FIG. 16, and FIGS. 2B, 2C, and 2D are signal voltage waveforms at the nodes 201, 211, and 221 of FIG.
(E), (f), (g) show the voltage waveforms applied to the pixels 1, 2, 3 in FIG.

【0021】この実施例では、図17と18,図20と
21に示す従来例同様、走査周期毎に印加電圧の極性を
反転させている。すなわち、はじめの1走査周期では、
図1(a),(b),(c)において、V0を基準電圧
として、V5を走査電圧、V1を非走査電圧とし、図1
(d),(e),(f)において、V0を基準電圧とし
て、V2を選択電圧としている。つぎの1走査周期で
は、図1(a),(b),(c)において、V5を基準
電圧として、V0を走査電圧、V4を非走査電圧とし、
図1(d),(e),(f)において、V5を基準電圧
として、V3を選択電圧としている。したがって、はじ
めの1走査周期とつぎの1走査周期では基準電圧に対す
るすべての電圧の極性が反転し、図2(e),(f),
(g)に示すように、画素1,2,3に印加される電圧
は2走査周期において完全な交流信号となっている。
In this embodiment, as in the conventional example shown in FIGS. 17 and 18 and FIGS. 20 and 21, the polarity of the applied voltage is inverted every scanning cycle. That is, in the first one scanning cycle,
1A, 1B, and 1C, V0 is a reference voltage, V5 is a scanning voltage, and V1 is a non-scanning voltage.
In (d), (e), and (f), V0 is the reference voltage and V2 is the selection voltage. In the next one scanning cycle, in FIGS. 1A, 1B, and 1C, V5 is a reference voltage, V0 is a scanning voltage, and V4 is a non-scanning voltage.
In FIGS. 1D, 1E, and 1F, V5 is the reference voltage and V3 is the selection voltage. Therefore, in the first one scanning cycle and the next one scanning cycle, the polarities of all the voltages with respect to the reference voltage are inverted, and
As shown in (g), the voltage applied to the pixels 1, 2, and 3 is a complete AC signal in two scanning cycles.

【0022】さらにこの実施例では、走査電極印加電圧
は図1(a),(b),(c)に示すように、(a)の
走査パルスと(b)の走査パルスの間、(b)の走査パ
ルスと(c)の走査パルスの間に非走査電圧(V1,V
4)の期間(休止期間)を設けている。そして、信号電
極印加電圧は図1(d),(e),(f)に示すよう
に、走査パルスと走査パルスとの間の期間で、表示デー
タにかかわらず一旦走査電極駆動での非走査電圧と同電
位になるような休止期間を持つ駆動波形を印加するよう
にしている。これにより、各信号電圧波形の切り替わり
回数(周波数成分)はそれぞれ等しくなり、輝度むらが
緩和される。
Further, in this embodiment, as shown in FIGS. 1A, 1B, and 1C, the scanning electrode applied voltage is (b) between the scanning pulse of (a) and the scanning pulse of (b). ) Scanning pulse and (c) scanning pulse, non-scanning voltage (V1, V
The period (4) (pause period) is provided. As shown in FIGS. 1D, 1E, and 1F, the voltage applied to the signal electrode is once in a period between scan pulses and is not scanned by the scan electrode drive regardless of display data. A drive waveform having an idle period so as to have the same potential as the voltage is applied. As a result, the number of times of switching of each signal voltage waveform (frequency component) becomes equal, and uneven brightness is alleviated.

【0023】この実施例の駆動方法では図16のノード
101,102,103における走査電圧は図2(a)
のように歪み、ノード201,211,221における
信号電圧は図2(b),(c),(d)となる。よって
画素1,2,3に印加される電圧は図2(e),
(f),(g)のように歪む。ここで従来例と同様に1
回の信号電圧の変化による走査電圧の歪量および信号電
圧の歪量を1単位とすると、各表示データにより歪量が
異なっている非選択期間taにおける2フィールドでの
電圧歪量はそれぞれ−11.2,−9.6,−8とな
り、従来例に比べそれぞれの画素での歪量差が小さくな
るので(最大差3.1)、輝度むらも大きく改善され
る。
In the driving method of this embodiment, the scanning voltages at the nodes 101, 102 and 103 in FIG. 16 are shown in FIG.
As described above, the signal voltages at the nodes 201, 211, and 221 are as shown in FIGS. 2B, 2C, and 2D. Therefore, the voltage applied to the pixels 1, 2 and 3 is as shown in FIG.
It is distorted as in (f) and (g). Here, as in the conventional example, 1
Assuming that the distortion amount of the scanning voltage and the distortion amount of the signal voltage due to the change of the signal voltage for one time are one unit, the voltage distortion amounts in the two fields in the non-selection period ta in which the distortion amount is different depending on each display data are −11 respectively. ., -9.6, -8, and the difference in distortion amount in each pixel is smaller than that in the conventional example (maximum difference 3.1), so that the uneven brightness is also greatly improved.

【0024】また、この実施例の駆動方法は従来の駆動
方法に対し、画素1,2,3に印加される電圧は、図2
(e),(f),(g)に示すように、休止期間に零電
位が入っているのみである。よってON/OFF電圧実
効値比は、従来の駆動方法における実効値比をほとんど
保つことができ、従来のコントラストを保持した状態
で、輝度むらを低減することができる。
Further, the driving method of this embodiment is different from the conventional driving method in that the voltage applied to the pixels 1, 2 and 3 is as shown in FIG.
As shown in (e), (f), and (g), the zero potential is only applied during the rest period. Therefore, the ON / OFF voltage effective value ratio can almost keep the effective value ratio in the conventional driving method, and the uneven brightness can be reduced while maintaining the conventional contrast.

【0025】このようにこの実施例の駆動方法では、各
信号電圧波形の表示パターンによる切り替わり回数差
(周波数成分差)に起因する電圧歪差を表示パターンに
かかわらず一定とし、大表示容量のパネルにおいても輝
度むらの少ない高品位の表示を可能とすることができ
る。なお、休止期間については、休止期間が少し存在す
るのみでも信号波形の切り替わり回数はどの信号パター
ンにおいても均一となるので、本発明の効果は現れ始
め、輝度むらを改善することができる。また、休止期間
については、液晶表示装置の各信号ラインの持つ抵抗と
容量で決まる時定数による駆動波形切り替わり時のなま
り方により効果が異なる。いま、駆動波形切り替わり時
の画素に印加される信号電極側電位を0%とし、波形切
り替わり後十分時間の経過した定常状態における画素に
印加される信号電極側電位を100%としたとき、波形
切り替わり後、画素に印加される信号電極側電位が50
%に変化した時点までの期間を休止期間とし、実際のパ
ネルで評価を行ったところ、その効果は十分認められ
た。そして、波形切り替わり後、画素に印加される信号
電極側電位が100%以上になった時点までの期間を休
止期間とすることにより、信号電極側の画素電圧に及ぼ
す影響は、どのような表示パターンに対応する駆動を行
っても等しくなり、ほとんど輝度むらは観測されなかっ
た。したがって、休止期間の設定において、少しでも休
止期間を設定することにより本発明の効果は現れ始める
が、上記50%以上の期間を設定することにより効果は
良くなり、上記100%以上の期間を設定することによ
り、その効果は特に良くなる。
As described above, in the driving method of this embodiment, the voltage distortion difference caused by the switching frequency difference (frequency component difference) depending on the display pattern of each signal voltage waveform is made constant regardless of the display pattern, and a large display capacity panel is obtained. Even in the case of “1”, it is possible to realize high-quality display with little unevenness in brightness. Regarding the pause period, the number of times the signal waveform is switched is uniform in any signal pattern even if there are only a few pause periods. Therefore, the effects of the present invention begin to appear, and uneven brightness can be improved. Further, in the pause period, the effect differs depending on how the driving waveform is rounded by the time constant determined by the resistance and capacitance of each signal line of the liquid crystal display device. Now, assuming that the signal electrode side potential applied to the pixel at the time of switching the drive waveform is 0% and the signal electrode side potential applied to the pixel in a steady state in which a sufficient time has elapsed after the waveform switching is 100%, the waveform switching is performed. After that, the signal electrode side potential applied to the pixel is 50
When the period until the time when the percentage changed to% was set as the rest period and the evaluation was performed using an actual panel, the effect was sufficiently observed. After the waveform is switched, by setting the period until the signal electrode side potential applied to the pixel becomes 100% or more as a rest period, the influence on the signal electrode side pixel voltage is Even when the drive corresponding to was performed, the values were equal, and almost no brightness unevenness was observed. Therefore, in the setting of the rest period, the effect of the present invention begins to appear by setting the rest period as much as possible, but the effect is improved by setting the period of 50% or more, and the period of 100% or more is set. By doing so, the effect becomes particularly good.

【0026】また、この実施例では液晶表示モードがし
きい値特性が急峻なSTN(Super−Twiste
d−Nemathic)モードにおいて特にその効果を
大きく発揮できるが、この第1の実施例以下第5の実施
例まで、この発明の駆動方法は液晶の表示モードにかか
わらず、対向面に走査電極群と信号電極群を有する一対
の基板間に液晶を挟持した液晶表示パネルであれば、そ
の他のモードを用いた液晶表示装置でもこの発明の駆動
方法を用いることにより、実施例同様、画素駆動電圧歪
による輝度むらを改善することができる。これに関して
は例えば、TN(Twisted−Nemathic)
モード,電界効果複屈折モード等が挙げられる。
Further, in this embodiment, the liquid crystal display mode has a steep threshold characteristic in STN (Super-Twist).
In the d-Nematic mode, the effect can be particularly exerted. However, according to the driving method of the present invention until the fifth embodiment up to the first embodiment, the scanning electrode group is formed on the facing surface regardless of the display mode of the liquid crystal. As long as the liquid crystal display panel has a liquid crystal sandwiched between a pair of substrates having a signal electrode group, by using the driving method of the present invention in a liquid crystal display device using other modes, pixel driving voltage The uneven brightness can be improved. In this regard, for example, TN (Twisted-Nematic)
Mode, field effect birefringence mode, and the like.

【0027】(第2の実施例)以下、この発明の第2の
実施例の液晶表示装置の駆動方法について、図面を参照
しながら説明する。この実施例における走査電極印加電
圧波形図および信号電極印加電圧波形図は図1に示す第
1の実施例と同様である。しかしこの実施例では、液晶
表示装置における走査電極に、信号電圧の変化による走
査電圧の歪を除去するための回路を付加している。この
実施例における液晶表示装置の回路構成を図3に示す。
図3において、10は液晶パネル、11は走査電極、1
2は信号電極、13は走査ドライバ、14は信号ドライ
バ、15は検出電極、16は検出回路、17は補正電圧
発生回路、18は制御回路、19は駆動電圧発生回路で
ある。図5はこの第2の実施例における電圧波形図であ
り、図2と同様、図5(a)は図16のノード101,
102,103における走査電圧波形、図5(b),
(c),(d)はノード201,211,221におけ
る信号電圧波形、図5(e),(f),(g)は図15
の画素1,2,3に印加される電圧波形を示す。
(Second Embodiment) A method of driving a liquid crystal display device according to a second embodiment of the present invention will be described below with reference to the drawings. The scan electrode applied voltage waveform diagram and the signal electrode applied voltage waveform diagram in this embodiment are the same as those in the first embodiment shown in FIG. However, in this embodiment, a circuit for removing the distortion of the scanning voltage due to the change of the signal voltage is added to the scanning electrode in the liquid crystal display device. The circuit configuration of the liquid crystal display device in this example is shown in FIG.
In FIG. 3, 10 is a liquid crystal panel, 11 is a scanning electrode, 1
Reference numeral 2 is a signal electrode, 13 is a scan driver, 14 is a signal driver, 15 is a detection electrode, 16 is a detection circuit, 17 is a correction voltage generation circuit, 18 is a control circuit, and 19 is a drive voltage generation circuit. FIG. 5 is a voltage waveform diagram in the second embodiment. Like FIG. 2, FIG. 5A shows the node 101 of FIG.
Scanning voltage waveforms at 102 and 103, FIG.
(C) and (d) are signal voltage waveforms at the nodes 201, 211, and 221, and FIGS. 5 (e), (f), and (g) are shown in FIG.
3 shows voltage waveforms applied to the pixels 1, 2, and 3.

【0028】マトリクス型の液晶表示装置では、信号ド
ライバ14によって供給される信号電極印加電圧は、信
号電圧切り替わり時において、液晶によるカップリング
のため、走査電極11上に歪み電圧が発生する。この実
施例では、走査電極側の基板に、走査電極11と同様な
検出電極15を付加することにより、走査電極11と同
様に検出電極15にも歪み電圧が発生する。この検出電
極15に発生した歪み電圧を、例えばオペアンプの入力
端子等で構成された検出回路16により検出し、この検
出電圧を増幅して逆位相にさせる補正電圧発生回路17
を通してもとの走査ドライバ13の駆動電圧ラインに加
えてやるといった方式を用いることにより、走査電極1
1上に発生する電圧歪みを抑えることができる。
In the matrix type liquid crystal display device, the voltage applied to the signal electrode supplied by the signal driver 14 is distorted on the scanning electrode 11 due to the coupling by the liquid crystal when the signal voltage is switched. In this embodiment, by adding the detection electrode 15 similar to the scan electrode 11 to the substrate on the scan electrode side, a strain voltage is generated in the detection electrode 15 as well as the scan electrode 11. The distortion voltage generated in the detection electrode 15 is detected by a detection circuit 16 including, for example, an input terminal of an operational amplifier, and the correction voltage generation circuit 17 that amplifies the detected voltage to make it have an opposite phase.
In addition to the original drive voltage line of the scan driver 13, the scan electrode 1
It is possible to suppress the voltage distortion generated on the upper part.

【0029】なお、この方式は、信号電極印加電圧の切
り替わり時に走査電極11上に発生する電圧歪みを検出
し、それをもとに走査電極11に電圧を補正を行う一例
であり、走査電極11上に発生する電圧歪みを補正でき
る方式であれば、どのような方式を用いても構わない。
この方式により、信号電圧の変化による走査電極の歪量
は、図5(a)のように図2(a)の第1の実施例に比
べて軽減され、1回の信号電圧の切り替わりによる走査
電圧の歪量は第1の実施例の1単位から0.1単位程度
まで低減される。従来例と同様に計算を行うと、画素
1,2,3に印加される電圧は図5(e),(f),
(g)であり、各非選択期間taにおける2フィールド
での第2の実施例の電圧歪量はそれぞれ−4.7,−
4.6,−4.4となり、歪量の差は僅か0.3とほと
んど差がなくなる。
This method is an example of detecting the voltage distortion generated on the scan electrode 11 when the voltage applied to the signal electrode is switched and correcting the voltage on the scan electrode 11 based on the detected voltage distortion. Any method may be used as long as it can correct the voltage distortion generated above.
With this method, the amount of distortion of the scanning electrodes due to the change in the signal voltage is reduced as compared with the first embodiment of FIG. 2A as shown in FIG. 5A, and the scanning is performed by switching the signal voltage once. The amount of voltage distortion is reduced from 1 unit in the first embodiment to about 0.1 unit. When the same calculation as in the conventional example is performed, the voltages applied to the pixels 1, 2, and 3 are as shown in FIGS.
(G), and the voltage distortion amounts of the second embodiment in the two fields in each non-selection period ta are -4.7 and-, respectively.
It becomes 4.6 and -4.4, and the difference in the amount of strain is only 0.3, which is almost no difference.

【0030】またこれに対し、従来の駆動方法で単に信
号電圧の変化による走査電圧の歪を除去する方法を用い
たのみでは、画素1,2,3に印加される電圧の非選択
期間taにおける2フィールドでの電圧歪量はそれぞれ
−11.8,−7.4,−2.6であり、歪量の差は
9.2となり、これでは輝度むらはあまり改善されな
い。この原因は、走査電圧の歪を除去するのみでは、信
号電極駆動電圧波形の切り替わり回数差(周波数成分
差)による歪量の差は改善されないためである。しか
し、この第2の実施例のように、第1の実施例の駆動方
法と走査電極上の歪電圧を除去する方法とを併用するこ
とによって、2つの方法の相乗効果が出て、作用で述べ
た輝度むらの原因の双方を同時に改善することができ、
輝度むらが大きく改善される。
On the other hand, when the conventional driving method is simply used to remove the distortion of the scanning voltage due to the change of the signal voltage, the voltage applied to the pixels 1, 2, 3 is not selected in the non-selection period ta. The amount of voltage distortion in the two fields is -11.8, -7.4, and -2.6, respectively, and the difference between the amounts of distortion is 9.2, which does not improve brightness unevenness very much. This is because the difference in the amount of distortion due to the difference in the number of times the signal electrode drive voltage waveform is switched (difference in frequency component) cannot be improved only by removing the distortion in the scanning voltage. However, as in the second embodiment, by using the driving method of the first embodiment and the method of removing the distorted voltage on the scan electrodes in combination, a synergistic effect of the two methods is produced, and the effect is obtained. Both of the causes of the uneven brightness described can be improved at the same time,
Brightness unevenness is greatly improved.

【0031】なお、図3では、検出電極15を信号電極
12の給電側に設けているが、終電側に設けても上記同
様の効果を得ることができる。また、走査電極上に乗る
歪電圧は、信号電極側から見た給電側と終電側で違いが
あるため、図4に示すように、信号電極12の給電側と
終電側の両方に検出電極15を設け、この2つの検出電
極15からの検出により補正電圧を求めると、さらに精
度よく歪電圧を除去することができる。また、補正方法
に関してはこの第2の実施例に示すもののみならず、信
号電圧変化による走査電圧の歪が除去されるものであれ
ば、第2の実施例同様、第1の実施例における駆動方法
との相乗効果が現れ、作用で述べた輝度むらの原因の双
方を同時に改善することができ、輝度むらを大きく改善
することができる。
Although the detection electrode 15 is provided on the power supply side of the signal electrode 12 in FIG. 3, the same effect as described above can be obtained by providing the detection electrode 15 on the final power supply side. In addition, since the distorted voltage on the scanning electrodes differs between the power supply side and the final power supply side viewed from the signal electrode side, the detection electrodes 15 are provided on both the power supply side and the final power supply side of the signal electrode 12 as shown in FIG. If the correction voltage is obtained by detecting the two detection electrodes 15, the distorted voltage can be removed more accurately. Further, the correction method is not limited to that shown in the second embodiment, and if the distortion of the scanning voltage due to the change in the signal voltage is removed, the driving in the first embodiment is performed like the second embodiment. A synergistic effect with the method appears, both of the causes of the brightness unevenness described in the operation can be simultaneously improved, and the brightness unevenness can be greatly improved.

【0032】なお、図3,図4における検出電極15
は、走査電極11の一部を検出電極の代わりとして用い
ても構わない。 (第3の実施例)以下、この発明の第3の実施例の液晶
表示装置の駆動方法について、図面を参照しながら説明
する。
The detection electrode 15 shown in FIGS.
May use a part of the scanning electrode 11 instead of the detection electrode. (Third Embodiment) A method of driving a liquid crystal display device according to a third embodiment of the present invention will be described below with reference to the drawings.

【0033】この実施例は、第1の実施例では走査電極
のシート抵抗が10Ω/□であり、走査電極上の給電側
から終電側に向かう方向の1画素当りの抵抗が10Ωで
あったものを、走査電極に並設したAlなどの金属の補
助配線により1画素当りの抵抗が1Ωとなるまで下げた
ものである。走査電極印加電圧波形図および信号電極印
加電圧波形図は図1に示す第1の実施例と同様である。
図6はこの第3の実施例における電圧波形図であり、図
2と同様、図6(a)は図16のノード101,10
2,103における走査電圧波形、図6(b),
(c),(d)はノード201,211,221におけ
る信号電圧波形、図6(e),(f),(g)は図15
の画素1,2,3に印加される電圧波形を示す。
In this embodiment, the sheet resistance of the scan electrode is 10Ω / □ in the first embodiment, and the resistance per pixel in the direction from the power supply side to the final power supply side on the scan electrode is 10Ω. Is lowered until the resistance per pixel becomes 1Ω by the auxiliary wiring made of metal such as Al arranged in parallel with the scanning electrodes. The scan electrode applied voltage waveform diagram and the signal electrode applied voltage waveform diagram are the same as those in the first embodiment shown in FIG.
FIG. 6 is a voltage waveform diagram in the third embodiment. Like FIG. 2, FIG. 6A shows nodes 101 and 10 of FIG.
Scanning voltage waveforms at 2 and 103, FIG.
(C) and (d) are signal voltage waveforms at the nodes 201, 211, and 221. FIGS. 6 (e), (f), and (g) are shown in FIG.
3 shows voltage waveforms applied to the pixels 1, 2, and 3.

【0034】この実施例の走査電極低抵抗化により、信
号電圧の変化による走査電圧の歪量は図6(a)に示す
ように、図2(a)で示される第1の実施例に比べて大
幅に軽減され、1回の信号電圧の切り替わりによる走査
電圧の歪量は従来例の1単位から0.3単位程度まで低
減される。同様に計算を行うと、画素1,2,3に印加
される電圧は図6(e),(f),(g)であり、非選
択期間taにおける2フィールドでの電圧歪量はそれぞ
れ−6.4,−5.9,−5.3となり、歪量は従来に
比べて小さく、また差もかなり小さい(最大差1.
1)。
As shown in FIG. 6A, the amount of distortion of the scanning voltage due to the change in the signal voltage is lower than that of the first embodiment shown in FIG. 2A due to the lower resistance of the scanning electrode of this embodiment. The amount of distortion of the scanning voltage due to one switching of the signal voltage is reduced from 1 unit of the conventional example to about 0.3 unit. When the same calculation is performed, the voltages applied to the pixels 1, 2, and 3 are as shown in FIGS. 6E, 6F, and 6G, and the voltage distortion amounts in the two fields in the non-selection period ta are −, respectively. 6.4, -5.9, -5.3, the amount of strain is smaller than that of the conventional one, and the difference is considerably small (maximum difference 1.
1).

【0035】またこれに対し、従来の駆動方法で単に補
助電極のみを用い、1画素当りの抵抗を1Ωにするのみ
では、画素1,2,3に印加される電圧の非選択期間t
aにおける2フィールドでの電圧歪量はそれぞれ−1
6,−10.6,−4であり、歪量の差は12となり、
これでは輝度むらが生じる。この原因も第2の実施例同
様、信号電極駆動電圧波形の切り替わり回数差(周波数
成分差)による歪量の差が改善されていないためであ
る。よって、単に走査電極抵抗を低抵抗化しても信号電
極側の波形の周波数成分は変わらず、輝度むらはあまり
改善されない。しかし、この第3の実施例のように、第
1の実施例の駆動方法と走査電極低抵抗化とを併用する
ことによって、2つの方法の相乗効果が現れ、輝度むら
を大きく改善することができる。またこの走査電極低抵
抗化は、走査電極上の給電・終電方向の1画素当りの抵
抗が5Ω以下で、第1の実施例に対して特に効果が現
れ、さらに、1Ω以下であれば上記に示したようにほと
んど輝度むらは生じなくなる。
On the other hand, if only the auxiliary electrode is used and the resistance per pixel is set to 1Ω in the conventional driving method, the non-selection period t of the voltage applied to the pixels 1, 2, and 3 is reduced.
The amount of voltage distortion in the two fields in a is -1
6, -10.6, -4, the difference in strain amount is 12,
This causes uneven brightness. This is also because the difference in the amount of distortion due to the difference in the number of times the signal electrode drive voltage waveform is switched (frequency component difference) is not improved, as in the second embodiment. Therefore, even if the resistance of the scanning electrode is simply reduced, the frequency component of the waveform on the signal electrode side does not change, and the uneven brightness is not improved so much. However, as in the third embodiment, by using the driving method of the first embodiment and the lowering of the scanning electrode resistance in combination, the synergistic effect of the two methods appears and the uneven brightness can be greatly improved. it can. In addition, this reduction in the resistance of the scan electrodes is particularly effective with respect to the first embodiment because the resistance per pixel in the power supply / final direction on the scan electrodes is 5Ω or less. As shown, the uneven brightness hardly occurs.

【0036】なお、この実施例では、金属補助配線を用
いた走査電極低低抗化の方法を用いたが、この方法のみ
ならず、単なるITO電極低抵抗化等、走査電極低抵抗
化の方法であれば、この実施例同様、各画素に印加され
る駆動電圧波形歪量の差を低減する事ができ、輝度むら
を大きく改善することができる。 (第4の実施例)以下、この発明の第4の実施例の液晶
表示装置の駆動方法について、図面を参照しながら説明
する。
In this embodiment, the method of lowering the resistance of the scanning electrode using the metal auxiliary wiring is used. However, not only this method but also a method of lowering the resistance of the scanning electrode such as simply lowering the resistance of the ITO electrode is used. If so, the difference in the amount of distortion of the drive voltage waveform applied to each pixel can be reduced as in this embodiment, and the uneven brightness can be greatly improved. (Fourth Embodiment) A method of driving a liquid crystal display device according to a fourth embodiment of the present invention will be described below with reference to the drawings.

【0037】図7はこの発明の第4の実施例の液晶表示
装置の駆動方法における印加電圧波形図であり、図7
(a),(b),(c)はそれぞれ図15での走査電極
100,110,120に印加する走査電極印加電圧波
形、図7(d),(e),(f)はそれぞれ信号電極2
00,210,220に印加する信号電極印加電圧波形
を示す。図8はこの第4の実施例における電圧波形図で
あり、図2と同様、図8(a)は図16のノード10
1,102,103における走査電圧波形、図8
(b),(c),(d)はノード201,211,22
1における信号電圧波形、図8(e),(f),(g)
は図15の画素1,2,3に印加される電圧波形を示
す。
FIG. 7 is a waveform diagram of applied voltage in the driving method of the liquid crystal display device according to the fourth embodiment of the present invention.
(A), (b) and (c) are scan electrode applied voltage waveforms to be applied to the scan electrodes 100, 110 and 120 in FIG. 15, respectively, and (d), (e) and (f) are signal electrodes, respectively. Two
The waveforms of the voltage applied to the signal electrodes applied to 00, 210 and 220 are shown. FIG. 8 is a voltage waveform diagram in the fourth embodiment. Similar to FIG. 2, FIG. 8A shows the node 10 of FIG.
Scanning voltage waveforms at 1, 102 and 103, FIG.
(B), (c), (d) are nodes 201, 211, 22
Signal voltage waveform in Fig. 1, Fig. 8 (e), (f), (g)
Shows a voltage waveform applied to the pixels 1, 2, and 3 of FIG.

【0038】第1〜第3の実施例では駆動電圧波形の休
止期間を、信号電極駆動・走査電極駆動共、走査パルス
と走査パルスの間に設けていたが、この第4の実施例で
は、図7に示すように、信号電極駆動のみに休止期間を
設定し、これが2つの走査期間にまたがった形となって
いる。信号電極を駆動する切り替わり回数差をパターン
に依存せず一定にするという原理は第1の実施例と全く
同じであるが、この実施例では第1の実施例の駆動方法
に比べ、液晶パネルを駆動するICの耐圧を低くできる
特徴を持っている。
In the first to third embodiments, the rest period of the drive voltage waveform is provided between the scan pulses for both the signal electrode drive and the scan electrode drive, but in the fourth embodiment, As shown in FIG. 7, a rest period is set only for driving the signal electrode, and this is in a form that spans two scanning periods. The principle of making the difference in the number of switching for driving the signal electrodes constant without depending on the pattern is exactly the same as in the first embodiment, but in this embodiment, compared with the driving method of the first embodiment, a liquid crystal panel is used. It has the feature that the withstand voltage of the driving IC can be lowered.

【0039】第1の実施例の方法では、画素電圧波形は
図2(e),(f),(g)に示されるように従来の画
素電圧波形(図18(e),(f),(g))に比べ、
休止期間が入っているため、画素に印加される電圧実効
値が低下してしまう。このため、液晶を駆動するために
パルス電圧を従来よりも高く設定しなければいけなくな
り、駆動用ICの耐圧も高いものにしなければならな
い。しかし、この実施例では図8(e),(f),
(g)に示すように、選択パルスの両端期間にONパル
スとOFFパルスの中間の電圧が加わった形となるの
で、実効値低下を抑えることができ、駆動ICの耐圧も
低く抑えることができる。
In the method of the first embodiment, the pixel voltage waveforms are the conventional pixel voltage waveforms (FIGS. 18 (e), (f), (G))
Since the pause period is included, the effective value of the voltage applied to the pixel is reduced. Therefore, in order to drive the liquid crystal, the pulse voltage has to be set higher than in the conventional case, and the withstand voltage of the driving IC must be high. However, in this embodiment, as shown in FIGS.
As shown in (g), since the intermediate voltage between the ON pulse and the OFF pulse is applied to both ends of the selection pulse, the effective value can be prevented from lowering, and the withstand voltage of the driving IC can also be kept low. .

【0040】この駆動方法では、画素を駆動する電圧の
ON/OFF実効値比が従来例および第1の実施例に対
し、低いものとなってしまうので、図9に示すように、
走査電圧の休止期間を第1の実施例に示したものより短
くして、信号電圧の休止期間を2つの走査期間にまたが
って設定することにより、駆動IC耐圧に応じた最適な
駆動方法を得ることができる。なお、図9(a),
(b),(c)はそれぞれ図15での走査電極100,
110,120に印加する走査電極印加電圧波形、図9
(d),(e),(f)はそれぞれ信号電極200,2
10,220に印加する信号電極印加電圧波形を示す。
According to this driving method, the ON / OFF effective value ratio of the voltage for driving the pixel is lower than that in the conventional example and the first embodiment. Therefore, as shown in FIG.
By setting the pause period of the scan voltage shorter than that shown in the first embodiment and setting the pause period of the signal voltage over two scan periods, an optimum driving method according to the withstand voltage of the drive IC is obtained. be able to. In addition, FIG.
(B) and (c) are the scanning electrodes 100 in FIG.
Scan electrode applied voltage waveforms applied to 110 and 120, FIG.
(D), (e) and (f) are signal electrodes 200 and 2 respectively.
The waveform of the voltage applied to the signal electrodes applied to 10, 220 is shown.

【0041】また、この実施例の駆動方法においても第
2,第3の実施例と同様、信号電圧変化による走査電圧
の歪を除去する方法とを組み合わせることにより、輝度
むらを大きく改善することができる。 (第5の実施例)以下、この発明の第5の実施例の液晶
表示装置の駆動方法について、図面を参照しながら説明
する。
Also, in the driving method of this embodiment, as in the second and third embodiments, by combining with the method of removing the distortion of the scanning voltage due to the change in the signal voltage, the uneven brightness can be greatly improved. it can. (Fifth Embodiment) A driving method of a liquid crystal display device according to a fifth embodiment of the present invention will be described below with reference to the drawings.

【0042】図10は図18に示す中間調表示をパルス
幅変調方式により行った場合のこの実施例における電極
印加電圧波形を示している。であり、図10(a),
(b),(c)はそれぞれ図19での走査電極100,
110,120に印加する走査電極印加電圧波形、図1
0(d),(e),(f)はそれぞれ信号電極200,
210,220に印加する信号電極印加電圧波形を示
す。図11はこの第4の実施例における電圧波形図であ
り、図2と同様、図11(a)は図16のノード10
1,102,103における走査電圧波形、図11
(b),(c),(d)はノード201,211,22
1における信号電圧波形、図11(e),(f),
(g)は図19の画素1,2,3に印加される電圧波形
を示す。
FIG. 10 shows an electrode applied voltage waveform in this embodiment when the halftone display shown in FIG. 18 is performed by the pulse width modulation method. And FIG. 10 (a),
19B and 19C are scan electrodes 100 and 100 in FIG. 19, respectively.
Scan electrode applied voltage waveforms applied to 110 and 120, FIG.
0 (d), (e), (f) are signal electrodes 200,
The waveform of the voltage applied to the signal electrodes applied to 210 and 220 is shown. FIG. 11 is a voltage waveform diagram according to the fourth embodiment. Like FIG. 2, FIG. 11A shows the node 10 of FIG.
Scanning voltage waveforms at 1, 102 and 103, FIG.
(B), (c), (d) are nodes 201, 211, 22
Signal voltage waveform in FIG. 11, (e), (f),
(G) shows the voltage waveform applied to the pixels 1, 2, and 3 of FIG.

【0043】この実施例のように中間調表示パターンの
場合、図10に示すように、走査電極印加電圧および信
号電極印加電圧に、非走査電圧と同電位になる休止期間
を各走査期間の中に設けている。これにより、画素電圧
は図11(e),(f),(g)のようになる。この方
法を用いることにより、どの中間調データに対しても上
記実施例同様、信号電極駆動電圧波形の反転回数差(周
波数成分差)による歪量の差が小さくなる。
In the case of the halftone display pattern as in this embodiment, as shown in FIG. 10, a rest period in which the scan electrode applied voltage and the signal electrode applied voltage have the same potential as the non-scan voltage is included in each scan period. It is provided in. As a result, the pixel voltage becomes as shown in FIGS. 11 (e), 11 (f) and 11 (g). By using this method, the difference in distortion amount due to the difference in the number of times of inversion of the signal electrode drive voltage waveform (frequency component difference) becomes small for any halftone data, as in the above embodiment.

【0044】また、第2,第3の実施例と同様、信号電
圧の変化による走査電圧の歪みを除去するような方法を
併用することにより、輝度むらを大きく改善させること
ができることも同様である。従来でのパルス幅変調にお
ける中間調表示では中間調データにより、信号波形が1
走査期間内において切り替わる場合と切り替わらない場
合が生じ、これにより信号切り替わり回数による波形歪
みの回数が異なることから、2値表示での表示パターン
の切り替わりの場合と同様のメカニズムにより輝度むら
が生じていた。しかしこの実施例によれば、あらゆる中
間調データにかかわらずこの切り替わり回数を同じもの
とし、輝度むらのない均一な液晶表示装置を得ることが
できる。
Further, similarly to the second and third embodiments, it is also possible to greatly improve the luminance unevenness by using a method of removing the distortion of the scanning voltage due to the change of the signal voltage. . In the halftone display in the conventional pulse width modulation, the signal waveform is 1 by the halftone data.
There are cases where switching occurs and cases where switching does not occur within the scanning period, and since the number of waveform distortions due to the number of signal switching differs due to this, uneven brightness occurs due to the same mechanism as when switching display patterns in binary display. . However, according to this embodiment, the number of times of switching is the same regardless of any halftone data, and a uniform liquid crystal display device without uneven brightness can be obtained.

【0045】またこの方法に関しても、第1の実施例と
同様に画素を駆動する電圧のON/OFF実効値比は保
つ方式であるが、画素にかかる電圧実効値は従来に対し
て小さなものとなり、液晶パネルの駆動ICの耐圧は高
いものにしなければならない。このため、図10
(a),(b),(c)に示す所の走査電圧パルスの休
止期間をなくし、図12(a),(b),(c)に示す
ような駆動波形を用いると、画素印加電圧波形は図13
(e),(f),(g)のようになり実効値の低下を抑
え、駆動ICの耐圧を抑えることができる。なお、図1
2(a)〜(f)は図10の(a)〜(f)同様、走査
電極印加電圧および信号電極印加電圧の波形を示し、図
13(a)〜(g)は図11の(a)〜(g)同様、走
査電圧波形,信号電圧波形および図19の画素1,2,
3に印加される電圧波形を示す。
Also in this method, the ON / OFF effective value ratio of the voltage for driving the pixel is maintained as in the first embodiment, but the effective value of the voltage applied to the pixel is smaller than the conventional one. The withstand voltage of the liquid crystal panel drive IC must be high. Therefore, FIG.
If the drive voltage waveforms shown in FIGS. 12 (a), 12 (b), and 12 (c) are eliminated by eliminating the scan voltage pulse pause period shown in FIGS. 12 (a), 12 (b), and 12 (c), Waveform is Figure 13
As shown in (e), (f), and (g), it is possible to suppress a decrease in effective value and suppress the withstand voltage of the drive IC. FIG.
2 (a) to (f) show the waveforms of the scan electrode applied voltage and the signal electrode applied voltage, as in (a) to (f) of FIG. 10, and FIGS. 13 (a) to (g) show (a) of FIG. ) To (g), the scanning voltage waveform, the signal voltage waveform and the pixels 1, 2,
3 shows a voltage waveform applied to No. 3.

【0046】また、図12,図13に示す方法に関して
も画素のON/OFF電圧実効値比が従来より小さくな
ってしまう。ここで、図14に示すような図10と図1
2の中間となる駆動方法、すなわち休止期間における走
査電極印加電圧を走査電圧と非走査電圧との中間の電圧
を印加する方法を用いることにより、液晶駆動ICの耐
圧に応じた最適な駆動方法を得ることができる。なお、
図14(a)〜(f)は図10の(a)〜(f)同様、
走査電極印加電圧および信号電極印加電圧の波形を示
す。
Further, also in the methods shown in FIGS. 12 and 13, the effective ON / OFF voltage ratio of the pixel becomes smaller than that in the conventional case. Here, FIG. 10 and FIG. 1 as shown in FIG.
By using a driving method in the middle of 2, that is, a method of applying a scan electrode applied voltage in the rest period to an intermediate voltage between the scanning voltage and the non-scanning voltage, an optimum driving method according to the breakdown voltage of the liquid crystal driving IC can be obtained. Obtainable. In addition,
14A to 14F are similar to FIGS. 10A to 10F.
The waveforms of the scan electrode applied voltage and the signal electrode applied voltage are shown.

【0047】また、この実施例に示す駆動方法のみでは
中間調データによる電圧歪量の差を除去できるが、表示
パターンの切り替わりによる電圧歪は従来のように発生
し、輝度むらが生じる。よってこれを改善するため、第
1〜第4の実施例の駆動方法とこの第5の実施例の駆動
方法とを組み合わせることにより、中間調表示を含めた
あらゆる表示パターンにかかわらず、輝度むらのない高
品位の表示を可能とすることができる。
Further, the difference in the amount of voltage distortion due to the halftone data can be eliminated only by the driving method shown in this embodiment, but the voltage distortion due to the switching of the display pattern occurs as in the conventional case, and the uneven brightness occurs. Therefore, in order to improve this, by combining the driving method of the first to fourth embodiments and the driving method of the fifth embodiment, the uneven brightness can be suppressed regardless of any display pattern including halftone display. It is possible to enable high-quality display that does not exist.

【0048】なお、本発明は、信号電圧の歪み量を表示
パターンにかかわらず一定とするものであり、信号電極
印加電圧の歪み量が表示パターンにより異なる、すなわ
ち表示パターンにより信号電極印加電圧波形が切り替わ
るものと切り替わらないものとが存在する駆動方法であ
れば、本発明の駆動方法を適用することにより、輝度む
らを改善することができる。また、上記実施例では、走
査周期毎に、基準電圧(V0,V5)に対する走査電極
印加電圧と信号電極印加電圧の極性を反転させ、画素に
印加される電圧が2走査周期において完全な交流信号と
なるような駆動方法を用いたが、この極性反転周期がど
のような周期であっても、本発明の駆動方法を用いるこ
とにより輝度むらを改善することができる。
The present invention makes the distortion amount of the signal voltage constant regardless of the display pattern, and the distortion amount of the signal electrode applied voltage differs depending on the display pattern, that is, the signal electrode applied voltage waveform varies depending on the display pattern. If the driving method includes one that switches and one that does not switch, the unevenness in luminance can be improved by applying the driving method of the present invention. Further, in the above-described embodiment, the polarity of the scan electrode applied voltage and the signal electrode applied voltage with respect to the reference voltage (V0, V5) is inverted every scan cycle, and the voltage applied to the pixel is a complete AC signal in two scan cycles. Although the driving method as described above is used, the luminance unevenness can be improved by using the driving method of the present invention regardless of the cycle of the polarity inversion.

【0049】[0049]

【発明の効果】以上のようにこの発明の液晶表示装置の
駆動方法は、第1の走査パルスと第2の走査パルスの
間、あるいは第1の走査パルスと第2の走査パルスを跨
いだ期間に、走査電極群に印加する非走査電圧と同電圧
を信号電極群に印加することにより、信号電圧による切
り替わり回数差(周波数成分差)に起因する電圧歪差を
表示パターンにかかわらず一定にし、大表示容量のパネ
ルにおいても輝度むらの少ない高品位の表示を可能とす
ることができる。特に、第1の走査パルスと第2の走査
パルスの間に、走査電極群に印加する非走査電圧と同電
圧を信号電極群に印加する方法では、ON/OFF実効
値比を従来と同等にとれるため、従来のコントラストを
保持した状態で、輝度むらのない表示を可能とすること
ができる。さらに、信号電圧の変化による走査電極の歪
み電圧と同等な歪み電圧が発生する検出電極を設け、こ
の検出電極に発生した歪み電圧をもとに走査電極群に電
圧補正を行うこと、あるいは、走査電極上の給電・終電
方向の1画素当りの抵抗を5Ω以下とすることにより、
信号電極の電圧の変化による走査電極の電圧の歪量を大
幅に軽減でき、表示パターンによらず輝度むらのないよ
り高品位の表示を可能とすることができる。
As described above, according to the driving method of the liquid crystal display device of the present invention, the period between the first scanning pulse and the second scanning pulse, or the period straddling the first scanning pulse and the second scanning pulse. In addition, by applying the same voltage as the non-scanning voltage applied to the scanning electrode group to the signal electrode group, the voltage distortion difference caused by the switching frequency difference (frequency component difference) due to the signal voltage is made constant regardless of the display pattern, Even in a large display capacity panel, high-quality display with less uneven brightness can be realized. Particularly, in the method of applying the same voltage as the non-scanning voltage applied to the scanning electrode group to the signal electrode group between the first scanning pulse and the second scanning pulse, the ON / OFF effective value ratio is made equal to that of the conventional one. Therefore, it is possible to perform display without brightness unevenness while maintaining the conventional contrast. Further, a detection electrode that generates a strain voltage equivalent to the strain voltage of the scan electrode due to a change in the signal voltage is provided, and voltage correction is performed on the scan electrode group based on the strain voltage generated in the detection electrode, or scanning is performed. By setting the resistance per pixel on the electrode in the direction of power feeding / terminal power to 5Ω or less,
The amount of distortion of the voltage of the scanning electrode due to the change of the voltage of the signal electrode can be significantly reduced, and higher-quality display can be achieved without uneven brightness regardless of the display pattern.

【0050】さらに、パルス幅変調方式により中間調を
表示するとともに、各走査期間の中程の所定の期間に非
走査電圧と同電圧を信号電極群に印加することにより、
どんな中間調データによっても信号電圧の1走査期間内
における切り替わり回数を同じとし、中間調表示を含め
たあらゆる表示パターンにかかわらず、輝度むらのない
高品位の表示を可能とすることができる。
Further, by displaying a halftone by the pulse width modulation method and applying the same voltage as the non-scanning voltage to the signal electrode group in a predetermined period in the middle of each scanning period,
The number of times the signal voltage is switched in one scanning period is the same for any halftone data, and high-quality display with no brightness unevenness can be achieved regardless of any display pattern including halftone display.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b),(c)はこの発明の第1の実
施例の液晶表示装置の駆動方法における走査電極印加電
圧波形図、(d),(e),(f)は同実施例における
信号電極印加電圧波形図。
1A, 1B, and 1C are waveform diagrams of a voltage applied to a scanning electrode in a driving method of a liquid crystal display device according to a first embodiment of the present invention, and FIGS. 1D, 1E, and 1F. FIG. 4 is a waveform diagram of a voltage applied to a signal electrode in the example.

【図2】(a)はこの発明の第1の実施例の液晶表示装
置の駆動方法における画素の走査電極側の電圧波形の概
略図、(b),(c),(d)は同実施例における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 2A is a schematic diagram of a voltage waveform on a scan electrode side of a pixel in the driving method of the liquid crystal display device according to the first embodiment of the present invention, and FIGS. 2B, 2C and 2D are the same. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図3】この発明の第2の実施例の液晶表示装置の駆動
方法における液晶表示装置のブロック図。
FIG. 3 is a block diagram of a liquid crystal display device in a method of driving a liquid crystal display device according to a second embodiment of the present invention.

【図4】この発明の第2の実施例の液晶表示装置の駆動
方法における液晶表示装置のブロック図。
FIG. 4 is a block diagram of a liquid crystal display device in a method of driving a liquid crystal display device according to a second embodiment of the present invention.

【図5】(a)はこの発明の第2の実施例の液晶表示装
置の駆動方法における画素の走査電極側の電圧波形の概
略図、(b),(c),(d)は同実施例における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 5A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device according to the second embodiment of the present invention, and FIGS. 5B, 5C and 5D are the same. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図6】(a)はこの発明の第3の実施例の液晶表示装
置の駆動方法における画素の走査電極側の電圧波形の概
略図、(b),(c),(d)は同実施例における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 6A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device according to the third embodiment of the present invention, and FIGS. 6B, 6C and 6D are the same. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図7】(a),(b),(c)はこの発明の第4の実
施例の液晶表示装置の駆動方法における走査電極印加電
圧波形図、(d),(e),(f)は同実施例における
信号電極印加電圧波形図。
7 (a), (b) and (c) are scan electrode applied voltage waveform diagrams in a driving method of a liquid crystal display device according to a fourth embodiment of the present invention, (d), (e) and (f). FIG. 4 is a waveform diagram of a voltage applied to a signal electrode in the example.

【図8】(a)はこの発明の第4の実施例の液晶表示装
置の駆動方法における画素の走査電極側の電圧波形の概
略図、(b),(c),(d)は同実施例における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 8A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device of the fourth embodiment of the present invention, and FIGS. 8B, 8C and 8D are the same. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図9】(a)はこの発明の第4の実施例の液晶表示装
置の駆動方法における画素の走査電極側の電圧波形の概
略図、(b),(c),(d)は同実施例における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 9A is a schematic diagram of a voltage waveform on a scan electrode side of a pixel in the driving method for the liquid crystal display device according to the fourth embodiment of the present invention, and FIGS. 9B, 9C and 9D show the same embodiment. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図10】(a),(b),(c)はこの発明の第5の
実施例の液晶表示装置の駆動方法における走査電極印加
電圧波形図、(d),(e),(f)は同実施例におけ
る信号電極印加電圧波形図。
10 (a), (b), (c) are scan electrode applied voltage waveform diagrams in the driving method of the liquid crystal display device of the fifth embodiment of the present invention, (d), (e), (f). FIG. 4 is a waveform diagram of a voltage applied to a signal electrode in the example.

【図11】(a)はこの発明の第5の実施例の液晶表示
装置の駆動方法における画素の走査電極側の電圧波形の
概略図、(b),(c),(d)は同実施例における画
素の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 11A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device according to the fifth embodiment of the present invention, and FIGS. 11B, 11C and 11D show the same embodiment. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図12】(a),(b),(c)はこの発明の第5の
実施例の液晶表示装置の駆動方法における走査電極印加
電圧波形図、(d),(e),(f)は同実施例におけ
る信号電極印加電圧波形図。
12 (a), (b), (c) are scan electrode applied voltage waveform diagrams in the driving method of the liquid crystal display device of the fifth embodiment of the present invention, (d), (e), (f). FIG. 4 is a waveform diagram of a voltage applied to a signal electrode in the example.

【図13】(a)はこの発明の第5の実施例の液晶表示
装置の駆動方法における画素の走査電極側の電圧波形の
概略図、(b),(c),(d)は同実施例における画
素の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 13A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device according to the fifth embodiment of the present invention, and FIGS. 13B, 13C and 13D show the same embodiment. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図14】(a)はこの発明の第5の実施例の液晶表示
装置の駆動方法における画素の走査電極側の電圧波形の
概略図、(b),(c),(d)は同実施例における画
素の信号電極側の電圧波形の概略図、(e),(f),
(g)は同実施例における画素に印加される電圧波形の
概略図。
FIG. 14A is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in the driving method of the liquid crystal display device of the fifth embodiment of the present invention, and FIGS. 14B, 14C and 14D are the same. Schematic of the voltage waveform on the signal electrode side of the pixel in the example, (e), (f),
(G) is a schematic diagram of a voltage waveform applied to the pixel in the embodiment.

【図15】マトリクス型液晶表示パネルの表示パターン
図。
FIG. 15 is a display pattern diagram of a matrix type liquid crystal display panel.

【図16】マトリクス型液晶表示パネルの1つの走査電
極に関わる等価回路図。
FIG. 16 is an equivalent circuit diagram relating to one scanning electrode of a matrix type liquid crystal display panel.

【図17】(a),(b),(c)は従来の液晶表示装
置の駆動方法における走査電極印加電圧波形図、
(d),(e),(f)は同駆動方法における信号電極
印加電圧波形図。
17 (a), (b) and (c) are waveform diagrams of applied voltage to scan electrodes in a conventional method for driving a liquid crystal display device,
(D), (e), (f) is a signal electrode applied voltage waveform diagram in the same driving method.

【図18】(a)は従来の液晶表示装置の駆動方法にお
ける画素の走査電極側の電圧波形の概略図、(b),
(c),(d)は同駆動方法における画素の信号電極側
の電圧波形の概略図、(e),(f),(g)は同駆動
方法における画素に印加される電圧波形の概略図。
FIG. 18A is a schematic diagram of a voltage waveform on a scan electrode side of a pixel in a driving method of a conventional liquid crystal display device, FIG.
(C) and (d) are schematic diagrams of voltage waveforms on the signal electrode side of pixels in the same driving method, and (e), (f), and (g) are schematic diagrams of voltage waveforms applied to pixels in the same driving method. .

【図19】マトリクス型液晶表示パネルの中間調表示パ
ターン図。
FIG. 19 is a halftone display pattern diagram of a matrix type liquid crystal display panel.

【図20】(a),(b),(c)は従来の液晶表示装
置のパルス幅変調駆動方法における走査電極印加電圧波
形図、(d),(e),(f)は同駆動方法における信
号電極印加電圧波形図。
20 (a), (b) and (c) are waveform diagrams of scan electrode applied voltage in a conventional pulse width modulation driving method for a liquid crystal display device, and (d), (e) and (f) are the same driving method. 5 is a waveform diagram of voltage applied to the signal electrode in FIG.

【図21】(a)は従来の液晶表示装置のパルス幅変調
駆動方法における画素の走査電極側の電圧波形の概略
図、(b),(c),(d)は同駆動方法における画素
の信号電極側の電圧波形の概略図、(e),(f),
(g)は同駆動方法における画素に印加される電圧波形
の概略図。
FIG. 21 (a) is a schematic diagram of a voltage waveform on the scanning electrode side of a pixel in a conventional pulse width modulation driving method for a liquid crystal display device, and FIGS. Schematic diagram of voltage waveform on the signal electrode side, (e), (f),
(G) Schematic of the voltage waveform applied to the pixel in the same driving method.

【符号の説明】[Explanation of symbols]

1,2,3 画素 10 液晶パネル 11 走査電極 12 信号電極 13 走査ドライバ 14 信号ドライバ 15 検出電極 16 検出回路 17 補正電圧発生回路 18 制御回路 19 駆動電圧発生回路 100,110,130,140,150,160 走
査電極 200,210,220 信号電極 99,101,102,103,201,211,22
1 ノード
1, 2 and 3 pixels 10 liquid crystal panel 11 scanning electrode 12 signal electrode 13 scanning driver 14 signal driver 15 detection electrode 16 detection circuit 17 correction voltage generation circuit 18 control circuit 19 drive voltage generation circuit 100, 110, 130, 140, 150, 160 scanning electrodes 200, 210, 220 signal electrodes 99, 101, 102, 103, 201, 211, 22
1 node

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田窪 米治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoneharu Takubo 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 信号電極群を設けた第1の基板と、前記
信号電極群と交差配列した走査電極群を設けた第2の基
板との間に、液晶を挟持したマトリクス型の液晶表示装
置の駆動方法であって、 前記走査電極群に順次印加する走査パルスにおける第1
の走査パルスとつぎの第2の走査パルスとの間に非走査
電圧期間を設け、この非走査電圧期間に前記非走査電圧
と同電圧を前記信号電極群に印加することを特徴とする
液晶表示装置の駆動方法。
1. A matrix type liquid crystal display device in which a liquid crystal is sandwiched between a first substrate provided with a signal electrode group and a second substrate provided with a scanning electrode group intersecting the signal electrode group. A driving method of the first scanning pulse applied sequentially to the scanning electrode group.
Liquid crystal display, wherein a non-scanning voltage period is provided between the second scanning pulse and the second scanning pulse, and the same voltage as the non-scanning voltage is applied to the signal electrode group during this non-scanning voltage period. Device driving method.
【請求項2】 信号電極群を設けた第1の基板と、前記
信号電極群と交差配列した走査電極群を設けた第2の基
板との間に、液晶を挟持したマトリクス型の液晶表示装
置の駆動方法であって、 前記走査電極群に順次印加する走査パルスにおける第1
の走査パルスを印加する第1の期間と前記第1の走査パ
ルスのつぎの第2の走査パルスを印加する第2の期間と
に跨がる所定の期間に、前記非走査電圧と同電圧を前記
信号電極群に印加することを特徴とする液晶表示装置の
駆動方法。
2. A matrix type liquid crystal display device in which a liquid crystal is sandwiched between a first substrate provided with a signal electrode group and a second substrate provided with a scanning electrode group intersecting the signal electrode group. A driving method of the first scanning pulse applied sequentially to the scanning electrode group.
The non-scanning voltage is applied during a predetermined period spanning a first period for applying the scanning pulse and a second period for applying the second scanning pulse subsequent to the first scanning pulse. A method of driving a liquid crystal display device, which comprises applying the signal electrode group.
【請求項3】 信号電極群を設けた第1の基板と、前記
信号電極群と交差配列した走査電極群を設けた第2の基
板との間に、液晶を挟持したマトリクス型の液晶表示装
置の駆動方法であって、 前記走査電極群に順次印加する走査パルスにおける第1
の走査パルスとつぎの第2の走査パルスとの間に非走査
電圧期間を設け、この非走査電圧期間を跨ぐ所定の期間
に前記非走査電圧と同電圧を前記信号電極群に印加する
ことを特徴とする液晶表示装置の駆動方法。
3. A matrix type liquid crystal display device in which a liquid crystal is sandwiched between a first substrate provided with a signal electrode group and a second substrate provided with a scanning electrode group intersecting the signal electrode group. A driving method of the first scanning pulse applied sequentially to the scanning electrode group.
A non-scanning voltage period is provided between the second scanning pulse and the second scanning pulse, and the same voltage as the non-scanning voltage is applied to the signal electrode group in a predetermined period spanning the non-scanning voltage period. A method of driving a characteristic liquid crystal display device.
【請求項4】 信号電圧の変化による走査電極の歪み電
圧と同等な歪み電圧が発生する検出電極を走査電極群を
設けた第2の基板に設け、前記検出電極に発生した歪み
電圧をもとに前記走査電極群に電圧補正を行う請求項
1,2または3記載の液晶表示装置の駆動方法。
4. A detection electrode, which generates a strain voltage equivalent to the strain voltage of the scan electrode due to a change in signal voltage, is provided on a second substrate having a scan electrode group, and the strain voltage generated on the detection electrode is used as a basis. The method for driving a liquid crystal display device according to claim 1, wherein voltage correction is performed on the scan electrode group.
【請求項5】 走査電極上の給電・終電方向の1画素当
りの抵抗を5Ω以下とした液晶表示装置を駆動する請求
項1,2または3記載の液晶表示装置の駆動方法。
5. The method of driving a liquid crystal display device according to claim 1, wherein the liquid crystal display device is driven so that the resistance per pixel on the scanning electrode in the power supply / final direction is 5Ω or less.
【請求項6】 パルス幅変調方式により中間調を表示す
るとともに、各走査期間の中程の所定の期間に非走査電
圧と同電圧を信号電極群に印加することを特徴とする請
求項1,2または3記載の液晶表示装置の駆動方法。
6. The halftone is displayed by a pulse width modulation method, and the same voltage as the non-scanning voltage is applied to the signal electrode group during a predetermined period in the middle of each scanning period. 4. The method for driving the liquid crystal display device according to 2 or 3.
【請求項7】 信号電圧の変化による走査電極の歪み電
圧と同等な歪み電圧が発生する検出電極を走査電極群を
設けた第2の基板に設け、前記検出電極に発生した歪み
電圧をもとに前記走査電極群に電圧補正を行い、パルス
幅変調方式により中間調を表示するとともに、各走査期
間の中程の所定の期間に非走査電圧と同電圧を信号電極
群に印加することを特徴とする請求項1,2または3記
載の液晶表示装置の駆動方法。
7. A detection electrode that generates a strain voltage equivalent to the strain voltage of the scan electrode due to a change in signal voltage is provided on a second substrate having a scan electrode group, and the strain voltage generated on the detection electrode is used as a basis. The voltage correction is performed on the scanning electrode group to display the halftone by the pulse width modulation method, and the same voltage as the non-scanning voltage is applied to the signal electrode group during a predetermined period in the middle of each scanning period. The method for driving a liquid crystal display device according to claim 1, 2, or 3.
【請求項8】 走査電極上の給電・終電方向の1画素当
りの抵抗を5Ω以下とした液晶表示装置を駆動し、パル
ス幅変調方式により中間調を表示するとともに、各走査
期間の中程の所定の期間に非走査電圧と同電圧を信号電
極群に印加することを特徴とする請求項1,2または3
記載の液晶表示装置の駆動方法。
8. A liquid crystal display device having a resistance of 5 Ω or less per pixel on the scanning electrode in the power supply / final direction is driven to display a halftone by a pulse width modulation method, and at the middle of each scanning period. The non-scanning voltage and the same voltage are applied to the signal electrode group in a predetermined period.
A method for driving the described liquid crystal display device.
JP06187125A 1994-08-09 1994-08-09 Driving method of liquid crystal display device Expired - Lifetime JP3088910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06187125A JP3088910B2 (en) 1994-08-09 1994-08-09 Driving method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06187125A JP3088910B2 (en) 1994-08-09 1994-08-09 Driving method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH0854600A true JPH0854600A (en) 1996-02-27
JP3088910B2 JP3088910B2 (en) 2000-09-18

Family

ID=16200557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06187125A Expired - Lifetime JP3088910B2 (en) 1994-08-09 1994-08-09 Driving method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3088910B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068253B2 (en) 2000-07-26 2006-06-27 Renesas Technology Corporation Liquid crystal display controller
JP2009098259A (en) * 2007-10-15 2009-05-07 ▲し▼創電子股▲ふん▼有限公司 Driving device and method of reducing light intensity unbalance of liquid crystal display
JP4575543B2 (en) * 2000-02-29 2010-11-04 オプトレックス株式会社 Driving circuit for liquid crystal display device
US10339889B2 (en) 2016-09-21 2019-07-02 Kabushiki Kaisha Toshiba Liquid crystal drive device and liquid crystal drive method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575543B2 (en) * 2000-02-29 2010-11-04 オプトレックス株式会社 Driving circuit for liquid crystal display device
US7068253B2 (en) 2000-07-26 2006-06-27 Renesas Technology Corporation Liquid crystal display controller
US7453433B2 (en) 2000-07-26 2008-11-18 Renesas Technology Corp. Liquid crystal display controller
US8130190B2 (en) 2000-07-26 2012-03-06 Renesas Electronics Corporation Liquid crystal display controller
US8421829B2 (en) 2000-07-26 2013-04-16 Renesas Electronics Corporation Liquid crystal display controller
US8823627B2 (en) 2000-07-26 2014-09-02 Renesas Electronics Corporation Liquid crystal display controller
JP2009098259A (en) * 2007-10-15 2009-05-07 ▲し▼創電子股▲ふん▼有限公司 Driving device and method of reducing light intensity unbalance of liquid crystal display
US10339889B2 (en) 2016-09-21 2019-07-02 Kabushiki Kaisha Toshiba Liquid crystal drive device and liquid crystal drive method

Also Published As

Publication number Publication date
JP3088910B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JPH0553534A (en) Driving circuit of display device
JP3906665B2 (en) Liquid crystal drive device
JP3107980B2 (en) Liquid crystal display
JP3110618B2 (en) Liquid crystal display
JP3196998B2 (en) Liquid crystal display
US20050017991A1 (en) Image display apparatus and image display method
JPH1184342A (en) Liquid crystal display device and driving method therefor
JPH0812345B2 (en) Dot matrix liquid crystal display power supply
JP3088910B2 (en) Driving method of liquid crystal display device
JP3473748B2 (en) Liquid crystal display
JP3214328B2 (en) Liquid crystal display
JPH10253942A (en) Liquid crystal display device and driving method therefor
JP4095198B2 (en) Liquid crystal display
JP3163647B2 (en) Driving method of liquid crystal element
JP3185663B2 (en) Driving method of liquid crystal display device
JP3128309B2 (en) Image display device and driving method thereof
JP3627354B2 (en) Driving method of liquid crystal display device
JP3033097B2 (en) Driving method of liquid crystal display device and liquid crystal display device
JP2004334153A (en) Image display device and image display method
JPH08110765A (en) Liquid crystal display device
JPH10333645A (en) Driving method for liquid crystal display device
KR100343381B1 (en) Liquid crystal display
JP2562393B2 (en) Liquid crystal display
JPH09230309A (en) Liquid crystal image display device
JPH1152922A (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070714

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080714

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090714

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100714

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120714

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120714

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20140714

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term