JPH085459A - Michelson interferometer - Google Patents

Michelson interferometer

Info

Publication number
JPH085459A
JPH085459A JP15670194A JP15670194A JPH085459A JP H085459 A JPH085459 A JP H085459A JP 15670194 A JP15670194 A JP 15670194A JP 15670194 A JP15670194 A JP 15670194A JP H085459 A JPH085459 A JP H085459A
Authority
JP
Japan
Prior art keywords
signal
reflecting mirror
light
converter
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15670194A
Other languages
Japanese (ja)
Inventor
Shigeki Nishina
繁樹 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP15670194A priority Critical patent/JPH085459A/en
Priority to US08/491,907 priority patent/US5867271A/en
Priority to PCT/JP1994/001905 priority patent/WO2004079313A1/en
Publication of JPH085459A publication Critical patent/JPH085459A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To realize an optical measuring device, which can always accurately measure the optical power spectrum regardless of the condition that the incident light is polar ized. CONSTITUTION:A device is provided with a first light receiving unit 15a, which receives one of the outgoing beams of two directing after the interference for synthesis of the reflected light from a movable reflecting mirror 13 and a fixed reflecting mirror 14 by a beam splitter 12 and which converts it into the electrical signal 11 and supplies it to a polarization correcting circuit 20, and a second light receiving unit 15b, which receives the other outgoing beams of the two directions after the interference for synthesis of the reflected beam from the movable reflecting mirror 13 and the fixed reflecting mirror 13 by the beam splitter 12 and which converts it into the electrical signal 12 and supplies it to the polarization correcting circuit 20. The device is also provided with a polarization correcting circuit 20, which receives the signal 11 from the first light receiving unit 15a and the signal 12 from the second light receiving unit 15b and generates the signal 11LP obtained by filtering the high area of the signal 11 in a LPF 16a and the signal 11HP obtained by filtering the low area of the signal 11 in a LPF 16b and which performs the computing {11+12X11HP/11LP}.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光計測分野におい
て、入射光の偏光状態によって測定データの誤差影響を
受けない光干渉波形、光パワースペクトルを得る光学装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device for obtaining an optical interference waveform and an optical power spectrum which are not affected by an error in measurement data due to the polarization state of incident light in the field of optical measurement.

【0002】[0002]

【従来の技術】従来技術のマイケルソン干渉計による光
パワースペクトルの測定について、図4に示す光学測定
ブロック図の例を示して説明する。構成は、ビームスプ
リッタ12と、可動反射鏡13と、固定反射鏡14と、
受光器15と、HPF16と、AD変換器17と、FF
T処理部18と、表示部19とで測定系を構成してい
る。
2. Description of the Related Art Measurement of an optical power spectrum by a Michelson interferometer according to the prior art will be described with reference to an example of an optical measurement block diagram shown in FIG. The configuration is a beam splitter 12, a movable reflecting mirror 13, a fixed reflecting mirror 14,
Light receiver 15, HPF 16, AD converter 17, and FF
The T processing unit 18 and the display unit 19 form a measurement system.

【0003】ビームスプリッタ12は、測定入射光E0
を受けて、45度の入射面で反射/透過に2分岐して可
動反射鏡13と固定反射鏡14方向に出射する。そし
て、可動反射鏡13と固定反射鏡14により反射してき
た両光線を、再度この45度の入射面に入射して両光線
の合成干渉を起こさせる。この干渉後の光線が、出射光
E1、E2となる。固定反射鏡14は、ビームスプリッタ
12からの反射光線を受けて、固定の光路長L1で反射
して戻す。一方、可動反射鏡13は、外部の駆動手段に
より任意の光路長L2にでき、任意の移動速度を与えら
れる構造となっている。この両者の光路差を連続的に変
えて、ビームスプリッタ12で所望の波長の干渉縞を発
生できるようにしている。受光器15は、前記による干
渉後の光線E1を受けて電気信号に変換する。この電気
信号の中で、干渉縞である交流振幅成分をハイパスフィ
ルタHPF16でフィルタして取り出し、これをAD変
換器17でデジタル信号に変換した後、FFT処理部1
8でフーリエ変換し、表示部19で波長に対応した測定
入射光のパワースペクトラムを表示している。
The beam splitter 12 receives the measurement incident light E0.
In response to the incident light, the light is bifurcated into reflection / transmission on the incident surface of 45 degrees and emitted toward the movable reflecting mirror 13 and the fixed reflecting mirror 14. Then, both the light rays reflected by the movable reflecting mirror 13 and the fixed reflecting mirror 14 are made incident again on the incident surface of 45 degrees to cause a synthetic interference of both the light rays. The light beams after the interference become the emitted lights E1 and E2. The fixed reflecting mirror 14 receives the reflected light beam from the beam splitter 12, reflects it with a fixed optical path length L1, and returns it. On the other hand, the movable reflecting mirror 13 has a structure in which an arbitrary optical path length L2 can be set by an external driving means and an arbitrary moving speed can be given. The optical path difference between the two is continuously changed so that the beam splitter 12 can generate an interference fringe having a desired wavelength. The light receiver 15 receives the light beam E1 after the above interference and converts it into an electric signal. In this electric signal, the AC amplitude component which is the interference fringe is filtered by the high-pass filter HPF16 and taken out, and this is converted into a digital signal by the AD converter 17, and then the FFT processing unit 1
Fourier transform is performed at 8, and the power spectrum of the measurement incident light corresponding to the wavelength is displayed at the display unit 19.

【0004】ところで、このビームスプリッタ12には
偏光状態によって反射度/透過度が変化する偏光依存性
がある。この依存性の為に、入射パワーが同一であって
も、偏光状態が異なると、測定した出力レベルに変化が
でてくるという問題点がある。これについて計算式を示
して以下に説明する。式の記号で、入力光の振幅はE0
とし、ビーム・スプリッタ12のP偏光に対する振幅反
射度は√(Rp)、振幅透過度は√(Tp)とし、S偏
光に対する振幅反射度は√(Rs)、振幅透過度は√
(Ts)とする。また、λを波長として、入射光の波数
Kは、K=2π/λとする。これらによる計算式は、次
に示す式51〜56となる。
By the way, the beam splitter 12 has a polarization dependency in which the reflectivity / transmittance changes depending on the polarization state. Due to this dependency, even if the incident power is the same, if the polarization state is different, the measured output level will change. This will be described below by showing a calculation formula. With the symbol of the formula, the amplitude of the input light is E0
The amplitude reflectivity of the beam splitter 12 for P-polarized light is √ (Rp), the amplitude transmissivity is √ (Tp), the amplitude reflectivity for S-polarized light is √ (Rs), and the amplitude transmissivity is √.
(Ts). The wave number K of the incident light is K = 2π / λ, where λ is the wavelength. Calculation formulas based on these are the following formulas 51 to 56.

【0005】[0005]

【数1】 [Equation 1]

【0006】この計算式で、ビームスプリッタ12に入
射する入射光強度全体は式51である。受光器15で受
ける光線のうち、P偏光成分の振幅出力E1pは式52
で表され、S偏光成分の振幅出力E1Sは式53で表され
る。これらの式から、光パワーP成分の強度I1Pは式
54となり、光パワーS成分の強度I1Sは式55とな
る。この受光器15で受ける全光強度I1は、P、S両
成分の和として求まり式56で表される。
In this calculation formula, the total incident light intensity incident on the beam splitter 12 is formula 51. Of the light rays received by the light receiver 15, the amplitude output E1p of the P-polarized component is
And the amplitude output E1S of the S-polarized component is expressed by equation 53. From these formulas, the intensity I1P of the optical power P component becomes the formula 54, and the intensity I1S of the optical power S component becomes the formula 55. The total light intensity I1 received by the photodetector 15 is calculated as the sum of both P and S components and is represented by Expression 56.

【0007】この式から、I1P、I1S両者の強度は、
偏光状態によって変化することがわかる。即ち、同一入
射光強度でも、式54の式の中のRPTPと、式55の中
のRSTSは、偏光状態で変化するパラメータであり、両
者の関係は、RPTP≠RSTSである。この結果、偏光状
態によって受光器15での電気信号出力レベルが変動し
てくることを意味している。この出力レベルの変動は、
ビームスプリッタ12の偏光特性によっても異なるが、
例えば3dB程度も変化する場合がある。この為、偏光
状態を変えながら測定するようなアプリケーションで
は、測定器側の誤差要因が大きく利用上の不便となって
いる。
From this equation, the strength of both I1P and I1S is
It can be seen that it changes depending on the polarization state. That is, even with the same incident light intensity, RPTP in the expression of Equation 54 and RSTS in the expression 55 are parameters that change depending on the polarization state, and the relationship between them is RPTP ≠ RSTS. As a result, it means that the electric signal output level in the light receiver 15 varies depending on the polarization state. This change in output level is
Depending on the polarization characteristics of the beam splitter 12,
For example, it may change by about 3 dB. For this reason, in an application in which measurement is performed while changing the polarization state, an error factor on the measuring instrument side is large, which is inconvenient in use.

【0008】ここで、偏光状態の割合を表す為に、S偏
光側の割合をMとし、P偏光側の割合を(1−M)とする
と、S偏光側の光強度は(E0S)2=M(E0)2となり、
P偏光側の光強度は(E0P)2=(1−M)(E0)2とな
る。これらを前記式54、55、56に代入した結果、
P成分の強度I1Pは式61に、またS成分の強度I1S
は式62に、またP、S両成分の和である全光強度I1
は式63の式となり、これらの式を次に示す。
Here, in order to express the ratio of the polarization state, if the ratio on the S-polarized side is M and the ratio on the P-polarized side is (1-M), the light intensity on the S-polarized side is (E0S) 2 = M (E0) 2,
The light intensity on the P-polarized side is (E0P) 2 = (1-M) (E0) 2. Substituting these into the above equations 54, 55 and 56,
The intensity I1P of the P component is given by equation 61, and the intensity I1S of the S component is
Is given by equation 62 and the total light intensity I1 which is the sum of both P and S components
Becomes the equation 63, and these equations are shown below.

【0009】[0009]

【数2】 [Equation 2]

【0010】この計算式63の中で、表現を簡略にする
為に、偏光依存部分の式64のように右辺をS(M)と
して代入している。この偏光依存要素S(M)がある為
に受光器15での出力レベルが変動する。
In the calculation formula 63, the right side is substituted as S (M) as in the polarization-dependent portion of the formula 64 in order to simplify the expression. Due to this polarization dependent element S (M), the output level at the light receiver 15 changes.

【0011】[0011]

【発明が解決しようとする課題】上記説明のように、入
射光の偏光状態が変化すると、偏光依存要素S(M)が
ある為に光パワースペクトラムが正しく測定されず測定
誤差を生じる場合がある。このことは、偏光状態の変化
する光源の測定には利用上の制限となり、実用上の不便
であり好ましくない。そこで、本発明が解決しようとす
る課題は、入射光の偏光状態にかかわらず、常に正しい
光パワースペクトラムが測定できる光測定装置を実現す
ることを目的とする。
As described above, when the polarization state of incident light changes, the optical power spectrum may not be measured correctly due to the polarization dependent element S (M), which may cause a measurement error. . This imposes a practical limitation on the measurement of a light source whose polarization state changes, which is inconvenient in practice and is not preferable. Therefore, an object of the present invention is to realize an optical measuring device that can always measure a correct optical power spectrum regardless of the polarization state of incident light.

【0012】[0012]

【課題を解決する為の手段】第1図は、本発明による第
1の解決手段を示している。上記課題を解決するため
に、本発明の構成では、可動反射鏡13と固定反射鏡1
4からの反射光をビームスプリッタ12で干渉合成させ
た後の2方向の出射光線の一方を受けて電気信号I1に
変換して偏光補正回路20に供給する第1受光器15a
を設け、可動反射鏡13と固定反射鏡14からの反射光
をビームスプリッタ12で干渉合成させた後の2方向の
出射光線の他方を受けて電気信号I2に変換して偏光補
正回路20に供給する第2受光器15bを設け、第1受
光器15aからの信号I1と、第2受光器15bからの
信号I2を受けて、LPF16aで信号I1から高域をフ
ィルタした信号I1LPを生成し、HPF16bで信号I1
から低域をフィルタした信号I1HPを生成し、{I1+I
2×I1HP/I1LP}の演算処理を行う偏光補正回路20
を設ける構成手段にする。
FIG. 1 shows a first solution according to the present invention. In order to solve the above problems, in the configuration of the present invention, the movable reflecting mirror 13 and the fixed reflecting mirror 1
The first light receiver 15a which receives one of two outgoing light rays after the interference of the reflected light from the beam splitter 4 by the beam splitter 12 and converts it into an electric signal I1 and supplies it to the polarization correction circuit 20.
Is provided to receive the other of the outgoing light rays in two directions after the reflected light from the movable reflecting mirror 13 and the fixed reflecting mirror 14 are interference-combined by the beam splitter 12, and convert them into an electric signal I2 and supply them to the polarization correction circuit 20. The second photoreceiver 15b is provided to receive the signal I1 from the first photoreceiver 15a and the signal I2 from the second photoreceiver 15b, and the LPF 16a generates a high-pass filtered signal I1LP from the signal I1. At signal I1
Generate a low-pass filtered signal I1HP from {I1 + I
2 × I1HP / I1LP} polarization correction circuit 20 for performing arithmetic processing
Is provided.

【0013】第2図は、本発明による第2の解決手段を
示している。上記課題を解決するために、本発明の構成
では、可動反射鏡13と固定反射鏡14からの反射光を
ビームスプリッタ12で干渉合成させた後の2方向の出
射光線の一方を受けて電気信号I1に変換して第1AD
変換器17aに供給する第1受光器15aを設け、可動
反射鏡13と固定反射鏡14からの反射光をビームスプ
リッタ12で干渉合成させた後の2方向の出射光線の他
方を受けて電気信号I2に変換して第2AD変換器17
bに供給する第2受光器15bを設け、第1受光器15
aの信号を受けて、量子化変換した信号I1Dを偏光補正
演算部25に供給する第1AD変換器17aを設け、第
2受光器15bの信号を受けて、量子化変換した信号I
2Dを偏光補正演算部25に供給する第2AD変換器17
bを設ける。そして、第1AD変換器17aの信号I1D
と第2AD変換器17bからの信号I2Dを受けて、LP
F手段で信号I1Dから高域をフィルタした信号I1LPDを
生成し、HPF手段で信号I1Dから低域をフィルタした
信号I1HPDを生成し、これらから{I1D+I2D×I1HPD
/I1LPD}の演算処理を行う偏光補正演算部25を設け
る構成手段にする。
FIG. 2 shows a second solution according to the present invention. In order to solve the above problems, in the configuration of the present invention, one of two outgoing light rays after the reflected light from the movable reflecting mirror 13 and the fixed reflecting mirror 14 is interference-combined by the beam splitter 12 and an electric signal is received. First AD after conversion to I1
A first light receiver 15a for supplying to the converter 17a is provided, and the reflected light from the movable reflecting mirror 13 and the fixed reflecting mirror 14 is subjected to interference synthesis by the beam splitter 12, and the other of the two outgoing light beams is received to receive an electric signal. The second AD converter 17 by converting to I2
b is provided with a second light receiver 15b, and the first light receiver 15b is provided.
The first AD converter 17a that receives the signal a and quantizes and converts the signal I1D to the polarization correction calculator 25 is provided, and the signal I2D that is quantized and converted by the signal from the second light receiver 15b is provided.
Second AD converter 17 that supplies 2D to the polarization correction calculation unit 25
b is provided. Then, the signal I1D of the first AD converter 17a
And the signal I2D from the second AD converter 17b,
The F means generates a high-pass filtered signal I1LPD from the signal I1D, and the HPF means generates a low-pass filtered signal I1HPD from the signal I1D. From these, {I1D + I2D × I1HPD
/ I1LPD} is used as a constituent means for providing the polarization correction calculation unit 25 for performing the calculation process of [I1LPD].

【0014】第3図は、本発明による第3の解決手段を
示している。上記課題を解決するために、本発明の構成
では、可動反射鏡13と固定反射鏡14からの反射光を
ビームスプリッタ12で干渉合成させた後の2方向の出
射光線の一方を受けて電気信号I1に変換して第1AD
変換器17aに供給する第1受光器15aを設け、可動
反射鏡13と固定反射鏡14からの反射光をビームスプ
リッタ12で干渉合成させた後の2方向の出射光線の他
方を受けて電気信号I2に変換して第2AD変換器17
bに供給する第2受光器15bを設け、第1受光器15
aの信号あるいは第2受光器15bの信号を切り替えて
AD変換器17に供給するアナログ切り替え器24を設
ける。そして、アナログ切り替え器24からの信号を受
けて、量子化変換し、変換した信号を偏光補正演算部2
5に供給するAD変換器17を設け、AD変換器17か
らの信号I1D、I2Dを受けて、LPF手段で信号I1Dか
ら高域をフィルタした信号I1LPDを生成し、HPF手段
で信号I1Dから低域をフィルタした信号I1HPDを生成
し、これらから{I1D+I2D×I1HPD/I1LPD}の演算
処理を行う偏光補正演算部25を設ける構成手段にす
る。
FIG. 3 shows a third solution according to the present invention. In order to solve the above problems, in the configuration of the present invention, one of two outgoing light rays after the reflected light from the movable reflecting mirror 13 and the fixed reflecting mirror 14 is interference-combined by the beam splitter 12 and an electric signal is received. First AD after conversion to I1
A first light receiver 15a for supplying to the converter 17a is provided, and the reflected light from the movable reflecting mirror 13 and the fixed reflecting mirror 14 is subjected to interference synthesis by the beam splitter 12, and the other of the two outgoing light beams is received to receive an electric signal. The second AD converter 17 by converting to I2
b is provided with a second light receiver 15b, and the first light receiver 15b is provided.
An analog switch 24 for switching the signal of “a” or the signal of the second light receiver 15b and supplying it to the AD converter 17 is provided. Then, the signal from the analog switch 24 is received, quantized and converted, and the converted signal is subjected to the polarization correction operation unit 2
5 is provided with an AD converter 17, which receives signals I1D and I2D from the AD converter 17 to generate a high-pass filtered signal I1LPD from the signal I1D by the LPF means and a low-pass signal from the signal I1D by the HPF means. Is generated to generate a filtered signal I1HPD, and a polarization correction calculation unit 25 for calculating {I1D + I2D × I1HPD / I1LPD} from these signals is provided.

【0015】[0015]

【作用】第1受光器15aと、第2受光器15bの信号
を加算することにより、ビームスプリッタ12で分岐し
た測定光の全入射パワーI0を求める役割を持つ。偏光
補正回路20あるいは、偏光補正演算部25によって、
式104の演算を実施することで偏光依存要素S(M)
を削除する作用を持つ。この結果、測定光の偏光状態に
依存しない測定機能が実現できる。
The function is to obtain the total incident power I0 of the measurement light branched by the beam splitter 12 by adding the signals of the first light receiver 15a and the second light receiver 15b. By the polarization correction circuit 20 or the polarization correction calculation unit 25,
By performing the calculation of Expression 104, the polarization dependent element S (M)
Has the effect of removing. As a result, a measurement function that does not depend on the polarization state of the measurement light can be realized.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明の実施例について、図1を参照し
て、2つの受光器と偏光補正回路によって偏光依存を解
消する光学測定ブロックの場合で説明する。構成は、ビ
ームスプリッタ12と、可動反射鏡13と、固定反射鏡
14と、第1受光器15aと、第2受光器15bと、偏
光補正回路20と、AD変換器17と、FFT処理部1
8と、表示部19とで測定系を構成している。この偏光
補正回路20は、加算器21と、除算器22と、乗算器
23と、LPF16aと、HPF16bとで構成してい
る。光学系を形成しているビームスプリッタ12と、可
動反射鏡13と、固定反射鏡14は、従来と同様であ
る。また、AD変換器17以後のFFT処理部18と、
表示部19も従来と同様である。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG. 1 in the case of an optical measurement block that eliminates polarization dependence by two light receivers and a polarization correction circuit. The configuration is such that the beam splitter 12, the movable reflecting mirror 13, the fixed reflecting mirror 14, the first light receiver 15a, the second light receiver 15b, the polarization correction circuit 20, the AD converter 17, and the FFT processing unit 1 are provided.
8 and the display unit 19 form a measurement system. The polarization correction circuit 20 includes an adder 21, a divider 22, a multiplier 23, an LPF 16a, and an HPF 16b. The beam splitter 12, the movable reflecting mirror 13, and the fixed reflecting mirror 14, which form the optical system, are the same as in the conventional case. In addition, the FFT processing unit 18 after the AD converter 17,
The display unit 19 is also similar to the conventional one.

【0017】ビームスプリッタ12で干渉後の2つの出
射光E1、E2の一方の出射光E1は、第1受光器15a
で受けて光強度信号I1に変換する。他方の出射光E2
は、第2受光器15bで受けて光強度信号I2に変換す
る。両受光器は、感度特性のそろった受光器を使用す
る。偏光補正回路20においては、両受光器の電気信号
を受けて偏光依存要素S(M)を解消する演算処理手段
を実施した後、AD変換器17に供給している。
The outgoing light E1 of the two outgoing lights E1 and E2 after interference by the beam splitter 12 is the first photodetector 15a.
It is received by and converted into a light intensity signal I1. The other emitted light E2
Is received by the second light receiver 15b and converted into a light intensity signal I2. Both receivers use receivers with uniform sensitivity characteristics. In the polarization correction circuit 20, an arithmetic processing means for receiving the electric signals of both light receivers and eliminating the polarization dependent element S (M) is implemented, and then supplied to the AD converter 17.

【0018】接続は、第1受光器15aからの光強度信
号I1を受けて、LPF16aとHPF16bおよび加
算器21の一方の入力端に接続し、LPF16aの出力
端を除算器22の一方の入力端に接続し、HPF16b
の出力端を乗算器23の一方の入力端に接続し、第2受
光器15bからの光強度信号I2を受けて、加算器21
の他方の入力端に接続し、この加算器21の出力端を除
算器22の他方の入力端に接続し、この除算器22の出
力端を乗算器23の他方の入力端に接続し、この乗算器
23の出力端をAD変換器17に供給している。
The connection receives the light intensity signal I1 from the first photodetector 15a, connects it to one input end of the LPF 16a and HPF 16b and the adder 21, and connects the output end of the LPF 16a to one input end of the divider 22. Connect to, HPF16b
Is connected to one input end of the multiplier 23, receives the light intensity signal I2 from the second photodetector 15b, and receives the adder 21
Connected to the other input terminal of the adder 21, the output terminal of the adder 21 is connected to the other input terminal of the divider 22, and the output terminal of the divider 22 is connected to the other input terminal of the multiplier 23. The output terminal of the multiplier 23 is supplied to the AD converter 17.

【0019】LPF16aは、第1受光器15a後の光
強度信号I1を受けて、干渉縞周波数信号よりも低い周
波数成分I1LP、いわゆる直流成分を通過出力する。他
方、HPF16bは、この光強度信号I1を受けて、干
渉縞周波数成分I1HP、いわゆる交流成分を通過出力す
る。加算器21は、2つの受光器からの信号I1、I2を
受けて、I0=I1+I2加算した後、除算器22に供給
する。除算器22は、加算器21からの信号I0と、L
PF16aからのI1LPを受けて、(I0/I1LP)の除
算した後、乗算器23に供給する。乗算器23は、除算
器22からの信号(I0/I1LP)と、HPF16bから
のI1HPを受けて、(I0/I1LP)×I1HPの乗算した
後、AD変換器17に供給している。
The LPF 16a receives the light intensity signal I1 after the first light receiver 15a, and outputs a frequency component I1LP, which is a so-called DC component, lower than the interference fringe frequency signal. On the other hand, the HPF 16b receives the light intensity signal I1 and outputs the interference fringe frequency component I1HP, so-called AC component. The adder 21 receives the signals I1 and I2 from the two photodetectors, adds I0 = I1 + I2, and then supplies them to the divider 22. The divider 22 receives the signal I0 from the adder 21 and L
It receives I1LP from the PF 16a, divides it by (I0 / I1LP), and then supplies it to the multiplier 23. The multiplier 23 receives the signal (I0 / I1LP) from the divider 22 and I1HP from the HPF 16b, multiplies by (I0 / I1LP) × I1HP, and then supplies it to the AD converter 17.

【0020】次に、前記の偏光補正回路20での偏光依
存を解消する計算基礎について、次に示す計算式71〜
78を示して説明する。
Next, regarding the calculation basis for eliminating the polarization dependence in the polarization correction circuit 20, the following calculation formulas 71 to 71 are given.
Reference numeral 78 will be described.

【0021】[0021]

【数3】 (Equation 3)

【0022】上記計算式で、ビームスプリッタ12に入
射する入射光強度全体は式71である。第1受光器15
a側の出射光E1の計算式は、従来説明の計算式であ
り、式61、62、63に示されている。他方、第2受
光器15b側の出射光E2の計算式で、P偏光成分の振
幅出力E2pは式72で表され、S偏光成分の振幅出力
E2Sは式73で表される。これらから、光パワーP成分
の強度I2Pは式74となり、光パワーS成分の強度I2S
は式75となる。この結果第2受光器15bで受ける全
光強度I2は、P、S両成分の和として求まり式76で
表される。ここで、第2受光器15b側の受ける偏光割
合は(1−M)を用いて計算している。この全光強度I
2の式76の中で、ビームスプリッタ12に吸収がない
と仮定すると、RP+TP=1、RS+TS=1、RP2+T
P2=1−2RPTP、RS2+TS2=1−2RSTSであるか
ら、これらを代入して式77を得る。この式77の中で
式63と同じ部分があり、これをI1として代入すると
式78を得る。また、ビームスプリッタ12に吸収がな
いと仮定すると、入射パワー(E0)2=I0=I1+I2
の関係が成り立つ。
In the above formula, the total incident light intensity incident on the beam splitter 12 is formula 71. First light receiver 15
The calculation formula of the emitted light E1 on the a side is the calculation formula of the conventional description, and is shown in Formulas 61, 62, and 63. On the other hand, in the calculation formula of the emitted light E2 on the side of the second light receiver 15b, the amplitude output E2p of the P-polarized component is expressed by the formula 72, and the amplitude output E2S of the S-polarized component is expressed by the formula 73. From these, the intensity I2P of the optical power P component becomes formula 74, and the intensity I2S of the optical power S component becomes
Becomes Equation 75. As a result, the total light intensity I2 received by the second photodetector 15b is obtained as the sum of both P and S components, and is represented by Expression 76. Here, the polarization ratio received on the second light receiver 15b side is calculated using (1-M). This total light intensity I
Assuming that there is no absorption in the beam splitter 12 in Equation 76 of 2, RP + TP = 1, RS + TS = 1, RP2 + T
Since P2 = 1−2RPTP and RS2 + TS2 = 1−2RSTS, these are substituted to obtain the expression 77. In this equation 77, there is the same part as the equation 63, and when this is substituted as I1, the equation 78 is obtained. Assuming that the beam splitter 12 has no absorption, the incident power (E0) 2 = I0 = I1 + I2
The relationship is established.

【0023】第1受光器15a側で受けた電気信号I1
と、これをLPF16a、HPF16bでフィルタした
後の出力信号との関係は、I1=I1LP+I1HPである。
ここで、表現を簡略にする為に、光路長の変化させたと
きの要素、即ち干渉による交流成分要素をA=cos{kn
(L1-L2)}と置く。このAから、式63は、I1=I0
(1+A)S(M)と表せる。この式において、LPF1
6a後の出力信号は 、 I1LP=I0×S(M) ... 式101 項に相当し、HPF16b後の出力信号は、 I1HP=I0×S(M)×A ... 式102 項に相当する。光のパワースペクトルを求めるには、こ
のHPF16b後の出力信号I1HPをフーリエ変換すれ
ば良いが、この式には、偏光依存要素S(M)を含んでい
る為、このままでは正しく測定できないことが分かる。
そこで、式101のS(M)を式102へ代入すると、 I0×A=I0×I1HP/I1LP が得られる。この式104は、偏光依存要素S(M)を含
んでいない為、偏光状態に依存しない測定ができること
を示している。この式104の演算を実施しているの
が、偏光補正回路20である。
Electric signal I1 received by the first light receiver 15a side
The relation between the output signal and the output signal after being filtered by the LPF 16a and the HPF 16b is I1 = I1LP + I1HP.
Here, in order to simplify the expression, an element when the optical path length is changed, that is, an AC component element due to interference is defined as A = cos {kn
(L1-L2)}. From this A, equation 63 becomes I1 = I0
It can be expressed as (1 + A) S (M). In this formula, LPF1
The output signal after 6a is: I1LP = I0 × S (M). . . The output signal after the HPF 16b corresponds to the expression 101 and has the following formula: I1HP = I0 * S (M) * A. . . Corresponds to the expression 102. In order to obtain the power spectrum of the light, the output signal I1HP after the HPF 16b may be Fourier-transformed. However, since this expression includes the polarization dependent element S (M), it cannot be correctly measured as it is. .
Then, by substituting S (M) of the equation 101 into the equation 102, I0 * A = I0 * I1HP / I1LP is obtained. This formula 104 indicates that the measurement does not depend on the polarization state because the polarization dependent element S (M) is not included. It is the polarization correction circuit 20 that executes the calculation of the equation 104.

【0024】(実施例2)本発明の実施例について、図
2を参照して、2つの受光器と2つのAD変換器と偏光
補正演算部によって偏光依存を解消する光学測定ブロッ
クの場合で説明する。構成は、ビームスプリッタ12
と、可動反射鏡13と、固定反射鏡14と、第1受光器
15aと、第2受光器15bと、第1AD変換器17a
と、第2AD変換器17bと、偏光補正演算部25と、
FFT処理部18と、表示部19とで測定系を構成して
いる。光学系を形成しているビームスプリッタ12と、
可動反射鏡13と、固定反射鏡14は、従来と同様であ
る。また、FFT処理部18と、表示部19も従来と同
様である。
(Embodiment 2) An embodiment of the present invention will be described with reference to FIG. 2 in the case of an optical measurement block that eliminates polarization dependence by two light receivers, two AD converters, and a polarization correction operation unit. To do. The configuration is the beam splitter 12
A movable reflecting mirror 13, a fixed reflecting mirror 14, a first light receiver 15a, a second light receiver 15b, and a first AD converter 17a.
A second AD converter 17b, a polarization correction calculator 25,
The FFT processing unit 18 and the display unit 19 form a measurement system. A beam splitter 12 forming an optical system,
The movable reflecting mirror 13 and the fixed reflecting mirror 14 are the same as conventional ones. Further, the FFT processing unit 18 and the display unit 19 are also similar to the conventional one.

【0025】本発明は、実施例1で回路で実施していた
偏光補正回路20の変わりに、直接2つのAD変換器で
デジタル信号に量子化した後、デジタル的に前記式10
4をソフト演算手段あるいはハード演算手段により、偏
光補正を実行する手段となっている。即ち、偏光補正演
算部25では、デジタル処理による、加算と、除算と、
乗算と、デジタルLPFと、デジタルHPF手段で同様
の演算を実施している。
According to the present invention, instead of the polarization correction circuit 20 implemented by the circuit in the first embodiment, the two AD converters directly quantize the digital signal, and then digitally the above equation 10 is used.
4 is a means for executing polarization correction by a software operation means or a hardware operation means. That is, in the polarization correction calculation unit 25, addition, division, and
The same operation is performed by multiplication, digital LPF, and digital HPF means.

【0026】(応用例)上記実施例1の説明では、偏光
補正回路20の接続を図1に示す例で説明していたが、
式104に示す演算式を実行する接続構成は他にもあ
り、必要により加算/乗算/除算の演算順序を変えた接
続構成にしても良く、同様にして実施できる。
(Application Example) In the above description of the first embodiment, the connection of the polarization correction circuit 20 has been described in the example shown in FIG.
There are other connection configurations for executing the arithmetic expression shown in Formula 104, and if necessary, the addition / multiplication / division operation order may be changed, and the same operation can be performed.

【0027】上記実施例2の説明では、2つのAD変換
器17a、17bを使用して、デジタル信号に量子化し
て偏光補正演算部25に供給する説明であったが、この
代わりに、図3に示すように、2入力1出力のアナログ
切り替え器24を用いて、受光器15a、15bからの
信号を交互に切り替えて1つのAD変換器17に入力し
てデジタル信号I1D、I2Dに量子化するように構成して
も良く、同様にして実施できる。
In the above description of the second embodiment, the two AD converters 17a and 17b are used to quantize a digital signal and supply it to the polarization correction operation section 25. However, instead of this, FIG. As shown in, using the 2-input / 1-output analog switch 24, the signals from the light receivers 15a and 15b are alternately switched and input to one AD converter 17 to be quantized into digital signals I1D and I2D. It may be configured as described above, and can be implemented in the same manner.

【0028】[0028]

【発明の効果】本発明は、以上説明したように構成され
ているので、下記に記載されるような効果を奏する。第
1受光器15aと、第2受光器15bの信号を加算する
ことにより、ビームスプリッタ12で分岐した測定光の
全入射パワーI0を求めることができる効果がある。偏
光補正回路20あるいは、偏光補正演算部25によっ
て、偏光依存要素S(M)を削除でき、測定光の偏光状
態に依存しない測定が可能となる。この結果、常に正し
い光パワーレベルが測定でき、信頼性のある測定データ
の提供と、良好な測定精度を有する光測定装置を実現す
ることができる。
Since the present invention is configured as described above, it has the following effects. By adding the signals of the first light receiver 15a and the second light receiver 15b, it is possible to obtain the total incident power I0 of the measurement light split by the beam splitter 12. The polarization-dependent element S (M) can be deleted by the polarization correction circuit 20 or the polarization correction calculation unit 25, and the measurement independent of the polarization state of the measurement light becomes possible. As a result, the correct optical power level can always be measured, reliable measurement data can be provided, and an optical measurement device having good measurement accuracy can be realized.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の、2つの受光器と偏光補正回路によっ
て偏光依存を解消する、マイケルソン干渉計による光パ
ワースペクトルの光学測定ブロック図の例である。
FIG. 1 is an example of an optical measurement block diagram of an optical power spectrum by a Michelson interferometer in which polarization dependence is eliminated by two light receivers and a polarization correction circuit of the present invention.

【図2】本発明の、2つの受光器と2つのAD変換器と
偏光補正演算部によって偏光依存を解消する、マイケル
ソン干渉計による光パワースペクトルの光学測定ブロッ
ク図の例である。
FIG. 2 is an example of a block diagram of optical measurement of an optical power spectrum by a Michelson interferometer in which polarization dependence is eliminated by two light receivers, two AD converters, and a polarization correction calculation unit according to the present invention.

【図3】本発明の、2つの受光器とアナログ切り替え器
と1つのAD変換器と偏光補正演算部によって偏光依存
を解消する、マイケルソン干渉計による光パワースペク
トルの光学測定ブロック図の例である。
FIG. 3 is an example of an optical measurement block diagram of an optical power spectrum by a Michelson interferometer in which polarization dependence is eliminated by two light receivers, an analog switching device, one AD converter, and a polarization correction operation unit of the present invention. is there.

【図4】従来の、マイケルソン干渉計による光パワース
ペクトルの光学測定ブロック図の例である。
FIG. 4 is an example of a conventional optical measurement block diagram of an optical power spectrum by a Michelson interferometer.

【符号の説明】[Explanation of symbols]

12 スプリッタ 13 可動反射鏡 14 固定反射鏡 15、15a、15b 受光器 16a LPF(ローパスフィルタ) 16、16b HPF(ハイパスフィルタ) 17、17a、17b AD変換器 18 FFT処理部 19 表示部 20 偏光補正回路 21 加算器 22 除算器 23 乗算器 24 アナログ切り替え器 25 偏光補正演算部 12 splitter 13 movable reflecting mirror 14 fixed reflecting mirror 15, 15a, 15b light receiver 16a LPF (low-pass filter) 16, 16b HPF (high-pass filter) 17, 17a, 17b AD converter 18 FFT processing unit 19 display unit 20 polarization correction circuit 21 Adder 22 Divider 23 Multiplier 24 Analog Switch 25 Polarization Correction Calculation Unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビームスプリッタ(12)と可動反射鏡
(13)と固定反射鏡(14)を有して、未知の偏光状
態の入射光を入射する光スペクトラムの測定において、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の一方を受けて電気信号(I1)に変換し
て偏光補正回路(20)に供給する第1受光器(15
a)を設け、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の他方を受けて電気信号(I2)に変換し
て偏光補正回路(20)に供給する第2受光器(15
b)を設け、 当該第1受光器(15a)からの信号(I1)と、当該
第2受光器(15b)からの信号(I2)を受けて、L
PF(16a)で信号(I1)から高域をフィルタした
信号(I1LP)を生成し、HPF(16b)で信号(I
1)から低域をフィルタした信号(I1HP)を生成し、
{(I1+I2)×I1HP/I1LP}の演算処理を行う偏光
補正回路(20)を設け、 以上を具備していることを特徴としたマイケルソン干渉
計。
1. A movable reflecting mirror (13) having a beam splitter (12), a movable reflecting mirror (13) and a fixed reflecting mirror (14) for measuring an optical spectrum of incident light of unknown polarization state. ) And the reflected light from the fixed reflecting mirror (14) are interference-combined by the beam splitter (12) and receive one of the two outgoing light beams and convert them into an electric signal (I1) for polarization correction circuit (20). The first light receiver (15
a) is provided, and the reflected light from the movable reflecting mirror (13) and the fixed reflecting mirror (14) are subjected to interference synthesis by the beam splitter (12), and the other of the outgoing light beams in two directions is received and the electric signal (I2) is received. The second photodetector (15)
b) is provided and receives the signal (I1) from the first light receiver (15a) and the signal (I2) from the second light receiver (15b),
The PF (16a) generates a high-frequency filtered signal (I1LP) from the signal (I1), and the HPF (16b) generates the signal (I1).
Generate a low-pass filtered signal (I1HP) from 1),
A Michelson interferometer characterized by comprising a polarization correction circuit (20) for performing {(I1 + I2) × I1HP / I1LP} arithmetic processing and having the above.
【請求項2】 ビームスプリッタ(12)と可動反射鏡
(13)と固定反射鏡(14)を有して、未知の偏光状
態の入射光を入射する光スペクトラムの測定において、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の一方を受けて電気信号(I1)に変換し
て第1AD変換器(17a)に供給する第1受光器(1
5a)を設け、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の他方を受けて電気信号(I2)に変換し
て第2AD変換器(17b)に供給する第2受光器(1
5b)を設け、 当該第1受光器(15a)の信号を受けて、量子化変換
し、この信号(I1D)を偏光補正演算部(25)に供給
する第1AD変換器(17a)を設け、 当該第2受光器(15b)の信号を受けて、量子化変換
し、この信号(I2D)を偏光補正演算部(25)に供給
する第2AD変換器(17b)を設け、 当該第1AD変換器(17a)の信号(I1D)と当該第
2AD変換器(17b)からの信号(I2D)を受けて、
LPF手段で信号(I1D)から高域をフィルタした信号
(I1LPD)を生成し、HPF手段で信号(I1D)から低
域をフィルタした信号(I1HPD)を生成し、これらから
{(I1D+I2D)×I1HPD/I1LPD}の演算処理を行う
偏光補正演算部(25)を設け、 以上を具備していることを特徴としたマイケルソン干渉
計。
2. A movable reflector (13) having a beam splitter (12), a movable reflector (13) and a fixed reflector (14) for measuring an optical spectrum of incident light of unknown polarization state. ) And the reflected light from the fixed reflecting mirror (14) are interference-combined by the beam splitter (12) and receive one of two outgoing light beams and convert into an electric signal (I1) to convert it into a first AD converter (17a). ) To the first light receiver (1
5a) is provided, and the reflected light from the movable reflecting mirror (13) and the fixed reflecting mirror (14) is subjected to interference synthesis by the beam splitter (12), and the other of the two outgoing light beams is received to receive an electric signal (I2). To the second AD converter (17b) after being converted into
5b) is provided, the first AD converter (17a) that receives the signal from the first light receiver (15a), quantizes and converts the signal, and supplies the signal (I1D) to the polarization correction calculation unit (25) is provided, A second AD converter (17b) is provided, which receives the signal from the second photodetector (15b), quantizes and converts the signal, and supplies the signal (I2D) to the polarization correction calculation unit (25). By receiving the signal (I1D) of (17a) and the signal (I2D) from the second AD converter (17b),
The LPF means generates a high-frequency filtered signal (I1LPD) from the signal (I1D), the HPF means generates a low-pass filtered signal (I1HPD) from the signal (I1D + I2D) × I1HPD / I1LPD} A Michelson interferometer, which is provided with a polarization correction operation unit (25) for performing operation processing of [I1LPD] and is equipped with the above.
【請求項3】 ビームスプリッタ(12)と可動反射鏡
(13)と固定反射鏡(14)を有して、未知の偏光状
態の入射光を入射する光スペクトラムの測定において、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の一方を受けて電気信号(I1)に変換し
て第1AD変換器(17a)に供給する第1受光器(1
5a)を設け、 可動反射鏡(13)と固定反射鏡(14)からの反射光
をビームスプリッタ(12)で干渉合成させた後の2方
向の出射光線の他方を受けて電気信号(I2)に変換し
て第2AD変換器(17b)に供給する第2受光器(1
5b)を設け、 当該第1受光器(15a)の信号あるいは当該第2受光
器(15b)の信号を切り替えてAD変換器(17)に
供給するアナログ切り替え器(24)を設け、 当該アナログ切り替え器(24)からの信号を受けて、
量子化変換し、変換した信号を偏光補正演算部(25)
に供給するAD変換器(17)を設け、 当該AD変換器(17)からの信号(I1D、I2D)を受
けて、LPF手段で信号(I1D)から高域をフィルタし
た信号(I1LPD)を生成し、HPF手段で信号(I1D)
から低域をフィルタした信号(I1HPD)を生成し、これ
らから{(I1D+I2D)×I1HPD/I1LPD}の演算処理
を行う偏光補正演算部(25)を設け、 以上を具備していることを特徴としたマイケルソン干渉
計。
3. A movable reflecting mirror (13) having a beam splitter (12), a movable reflecting mirror (13) and a fixed reflecting mirror (14) for measuring an optical spectrum of incident light of unknown polarization state. ) And the reflected light from the fixed reflecting mirror (14) are interference-combined by the beam splitter (12) and receive one of two outgoing light beams and convert into an electric signal (I1) to convert it into a first AD converter (17a). ) To the first light receiver (1
5a) is provided, and the reflected light from the movable reflecting mirror (13) and the fixed reflecting mirror (14) is subjected to interference synthesis by the beam splitter (12), and the other of the two outgoing light beams is received to receive an electric signal (I2). To the second AD converter (17b) after being converted into
5b) is provided, and an analog switch (24) for switching the signal of the first photoreceiver (15a) or the signal of the second photoreceiver (15b) and supplying it to the AD converter (17) is provided. Receiving the signal from the vessel (24),
Quantization conversion is performed, and the converted signal is subjected to polarization correction calculation unit (25)
Is provided with an AD converter (17), which receives signals (I1D, I2D) from the AD converter (17) and generates a high-pass filtered signal (I1LPD) from the signal (I1D) by the LPF means. Then, the signal (I1D) is sent by HPF means.
A polarization correction calculation unit (25) for generating a low-pass filtered signal (I1HPD) from the generated signal and performing {(I1D + I2D) × I1HPD / I1LPD} calculation processing from these signals is provided. Michelson interferometer.
JP15670194A 1993-11-17 1994-06-15 Michelson interferometer Withdrawn JPH085459A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15670194A JPH085459A (en) 1994-06-15 1994-06-15 Michelson interferometer
US08/491,907 US5867271A (en) 1993-11-17 1994-11-11 Michelson interferometer including a non-polarizing beam splitter
PCT/JP1994/001905 WO2004079313A1 (en) 1993-11-17 1994-11-11 Michelson interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15670194A JPH085459A (en) 1994-06-15 1994-06-15 Michelson interferometer

Publications (1)

Publication Number Publication Date
JPH085459A true JPH085459A (en) 1996-01-12

Family

ID=15633452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15670194A Withdrawn JPH085459A (en) 1993-11-17 1994-06-15 Michelson interferometer

Country Status (1)

Country Link
JP (1) JPH085459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020247A (en) * 2006-07-11 2008-01-31 Institute Of Physical & Chemical Research Multiphoton excitation spectrum and multiphoton absorption spectrum measuring device
CN103162833A (en) * 2011-12-09 2013-06-19 中国科学院西安光学精密机械研究所 Interference spectroscopical method capable of changing optical distance number and interferometer using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020247A (en) * 2006-07-11 2008-01-31 Institute Of Physical & Chemical Research Multiphoton excitation spectrum and multiphoton absorption spectrum measuring device
CN103162833A (en) * 2011-12-09 2013-06-19 中国科学院西安光学精密机械研究所 Interference spectroscopical method capable of changing optical distance number and interferometer using the same

Similar Documents

Publication Publication Date Title
US6914681B2 (en) Interferometric optical component analyzer based on orthogonal filters
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
US6141138A (en) Apparatus and method for measuring characteristics of light
JPH085459A (en) Michelson interferometer
JP2726881B2 (en) Backscattered light measurement device
JPH11271149A (en) Method and apparatus for interference for measurement of phase transition between two light beams coming from polarized incident light source
JPH06186337A (en) Laser distance measuring equipment
JP2001159608A (en) Gas concentration measuring apparatus
JPH0915334A (en) Laser equipment for measuring distance
JPH11160065A (en) Optical wave distance measuring instrument
US5450195A (en) Phase-modulated interferometer for evaluating phase displacement resulting from charges in path length
JPH052075A (en) Laser doppler speed meter
JP3128037B2 (en) Optical IC displacement meter
JP2929387B2 (en) Lightwave rangefinder
RU2774410C1 (en) Device for determining the doppler measurement of the frequency of the reflected radar signal
JPH10267756A (en) Optical spectrum analyzer
JPH07190711A (en) Interferometer making use of degree of coherence
JPH07151682A (en) Gas density measuring processor
RU2016380C1 (en) Method and device for automatic interpolation of phase-shift in laser interferometers
JPH04225134A (en) Method and apparatus for measuring reflecting point of optical part
JP4213877B2 (en) Mach-Zehnder interferometer optical sensor
RU2028626C1 (en) Device for measuring frequency of harmonic electric oscillations
JPH0666939A (en) Light-wave distance measuring apparatus
JPH02140639A (en) Backscattering light measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904