JPH04225134A - Method and apparatus for measuring reflecting point of optical part - Google Patents

Method and apparatus for measuring reflecting point of optical part

Info

Publication number
JPH04225134A
JPH04225134A JP2408079A JP40807990A JPH04225134A JP H04225134 A JPH04225134 A JP H04225134A JP 2408079 A JP2408079 A JP 2408079A JP 40807990 A JP40807990 A JP 40807990A JP H04225134 A JPH04225134 A JP H04225134A
Authority
JP
Japan
Prior art keywords
light
incoherent
optical component
reflection point
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2408079A
Other languages
Japanese (ja)
Inventor
Masaru Kobayashi
勝 小林
Juichi Noda
野田 寿一
Efu Teiraa Henrii
ヘンリー エフ.テイラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2408079A priority Critical patent/JPH04225134A/en
Publication of JPH04225134A publication Critical patent/JPH04225134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the position of low reflectivity of -100dB or less in an optical part and the reflectivity. CONSTITUTION:The incoherent light from an incoherent light source 1 is split. One is cast on an optical part 19. The obtained reflected light is made to be the measuring light. The other is made to be the reference light. The length of the light path of at least one of the reference light and the measuring light is relatively changed, 2 and the reference light and the measuring light are made to interfere to each other. Thus, the two interference lights are obtained. The intensities of two interference lights are individually detected, and the difference between two detected outputs is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信用の光部品中の
反射点の位置および反射率の測定に用いられる光部品反
射点測定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring reflection points of optical components used for measuring the positions and reflectances of reflection points in optical components for optical communications.

【0002】0002

【従来の技術】従来の光部品反射点測定装置の構成の一
例を図5および図6に示す。
2. Description of the Related Art An example of the configuration of a conventional optical component reflection point measuring device is shown in FIGS. 5 and 6.

【0003】図5において、1はインコヒーレント光源
、2はビームスプリッタ、11は可動平面ミラー、13
は光検出器、15は増幅器、17は周波数フィルタ、1
8は光検出器出力モニタ、19は光部品である。
In FIG. 5, 1 is an incoherent light source, 2 is a beam splitter, 11 is a movable plane mirror, and 13 is a movable plane mirror.
is a photodetector, 15 is an amplifier, 17 is a frequency filter, 1
8 is a photodetector output monitor, and 19 is an optical component.

【0004】インコヒーレント光源1は図中矢印Aで示
す可動平面ミラー11の移動方向の延長線上に配置され
ている。このインコヒーレント光源1と可動平面ミラー
11との間にはビームスプリッタ2が配置されている。 このビームスプリッタ2を挾んで測定対象となる光部品
19と光検出器13とが対向して配置されている。この
光検出器13からの検出出力を、増幅器15を介して周
波数フィルタ17に供給し、そのフィルタ出力を光検出
器出力モニタ18に供給している。
[0004] The incoherent light source 1 is arranged on an extension line of the moving direction of the movable plane mirror 11, which is indicated by an arrow A in the figure. A beam splitter 2 is arranged between the incoherent light source 1 and the movable plane mirror 11. An optical component 19 to be measured and a photodetector 13 are placed facing each other with the beam splitter 2 in between. The detection output from this photodetector 13 is supplied to a frequency filter 17 via an amplifier 15, and the filter output is supplied to a photodetector output monitor 18.

【0005】中心波長λのインコヒーレント光源1から
の出射光はビームスプリッタ2で分岐され、その一方は
測定光として光部品19に照射され、他方は参照光とし
て可動平面ミラ−11に照射される。光部品19からの
反射光と参照光とは、再び上述のビームスプリッタ2で
結合され、この結合光は光検出器13によりその結合光
強度が検出され、この検出信号は増幅器15により増幅
される。干渉信号は可動ミラー速度vに対して周波数f
=2v/λの交流信号となる。
The light emitted from the incoherent light source 1 with a center wavelength λ is split by a beam splitter 2, one of which is irradiated onto an optical component 19 as a measurement light, and the other is irradiated with a movable plane mirror 11 as a reference light. . The reflected light from the optical component 19 and the reference light are again combined by the above-mentioned beam splitter 2, the combined light intensity of this combined light is detected by the photodetector 13, and this detection signal is amplified by the amplifier 15. . The interference signal has a frequency f with respect to the movable mirror speed v.
=2v/λ AC signal.

【0006】そこで、検出信号からは周波数フィルタ1
7により周波数f成分が抽出され、出力モニタ18によ
り抽出信号の電力もしくは電圧振幅の2乗値が測定され
る。この測定値は、分岐点から可動ミラー11までの光
学的距離に等しい光学的距離だけ分岐点から離れている
光部品中の位置における反射率に比例する。
Therefore, from the detection signal, the frequency filter 1
7 extracts the frequency f component, and the output monitor 18 measures the power or the square value of the voltage amplitude of the extracted signal. This measurement is proportional to the reflectance at a location in the optical component that is away from the bifurcation point by an optical distance equal to the optical distance from the bifurcation point to the movable mirror 11.

【0007】例えば、図6に示す散乱点cを光導波部に
有する光部品19を測定した場合、横軸を可動ミラー5
の位置(=ミラー速度×時間)とし、そのときの出力電
圧Vを縦軸にプロットすると図7に示すように入射端a
,出射端bおよび散乱点cにおいて周波数fで振動する
波形が得られる。出力電圧Vのピーク値Vmaxは可動
ミラー5および光部品19への入射光の複素振幅Emi
rror,Esampleおよび光部品19中の各点の
反射係数rを用いてVmax=c|Emirror・r
Esample* |と表される。ここでcは比例係数
、Esample* はEsampleの複素共役であ
る。各点における反射率Rはr2 に比例するので、レ
ベル測定器で測定した出力の電力の値か、測定した出力
電圧を2乗した値を縦軸に、横軸を可動ミラーの位置と
してプロットすることにより図8に示す結果が得られる
。 ここで縦軸を対数表示とし、反射率が既知である反射物
の測定値から校正してある。この波形から反射点位置と
反射率が測定される。
For example, when measuring an optical component 19 having a scattering point c in the optical waveguide shown in FIG.
(=mirror speed x time), and the output voltage V at that time is plotted on the vertical axis. As shown in Figure 7, the input end a
, a waveform vibrating at a frequency f is obtained at the emission end b and the scattering point c. The peak value Vmax of the output voltage V is determined by the complex amplitude Emi of the light incident on the movable mirror 5 and the optical component 19.
Using Esample and the reflection coefficient r of each point in the optical component 19, Vmax=c|Emirror・r
It is expressed as Esample* |. Here, c is a proportionality coefficient, and Esample* is the complex conjugate of Esample. Since the reflectance R at each point is proportional to r2, plot the output power value measured by a level measuring device or the squared value of the measured output voltage on the vertical axis and the position of the movable mirror on the horizontal axis. As a result, the results shown in FIG. 8 are obtained. Here, the vertical axis is expressed logarithmically, and the reflectance is calibrated from the measured value of a reflective object whose reflectance is known. The reflection point position and reflectance are measured from this waveform.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
光部品反射点測定装置では、光源からの光強度雑音のた
めに反射率の測定限界が−100dBとなり、光部品診
断のための要求感度を満たしていなかった。
[Problems to be Solved by the Invention] However, in the conventional optical component reflection point measuring device, the measurement limit of reflectance is -100 dB due to light intensity noise from the light source, which does not meet the required sensitivity for optical component diagnosis. It wasn't.

【0009】本発明の目的は、上記の技術的課題を解決
し、光部品中の−100dB以下の低反射率の反射点測
定が可能な高感度の光部品反射点測定装置を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned technical problems and to provide a highly sensitive optical component reflection point measuring device capable of measuring reflection points with a low reflectance of -100 dB or less in optical components. be.

【0010】0010

【課題を解決するための手段】このような目的を達成す
るために、本発明は、インコヒーレント光源からのイン
コヒーレント光を分岐し、その一方を光部品に照射して
得た反射光を測定光とし、他方のインコヒーレント光を
参照光とし、前記参照光および前記測定光の少くとも一
方の光路長を相対的に変化させながら前記参照光と前記
測定光とを相互に干渉させて2つの干渉光を得、当該2
つの干渉光の光強度をそれぞれ個別に検出し、得られた
2つの検出出力の差分を求めることを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention splits incoherent light from an incoherent light source, irradiates one of them onto an optical component, and measures the reflected light obtained. The other incoherent light is used as a reference light, and the reference light and the measurement light are made to interfere with each other while relatively changing the optical path length of at least one of the reference light and the measurement light. Obtain the interference light, and the 2
It is characterized in that the light intensities of the two interference lights are detected individually, and the difference between the two obtained detection outputs is determined.

【0011】また、本発明は、インコヒーレント光源と
、該インコヒーレント光源からのインコヒーレント光を
分岐し、一方のインコヒーレント光を光部品に照射して
、その反射光を反射点測定光とし、他方のインコヒーレ
ント光を参照光とし、該参照光および前記反射点測定光
の少なくとも一方の光路長を相対的に変えることができ
るようにして、前記参照光と前記反射点測定光とを干渉
させて2つの干渉光を出力する干渉計と、前記2つの干
渉光の光強度を個別に検出する光強度検出手段と、該光
強度検出手段から得られた光強度出力の差分を出力する
手段とを備えたことを特徴とする。
The present invention also provides an incoherent light source, branching the incoherent light from the incoherent light source, irradiating one of the incoherent lights to an optical component, and using the reflected light as reflection point measuring light, The other incoherent light is used as a reference light, and the optical path length of at least one of the reference light and the reflection point measurement light can be relatively changed, so that the reference light and the reflection point measurement light interfere with each other. an interferometer that outputs two interference lights, a light intensity detection means for individually detecting the light intensities of the two interference lights, and a means for outputting a difference between the light intensity outputs obtained from the light intensity detection means. It is characterized by having the following.

【0012】さらに、本発明は、インコヒーレント光源
と、該インコヒーレント光源からのインコヒーレント光
を分岐し、一方のインコヒーレント光を光部品に照射し
て、その反射光を反射点測定光とし、他方のインコヒー
レント光を可動ミラーに照射して、その反射光を参照光
とし、該参照光と前記反射点測定光をビームスプリッタ
において干渉させて該ビームスプリッタから2つの干渉
光を出力する干渉計と、前記2つの干渉光の光強度を個
別に検出する光強度検出手段と、該光強度検出手段から
得られた光強度出力の差分を出力する手段とを備えたこ
とを特徴とする。
Further, the present invention includes an incoherent light source, branching the incoherent light from the incoherent light source, irradiating one of the incoherent lights to an optical component, and using the reflected light as reflection point measuring light, An interferometer that irradiates the other incoherent light onto a movable mirror, uses the reflected light as a reference light, causes the reference light and the reflection point measurement light to interfere in a beam splitter, and outputs two interference lights from the beam splitter. It is characterized by comprising: a light intensity detecting means for individually detecting the light intensities of the two interference lights; and a means for outputting a difference between the light intensity outputs obtained from the light intensity detecting means.

【0013】[0013]

【作用】本発明においては、光部品からの反射光と参照
光とを結合して得られる2つの結合光、すなわち干渉光
間で、光の位相が180°反転するので、得られる干渉
信号の位相も180°反転するのに対し、光強度雑音は
反転せず、同位相のままである。したがって、2つの干
渉光の光強度から求めた差分信号においては、干渉信号
は2倍されるのに対して光強度雑音はほぼ除去され、信
号/雑音比(S/N)が約20dB向上する。
[Operation] In the present invention, the phase of the light is reversed by 180° between the two combined lights, that is, the interference lights, obtained by combining the reflected light from the optical component and the reference light, so that the interference signal obtained is While the phase is also reversed by 180°, the optical intensity noise is not reversed and remains in the same phase. Therefore, in the differential signal obtained from the optical intensities of two interference lights, the interference signal is doubled, but the optical intensity noise is almost eliminated, and the signal/noise ratio (S/N) is improved by about 20 dB. .

【0014】すなわち、本発明によれば、光部品からの
反射光と参照光とを結合して得られる2つの結合光の光
強度をそれぞれ検出し、これら2つの検出出力の差分を
出力するようにしたので、2つの検出出力間で逆位相の
干渉信号を強調し、同位相の光強度雑音成分を除去する
ことができ、これにより、−100dB以下のように低
反射率の反射点について、反射点の位置および反射率の
測定が可能となる。
That is, according to the present invention, the light intensities of two combined lights obtained by combining the reflected light from the optical component and the reference light are detected, and the difference between these two detection outputs is output. , it is possible to emphasize the interference signal of opposite phase between the two detection outputs and remove the optical intensity noise component of the same phase. As a result, for reflection points with low reflectance such as -100 dB or less, It becomes possible to measure the position of the reflection point and the reflectance.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】図1は本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

【0017】図1において、1はインコヒーレント光源
、2および4はビームスプリッタ、5は可動くさび型ミ
ラー、6は固定くさび型ミラー、7は固定平面ミラー、
12および13は光強度検出手段としての光検出器、1
6は差動増幅器、17は周波数フィルタ、18は光検出
器出力モニタ、19は光部品である。モニタ18はたと
えばオシロスコープ、またはコンピュータとデジタルオ
シロスロープやXYレコーダとの組合で構成できる。こ
の実施例において、上述の第1のビームスプリッタ2と
固定平面ミラー7とは第1の干渉計を構成し、第2のビ
ームスプリッタ4と可動くさび型ミラー5と固定くさび
型ミラー6とは第2の干渉計を構成している。
In FIG. 1, 1 is an incoherent light source, 2 and 4 are beam splitters, 5 is a movable wedge-shaped mirror, 6 is a fixed wedge-shaped mirror, 7 is a fixed plane mirror,
12 and 13 are photodetectors as light intensity detection means;
6 is a differential amplifier, 17 is a frequency filter, 18 is a photodetector output monitor, and 19 is an optical component. The monitor 18 can be configured, for example, by an oscilloscope or a combination of a computer, a digital oscilloscope, or an XY recorder. In this embodiment, the first beam splitter 2 and fixed plane mirror 7 described above constitute a first interferometer, and the second beam splitter 4, movable wedge-shaped mirror 5 and fixed wedge-shaped mirror 6 constitute a first interferometer. 2 interferometers are constructed.

【0018】この例の光部品反射点測定装置において、
上述したインコヒーレント光源1からの出射光は、第1
の干渉計のビームスプリッタ2で分岐され、その一方は
光部品19に照射され、他方は固定平面ミラー7に照射
される。光部品19からの反射光(反射点測定光)と固
定平面ミラー7からの反射光(参照光)は、再び上述の
ビームスプリッタ2で結合される。この結合光は第2の
干渉計のビームスプリッタ4で再び分岐され、一方は可
動くさび型ミラー5に、他方は固定くさび型ミラー6に
それぞれ導かれる。両くさび型ミラー5および6からの
各反射光は、ビームスプリッタ4の上述の分岐点とは異
なる位置で結合される。
In the optical component reflection point measuring device of this example,
The light emitted from the incoherent light source 1 described above is the first
The beam is split by the beam splitter 2 of the interferometer, one of which is irradiated onto the optical component 19, and the other is irradiated onto the fixed plane mirror 7. The reflected light from the optical component 19 (reflection point measurement light) and the reflected light from the fixed plane mirror 7 (reference light) are combined again by the beam splitter 2 described above. This combined light is split again by the beam splitter 4 of the second interferometer, and one is guided to a movable wedge-shaped mirror 5 and the other to a fixed wedge-shaped mirror 6, respectively. The respective reflected lights from both wedge-shaped mirrors 5 and 6 are combined at a position different from the above-mentioned branch point of the beam splitter 4.

【0019】ここで、可動くさび型ミラー5を図1中の
矢印B方向に沿って移動させることによって、光部品1
9からの反射光と固定平面ミラー7からの反射光(参照
光)の伝播光路長を調整して、両反射光を上述の結合点
で干渉させる。
Here, by moving the movable wedge-shaped mirror 5 along the direction of arrow B in FIG.
The propagation optical path lengths of the reflected light from the mirror 9 and the reflected light (reference light) from the fixed plane mirror 7 are adjusted to cause the reflected light from both to interfere at the above-mentioned coupling point.

【0020】この結合点では、2つの結合光すなわち干
渉光が得られるが、これら2つの結合光の光強度がそれ
ぞれ第1の光検出器12、第2の光検出器13で検出さ
れる。光検出器12および13からの検出出力を差動増
幅器16に供給して、両出力の差分をとって増幅し、そ
の増幅出力を周波数フィルタ17を介して出力モニタ1
8に供給し、ここで2つの干渉光に対応する2つの干渉
信号の差分出力における周波数fの成分についての電圧
振幅の2乗値または電力を求めることにより、反射点の
位置および反射率についての測定出力を得る。図1に示
した測定装置を用いて図6示の光部品19について測定
を行って得た出力電圧の波形および反射率測定波形をそ
れぞれ図3における(B)および図4における(B)に
示す。図5に示した従来の装置による結果を示す図3に
おける(A)および図4における(A)と比較すると、
出力電圧は2倍、電力は4倍(6dB増加)となり、光
強度雑音成分はほぼ除去されてノイズレベルが15dB
以上低下していることがわかる。この結果、S/Nは約
20dB向上する。
At this coupling point, two combined lights, that is, interference lights, are obtained, and the light intensities of these two combined lights are detected by the first photodetector 12 and the second photodetector 13, respectively. The detection outputs from the photodetectors 12 and 13 are supplied to the differential amplifier 16, the difference between the two outputs is taken and amplified, and the amplified output is passed through the frequency filter 17 to the output monitor 1.
8, and here, by determining the square value of the voltage amplitude or the power for the frequency f component in the differential output of the two interference signals corresponding to the two interference lights, the position of the reflection point and the reflectance can be determined. Obtain measurement output. The output voltage waveform and reflectance measurement waveform obtained by measuring the optical component 19 shown in FIG. 6 using the measuring device shown in FIG. 1 are shown in (B) in FIG. 3 and (B) in FIG. 4, respectively. . Comparing with (A) in FIG. 3 and (A) in FIG. 4 showing the results obtained by the conventional device shown in FIG.
The output voltage is doubled, the power is quadrupled (6dB increase), and the optical intensity noise component is almost removed, reducing the noise level to 15dB.
It can be seen that the value has decreased. As a result, the S/N improves by about 20 dB.

【0021】上述の光検出器12および13による検出
出力間において、干渉信号は逆位相であり、および光強
度雑音成分は同位相であるので、逆位相を強調するとと
もに、同位相を除去することによって差動増幅器16の
出力は高いS/N比の信号となる。これにより検出感度
を向上させることができる。
Between the detection outputs of the photodetectors 12 and 13, the interference signals are in opposite phases and the optical intensity noise components are in the same phase. Therefore, it is necessary to emphasize the opposite phases and remove the same phases. As a result, the output of the differential amplifier 16 becomes a signal with a high S/N ratio. Thereby, detection sensitivity can be improved.

【0022】上述の実施例では、くさび型ミラー5を移
動して参照光の光路長を変化させる構成としたが、くさ
び型ミラー6を図1中の破線矢印で示すように移動して
測定光の光路長を変化させる構成としてもよく、また両
くさび型ミラー5および6を共に移動して両光の光路長
を相対的に変化させる構成としてもよい。要は、両光を
相互に干渉させることができればよい。
In the above embodiment, the optical path length of the reference beam is changed by moving the wedge-shaped mirror 5, but the wedge-shaped mirror 6 is moved as shown by the broken line arrow in FIG. The optical path length of both lights may be changed, or the wedge-shaped mirrors 5 and 6 may be moved together to relatively change the optical path lengths of both lights. In short, it is sufficient if both lights can be made to interfere with each other.

【0023】図2は本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

【0024】図2において、3はビームスプリッタ、8
,9および10は固定平面ミラー、14は光強度検出手
段としてのバランス型光検出器、15は増幅器である。 この実施例において、ビームスプリッタ2および3と可
動くさび型ミラー5と固定平面ミラー8とは1つの干渉
計を構成している。
In FIG. 2, 3 is a beam splitter, 8
, 9 and 10 are fixed plane mirrors, 14 is a balanced photodetector as a light intensity detection means, and 15 is an amplifier. In this embodiment, the beam splitters 2 and 3, the movable wedge mirror 5 and the fixed plane mirror 8 constitute one interferometer.

【0025】この例の光部品反射点測定装置において、
上述したインコヒーレント光源1からの出射光は、ビー
ムスプリッタ2で分岐され、その一方はさらにビームス
プリッタ3を介して光部品19に照射され、他方は可動
くさび型ミラー5に照射される。光部品19からの反射
点測定光として反射光はビームスプリッタ3および固定
平面ミラー8を介してビームスプリッタ2における上述
の分岐点とは異なる位置に導かれ、この位置で上述の可
動くさび型ミラー5からの参照光としての反射光と結合
される。
In the optical component reflection point measuring device of this example,
The emitted light from the above-described incoherent light source 1 is split by a beam splitter 2, one of which is further applied to an optical component 19 via a beam splitter 3, and the other is applied to a movable wedge-shaped mirror 5. The reflected light as reflection point measurement light from the optical component 19 is guided via the beam splitter 3 and the fixed plane mirror 8 to a position different from the above-mentioned branch point in the beam splitter 2, and at this position, the above-mentioned movable wedge-shaped mirror 5 It is combined with the reflected light as a reference light from.

【0026】ここで、この可動くさび型ミラー5を図2
中の矢印B方向に沿って移動させることによって、光部
品19からの反射光と可動くさび型ミラー5からの反射
光の伝播光路長を調整して、両反射光を上述の結合点で
干渉させる。
Here, this movable wedge-shaped mirror 5 is shown in FIG.
By moving it along the direction of arrow B inside, the propagation optical path length of the reflected light from the optical component 19 and the reflected light from the movable wedge-shaped mirror 5 is adjusted, and both reflected lights are caused to interfere at the above-mentioned coupling point. .

【0027】この結合点では、2つの結合光が得られる
が、これら2つの結合光は、それぞれ固定平面ミラー9
,10を介して1つのバランス型光検出器14に導かれ
、そこで両結合光の光強度の差分が検出される。この差
分は増幅器15により増幅され、周波数フィルタ17を
介して出力モニタ18で干渉信号の電圧振幅の2乗値ま
たは電力として反射点についての測定出力を得る。
At this coupling point, two coupled lights are obtained, and these two coupled lights are each coupled to a fixed plane mirror 9.
, 10 to one balanced photodetector 14, where the difference in light intensity between the two coupled lights is detected. This difference is amplified by an amplifier 15, passed through a frequency filter 17, and an output monitor 18 obtains a measurement output for the reflection point as the square value or power of the voltage amplitude of the interference signal.

【0028】この実施例においても、2つの検出出力間
において、干渉信号は逆位相であり、光強度雑音成分は
同位相であるので、逆位相を強調するとともに、同位相
を除去することによって高いS/N比の信号が得られる
In this embodiment as well, the interference signal is in opposite phase between the two detection outputs, and the optical intensity noise component is in the same phase. Therefore, by emphasizing the opposite phase and removing the same phase, a high A signal with an S/N ratio is obtained.

【0029】上述の実施例では、図1に示した第1の実
施例の構成と比較して参照光のビームスプリッタ通過回
数が1回少ないことから、検出信号の光強度が2倍とな
る利点がある。また、上述のバランス型光検出器14が
光電変換効率の揃った光検出器を用いたものであれば、
高い雑音除去特性が望める利点もある。
In the embodiment described above, the number of times the reference light passes through the beam splitter is one less than that of the first embodiment shown in FIG. 1, so the optical intensity of the detection signal is doubled. There is. Moreover, if the above-mentioned balanced photodetector 14 uses a photodetector with uniform photoelectric conversion efficiency,
Another advantage is that high noise removal characteristics can be expected.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
光部品からの反射光と参照光とを結合して得られる2つ
の結合光の光強度をそれぞれ検出し、これら2つの検出
出力の差分を出力するようにしたので、2つの検出出力
間で逆位相の干渉信号を強調し、同位相の光強度雑音成
分を除去することができ、これにより、−100dB以
下のように低反射率の反射点について、反射点の位置お
よび反射率の測定が可能となる。
[Effects of the Invention] As explained above, according to the present invention,
The light intensity of the two combined lights obtained by combining the reflected light from the optical component and the reference light is detected, and the difference between these two detection outputs is output. It is possible to emphasize the phase interference signal and remove the optical intensity noise component of the same phase.This makes it possible to measure the position and reflectance of reflection points with low reflectance, such as -100 dB or less. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光部品反射点測定装置に係る第1の実
施例の構成を示す図である。
FIG. 1 is a diagram showing the configuration of a first embodiment of an optical component reflection point measuring device of the present invention.

【図2】本発明の光部品反射点測定装置に係る第2の実
施例の構成を示す図である。
FIG. 2 is a diagram showing the configuration of a second embodiment of the optical component reflection point measuring device of the present invention.

【図3】光部品反射点測定装置で測定した出力電圧の波
形を示すグラフである。
FIG. 3 is a graph showing the waveform of the output voltage measured by the optical component reflection point measuring device.

【図4】光部品反射点測定装置で測定した反射率測定用
の波形を示すグラフである。
FIG. 4 is a graph showing a waveform for measuring reflectance measured by an optical component reflection point measuring device.

【図5】従来の光部品反射点測定装置の構成の一例を示
す図である。
FIG. 5 is a diagram showing an example of the configuration of a conventional optical component reflection point measuring device.

【図6】反射点測定の対象となる光部品の構成の一例を
示す図である。
FIG. 6 is a diagram showing an example of the configuration of an optical component that is a target of reflection point measurement.

【符号の説明】[Explanation of symbols]

1  インコヒーレント光源 2,3,4  ビームスプリッタ 5  可動くさび型ミラー 6  固定くさび型ミラー 7,8,9,10  固定平面ミラー 11  可動平面ミラー 12,13  光検出器 14  バランス型光検出器 15  増幅器 16  差動増幅器 17  周波数フィルタ 18  出力モニタ 19  光部品 1 Incoherent light source 2, 3, 4 Beam splitter 5. Movable wedge-shaped mirror 6 Fixed wedge mirror 7, 8, 9, 10 Fixed plane mirror 11 Movable plane mirror 12,13 Photodetector 14 Balanced photodetector 15 Amplifier 16 Differential amplifier 17 Frequency filter 18 Output monitor 19 Optical parts

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  インコヒーレント光源からのインコヒ
ーレント光を分岐し、その一方を光部品に照射して得た
反射光を測定光とし、他方のインコヒーレント光を参照
光とし、前記参照光および前記測定光の少くとも一方の
光路長を相対的に変化させながら前記参照光と前記測定
光とを相互に干渉させて2つの干渉光を得、当該2つの
干渉光の光強度をそれぞれ個別に検出し、得られた2つ
の検出出力の差分を求めることを特徴とする光部品反射
点測定方法。
1. Incoherent light from an incoherent light source is split, one of which is irradiated onto an optical component, the resulting reflected light is used as measurement light, the other incoherent light is used as reference light, and the reference light and the While relatively changing the optical path length of at least one of the measurement lights, the reference light and the measurement light are caused to interfere with each other to obtain two interference lights, and the light intensities of the two interference lights are individually detected. A method for measuring a reflection point of an optical component, characterized in that the difference between the two obtained detection outputs is determined.
【請求項2】  インコヒーレント光源と、該インコヒ
ーレント光源からのインコヒーレント光を分岐し、一方
のインコヒーレント光を光部品に照射して、その反射光
を反射点測定光とし、他方のインコヒーレント光を参照
光とし、該参照光および前記反射点測定光の少なくとも
一方の光路長を相対的に変えることができるようにして
、前記参照光と前記反射点測定光とを干渉させて2つの
干渉光を出力する干渉計と、前記2つの干渉光の光強度
を個別に検出する光強度検出手段と、該光強度検出手段
から得られた光強度出力の差分を出力する手段とを備え
たことを特徴とする光部品反射点測定装置。
2. An incoherent light source; the incoherent light from the incoherent light source is branched, one incoherent light is irradiated onto an optical component, the reflected light is used as reflection point measurement light, and the other incoherent light is The light is used as a reference light, and the optical path length of at least one of the reference light and the reflection point measurement light can be relatively changed, and the reference light and the reflection point measurement light are made to interfere with each other to cause interference between the two. An interferometer that outputs light, a light intensity detection means that individually detects the light intensity of the two interference lights, and a means that outputs a difference between the light intensity outputs obtained from the light intensity detection means. An optical component reflection point measuring device characterized by:
【請求項3】  インコヒーレント光源と、該インコヒ
ーレント光源からのインコヒーレント光を分岐し、一方
のインコヒーレント光を光部品に照射して、その反射光
を反射点測定光とし、他方のインコヒーレント光を可動
ミラーに照射して、その反射光を参照光とし、該参照光
と前記反射点測定光をビームスプリッタにおいて干渉さ
せて該ビームスプリッタから2つの干渉光を出力する干
渉計と、前記2つの干渉光の光強度を個別に検出する光
強度検出手段と、該光強度検出手段から得られた光強度
出力の差分を出力する手段とを備えたことを特徴とする
光部品反射点測定装置。
3. An incoherent light source; the incoherent light from the incoherent light source is branched, one incoherent light is irradiated onto an optical component, the reflected light is used as reflection point measurement light, and the other incoherent light is an interferometer that irradiates a movable mirror with light, uses the reflected light as a reference light, causes the reference light and the reflection point measurement light to interfere in a beam splitter, and outputs two interference lights from the beam splitter; An optical component reflection point measuring device comprising a light intensity detection means for individually detecting the light intensity of two interference lights, and a means for outputting a difference between the light intensity outputs obtained from the light intensity detection means. .
JP2408079A 1990-12-27 1990-12-27 Method and apparatus for measuring reflecting point of optical part Pending JPH04225134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408079A JPH04225134A (en) 1990-12-27 1990-12-27 Method and apparatus for measuring reflecting point of optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408079A JPH04225134A (en) 1990-12-27 1990-12-27 Method and apparatus for measuring reflecting point of optical part

Publications (1)

Publication Number Publication Date
JPH04225134A true JPH04225134A (en) 1992-08-14

Family

ID=18517578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408079A Pending JPH04225134A (en) 1990-12-27 1990-12-27 Method and apparatus for measuring reflecting point of optical part

Country Status (1)

Country Link
JP (1) JPH04225134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
JP2012078100A (en) * 2010-09-30 2012-04-19 Panasonic Electric Works Sunx Co Ltd Spectrophotometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
WO1998043069A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
WO1998043068A1 (en) * 1997-03-26 1998-10-01 Kowa Company, Ltd. Optical measuring instrument
US6198540B1 (en) 1997-03-26 2001-03-06 Kowa Company, Ltd. Optical coherence tomography have plural reference beams of differing modulations
JP2012078100A (en) * 2010-09-30 2012-04-19 Panasonic Electric Works Sunx Co Ltd Spectrophotometer

Similar Documents

Publication Publication Date Title
US5365335A (en) Optical low-coherence reflectometer using optical attenuation
US5268738A (en) Extended distance range optical low-coherence reflectometer
US5291267A (en) Optical low-coherence reflectometry using optical amplification
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
US4556314A (en) Dispersion determining method and apparatus
JP2954871B2 (en) Optical fiber sensor
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
JP3922742B2 (en) Method and apparatus for measuring film thickness
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
US4272193A (en) Method and apparatus for timing of laser beams in a multiple laser beam fusion system
JPH07500672A (en) Interference device for detecting reflection defects in optical waveguide structures
JP2003322588A (en) Reflection type method and instrument for measuring brillouin spectrum distribution
JPH04225134A (en) Method and apparatus for measuring reflecting point of optical part
JP3223942B2 (en) Optical fiber inspection equipment
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP3287441B2 (en) Optical component for optical line identification and remote measuring method and device therefor
JP2767000B2 (en) Waveguide dispersion measurement method and apparatus
JPH0658291B2 (en) Optical transmission loss measuring method and apparatus
JPS6338091B2 (en)
JPH07243939A (en) Low-coherent reflectometer and reflection measuring method
JPH04225133A (en) Method and apparatus for measuring reflecting point of optical part
JPH0658293B2 (en) Method and apparatus for measuring wavelength dispersion of optical fiber
JPH0798264A (en) Low-coherent reflectometer
JPS5912121B2 (en) interferometry
JPS6191537A (en) Method and apparatus for measuring dispersion of optical fiber wavelength