JPH0854346A - Method and device for inspecting object for foreign matter - Google Patents

Method and device for inspecting object for foreign matter

Info

Publication number
JPH0854346A
JPH0854346A JP19295694A JP19295694A JPH0854346A JP H0854346 A JPH0854346 A JP H0854346A JP 19295694 A JP19295694 A JP 19295694A JP 19295694 A JP19295694 A JP 19295694A JP H0854346 A JPH0854346 A JP H0854346A
Authority
JP
Japan
Prior art keywords
light
foreign matter
incident angle
reflected
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19295694A
Other languages
Japanese (ja)
Inventor
Teruo Kato
照男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19295694A priority Critical patent/JPH0854346A/en
Publication of JPH0854346A publication Critical patent/JPH0854346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a foreign matter-inspecting device which can detect with high sensitivity foreign matters adhering to the surface of an object which reflects incident light in multiple ways. CONSTITUTION:The foreign matter inspecting device is provided with an He-Ne laser oscillator 4 which can make a laser beam 3 incident on an SOI wafer 1 which reflects incident light 10 in multiple ways at a variable incident angle theta, a light receiving camera 6 which receives reflected light 5 from the wafer 1, a photomultiplier 9 which receives scattered light 8 and an incident angle controlling section 11 which is electrically connected to the oscillator 4 and camera 6, detects the minimum point of the intensity of the reflected light 5 which periodically changes in accordance with the variation of the incident angle theta, and fixes the incident angle theta from the oscillator 4 at the minimum point. The photomultiplier 9 catches the scattered light 8 and detects foreign matters 7 adhering to the surface of the wafer 1 at the minimum point of the intensity of the reflected light 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検査物の表面に付着
した異物を光学的に検出する異物検査方法および異物検
査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection method and a foreign matter inspection apparatus for optically detecting foreign matter adhering to the surface of an object to be inspected.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高速化、高集積
化をめざして、完全な素子分離構造の実現によるデバイ
スの寄生容量低減、能動的寄生効果の排除によるα線ソ
フトエラー耐性向上等の素子特性改善を図るために、あ
るいは、素子を3次元的に形成して集積度の向上を図る
ために、SOI(Silicon On Insulator)構造の半導体
ウエハを用いて集積回路を形成する技術が実用化されて
いる。
2. Description of the Related Art In recent years, with the aim of achieving high speed and high integration of semiconductor integrated circuits, reduction of device parasitic capacitance by realization of a complete element isolation structure, improvement of α-ray soft error resistance by elimination of active parasitic effects, etc. In order to improve the device characteristics, or to improve the degree of integration by forming devices three-dimensionally, the technology of forming an integrated circuit using a semiconductor wafer with an SOI (Silicon On Insulator) structure has been put into practical use. Has been done.

【0003】そして、このようなSOI構造による半導
体ウエハ(以下「SOIウエハ」という。)において
も、デバイス形成の前段階として洗浄技術によって表面
の付着異物を除去し、歩留まりの低下を防止することが
行われている。したがって、洗浄後のSOIウエハ表面
に付着した異物を検出する技術は、所望の性能を有する
デバイスを構成するためのみならず、異物の発生源を突
き止めて適切な対策を講じるためにも、その役割は一層
重要になってきている。
Even in a semiconductor wafer having such an SOI structure (hereinafter referred to as "SOI wafer"), the foreign matter adhering to the surface can be removed by a cleaning technique as a pre-stage of device formation to prevent a decrease in yield. Has been done. Therefore, the technique of detecting foreign matter adhering to the surface of an SOI wafer after cleaning has its role not only for forming a device having desired performance, but also for locating the source of foreign matter and taking appropriate measures. Is becoming more important.

【0004】ここで、付着異物を検出する技術を詳しく
記載している例としては、たとえば、精密工学会発行、
「精密工学会誌」55巻2号(1989年2月発行)、
P52〜P56において、「半導体用異物検査技術」の
タイトルで紹介されているものがある。該技術は、ウエ
ハに10〜100μm程度の波長のレーザスポットを照
射し、異物からの微弱な散乱光を多数の光ファイバや積
分球で有効に集光し、光電素子で電気信号に変換するこ
とによって光学的に付着異物を検出しようとするもので
ある。
Here, as an example in which the technique for detecting adhered foreign matter is described in detail, for example, published by the Japan Society for Precision Engineering,
"Journal of Precision Engineering", Vol. 55, No. 2 (issued in February 1989),
Some of them are introduced under the title of "Semiconductor foreign matter inspection technology" in P52 to P56. The technique is to irradiate a wafer with a laser spot having a wavelength of about 10 to 100 μm, effectively collect weak scattered light from a foreign substance with a large number of optical fibers or integrating spheres, and convert it into an electric signal with a photoelectric element. It is intended to optically detect the adhering foreign matter.

【0005】[0005]

【発明が解決しようとする課題】しかし、被検査物がS
OIウエハ21の場合には、これが図3に示すようにS
i基板(シリコン基板)21aの主面にSiO2 膜(シ
リコン酸化膜)21bを介してSi層(シリコン層)2
1cが形成されているので、レーザ発振器から照射され
たレーザ光の一部はSi層21cの表面で反射した正反
射光25aとして検出されるが、他の一部はSi層21
cやSiO2 膜21bを透過し、Si層21cとSiO
2 膜21bとの界面、あるいはSiO2 膜21bとSi
基板21aとの界面で繰り返して反射したいわゆる多重
反射光25b,25cとして検出される。
However, the object to be inspected is S
In the case of the OI wafer 21, this is S as shown in FIG.
A Si layer (silicon layer) 2 is formed on the main surface of the i substrate (silicon substrate) 21a via a SiO 2 film (silicon oxide film) 21b.
1c is formed, part of the laser light emitted from the laser oscillator is detected as specular reflection light 25a reflected on the surface of the Si layer 21c, but the other part is detected as the Si layer 21.
c and the SiO 2 film 21b, and the Si layer 21c and SiO
The interface between the 2 films 21b or SiO 2 film 21b and Si,
It is detected as so-called multiple reflection light 25b, 25c which is repeatedly reflected at the interface with the substrate 21a.

【0006】そして、正反射光25aとバックグランド
ノイズである多重反射光25b,25cの位相が、モデ
ル的に表された図4(a)に示すような場合には、これ
を合成して表す図4(b)に示すように反射強度が大き
くなる。すなわち、振幅がAの3つの波の位相がそれぞ
れπ/3ずれているときには、振幅が2Aとなるのであ
る。
When the phases of the specularly reflected light 25a and the multiple reflected lights 25b and 25c which are background noises are modeled as shown in FIG. 4 (a), they are combined and represented. The reflection intensity increases as shown in FIG. That is, when the phases of the three waves having the amplitude A are respectively shifted by π / 3, the amplitude becomes 2A.

【0007】このように、反射光25の位相差の如何に
よっては、微弱な散乱光の検出が妨げられて検出感度が
低下することになる。
As described above, depending on the phase difference of the reflected light 25, the detection of weak scattered light is hindered and the detection sensitivity is lowered.

【0008】そこで、本発明の目的は、SOIウエハの
ように入射光が多重反射する被検査物の表面に付着した
異物を良好な感度で検出することのできる技術を提供す
ることにある。
Therefore, an object of the present invention is to provide a technique capable of detecting foreign matter adhering to the surface of an object to be inspected such as an SOI wafer in which incident light is multiply reflected with good sensitivity.

【0009】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面から明らかにな
るであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0010】[0010]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を説明すれば、次の通
りである。
The typical ones of the inventions disclosed in the present application will be outlined below.

【0011】すなわち、本発明による異物検査方法は、
入射光が多重反射する被検査物を用意し、入射角を変化
させつつ光源から被検査物に光を照射するとともに入射
角の変化により反射強度が周期的に変化する反射光をモ
ニタし、反射光の反射強度が極小になった時点で散乱光
を捉えて被検査物の表面に付着した異物を検出するもの
である。
That is, the foreign matter inspection method according to the present invention is
Prepare an inspected object that multiple-reflects incident light, irradiate the inspected object with light while changing the incident angle, and monitor the reflected light whose reflection intensity changes periodically due to the change of the incident angle. When the light reflection intensity becomes minimum, the scattered light is captured to detect foreign matter attached to the surface of the inspection object.

【0012】また、本発明による異物検査装置は、入射
光が多重反射する被検査物に対する光の入射角が可変と
された光源と、光源から照射される光による反射光を受
光する反射光検出部と、光源から照射される光による散
乱光を受光する散乱光検出部と、光源および反射光検出
部と電気的に接続され、入射角の変化により周期的に変
化する反射光の反射強度の極小点を検出し、この極小点
において光源からの入射角を固定する入射角制御部とを
有するもので、反射光の反射強度の極小点において散乱
光検出部で散乱光を捉えて被検査物の表面に付着した異
物を検出するものである。この場合、前記した被検査物
はSOI構造の半導体ウエハとすることができる。
Further, the foreign matter inspection apparatus according to the present invention includes a light source in which an incident angle of light with respect to an object to be inspected in which incident light is multiple-reflected is variable, and reflected light detection for receiving reflected light by light emitted from the light source. Section, a scattered light detection section that receives scattered light due to light emitted from a light source, and a light source and a reflected light detection section that are electrically connected to each other It has an incident angle control unit that detects the minimum point and fixes the incident angle from the light source at this minimum point, and the scattered light detection unit captures the scattered light at the minimum point of the reflection intensity of the reflected light, and the object to be inspected. The foreign matter adhering to the surface of is detected. In this case, the object to be inspected may be a semiconductor wafer having an SOI structure.

【0013】[0013]

【作用】上記した手段によれば、光源の照射角度を変化
させることによって、周期的に変化する正反射光と多重
反射光とからなる反射光の反射強度を入射角制御部によ
ってモニタしてその極小点を検出し、極小点において光
源の照射角度を固定することにより、この反射強度を最
小にすることができる。
According to the above-mentioned means, by changing the irradiation angle of the light source, the incident angle control section monitors the reflection intensity of the reflected light composed of the regularly reflected light and the multiple reflected light, which changes periodically. This reflection intensity can be minimized by detecting the minimum point and fixing the irradiation angle of the light source at the minimum point.

【0014】したがって、この状態において散乱光を散
乱光検出部で捉えることによって、被検査物上の異物
を、多重反射光によるバックグランドノイズに影響され
ることのない良好な感度で検出することが可能になる。
Therefore, in this state, by capturing the scattered light with the scattered light detecting portion, it is possible to detect the foreign matter on the object to be inspected with good sensitivity which is not affected by the background noise due to the multiple reflected light. It will be possible.

【0015】[0015]

【実施例】以下、本発明の実施例を、図面に基づいてさ
らに詳細に説明する。
Embodiments of the present invention will now be described in more detail with reference to the drawings.

【0016】図1は本発明の一実施例である異物検査装
置を示す要部断面図、図2(a)はその異物検査装置の
受光カメラに到達する各反射光の位相をモデル的に示す
グラフ図であり、(b)は(a)の各光を合成したグラ
フ図である。
FIG. 1 is a cross-sectional view of a main part of a foreign matter inspection apparatus according to an embodiment of the present invention, and FIG. 2A shows a model of phases of respective reflected lights reaching a light receiving camera of the foreign matter inspection apparatus. It is a graph figure, (b) is a graph figure which combined each light of (a).

【0017】図1に示すように、本実施例の異物検査装
置は、SOIウエハ(被検査物)1を載置するウエハス
テージ2と、所定の入射角θをもってSOIウエハ1に
レーザビーム(光)3を照射するHe−Neレーザ発振
器(光源)4と、このHe−Neレーザ発振器4と対向
して設けられ、SOIウエハ1に照射されたレーザビー
ム3の正反射光5aおよび多重反射光5b,5cからな
る反射光5を受光する受光カメラ(反射光検出部)6
と、SOIウエハ1の上方に設けられ、SOIウエハ1
上の異物7によって散乱された散乱光8を受光して図示
しない異物表示部に検出信号を伝送する光電子増倍管
(散乱光検出部)9とからなっている。
As shown in FIG. 1, the foreign matter inspection apparatus of the present embodiment has a wafer stage 2 on which an SOI wafer (inspection object) 1 is mounted and a laser beam (light beam) on the SOI wafer 1 at a predetermined incident angle θ. ) 3 for irradiating the He-Ne laser oscillator (light source) 4 and the He-Ne laser oscillator 4 that is provided so as to face the He-Ne laser oscillator 4, and the specular reflection light 5a and the multiple reflection light 5b of the laser beam 3 irradiating the SOI wafer 1 , 5c for receiving the reflected light 5 (reflected light detection unit) 6
And is provided above the SOI wafer 1 and the SOI wafer 1
It comprises a photomultiplier tube (scattered light detection section) 9 which receives scattered light 8 scattered by the foreign matter 7 and transmits a detection signal to a foreign matter display section (not shown).

【0018】ウエハステージ2上に載置されるSOIウ
エハ1は、たとえば、ベースとなる0.5mm厚のSi基板
1aの主平面に化学結合力を利用して 500nm厚のSiO
2 膜1bの形成された 2μm厚のSi層1cを接合す
る、いわゆるボンディング法と呼ばれる手法によりSO
I構造が形成されたものである。なお、SOIウエハ1
はイオン注入絶縁層分離法、帯域溶融法などによっても
形成することができる。また、Si基板1a、SiO2
膜1b、およびSi層1cの厚さは前記の数値に限定さ
れることなく、任意の値に設定することができる。
The SOI wafer 1 mounted on the wafer stage 2 is formed of, for example, a 500 nm thick SiO 2 film on the main plane of a 0.5 mm thick Si substrate 1a serving as a base by utilizing chemical bonding force.
The 2 μm thick Si layer 1c formed with the 2 film 1b is joined by a so-called bonding method.
The I structure is formed. The SOI wafer 1
Can also be formed by an ion implantation insulating layer separation method, a zone melting method, or the like. In addition, Si substrate 1a, SiO 2
The thicknesses of the film 1b and the Si layer 1c are not limited to the above numerical values and can be set to arbitrary values.

【0019】He−Neレーザ発振器4はSOIウエハ
1に対して円弧状に移動可能とされて、照射されるレー
ザビーム3のSOIウエハ1に対する入射角θが任意の
角度に設定できるようにされている。また、受光カメラ
6はHe−Neレーザ発振器4の移動による入射光10
の入射角θの変化に連動して円弧状に移動可能とされて
SOIウエハ1からの反射光5を受光するようになって
いる。さらに、He−Neレーザ発振器4および受光カ
メラ6は、ウエハステージ2の中心軸線の回りに回転可
能とされている。
The He-Ne laser oscillator 4 is movable in an arc with respect to the SOI wafer 1 so that the incident angle θ of the laser beam 3 to be irradiated on the SOI wafer 1 can be set to an arbitrary angle. There is. Further, the light-receiving camera 6 receives the incident light 10 by moving the He-Ne laser oscillator 4.
It is configured to be movable in an arc shape in association with the change of the incident angle θ of 1 to receive the reflected light 5 from the SOI wafer 1. Further, the He—Ne laser oscillator 4 and the light receiving camera 6 are rotatable around the central axis of the wafer stage 2.

【0020】He−Neレーザ発振器4と受光カメラ6
とは入射角制御部11と電気的に接続されている。この
入射角制御部11は、入射角θの変化により受光カメラ
6によって受光される多重反射光5b,5cの反射強度
の変化から該反射強度の極小点を検出し、入射角θをこ
の極小点におけるものとするようにHe−Neレーザ発
振器4を固定するものである。
He-Ne laser oscillator 4 and light-receiving camera 6
Are electrically connected to the incident angle control unit 11. The incident angle control unit 11 detects the minimum point of the reflection intensity from the change in the reflection intensity of the multiple reflection lights 5b and 5c received by the light receiving camera 6 due to the change in the incident angle θ, and determines the incident angle θ as the minimum point. The He-Ne laser oscillator 4 is fixed as described in 1.

【0021】すなわち、He−Neレーザ発振器4から
照射されたレーザビーム3の一部は正反射光5aとして
Si層1cの表面で反射して受光カメラ6に捉えられる
が、他の一部はSi層1cを透過してSi層1cとSi
2 膜1bとの界面で次々と反射した多重反射光5bと
して、さらに他の一部はSiO2 膜1bをも透過してS
iO2 膜1bとSi基板1aとの界面で次々と反射した
多重反射光5cとして受光カメラ6に捉えられる。した
がって、受光カメラ6によって捉えられる反射光5は、
正反射光5aと多重反射光5b,5cとが重なり合った
ものであり、その反射強度Iは次式で与えられる。
That is, a part of the laser beam 3 emitted from the He-Ne laser oscillator 4 is reflected by the surface of the Si layer 1c as the specular reflection light 5a and is captured by the light receiving camera 6, but the other part is Si. The Si layer 1c and Si are transmitted through the layer 1c.
As the multiple reflected light 5b reflected one after another at the interface with the O 2 film 1b, another part of the light also passes through the SiO 2 film 1b and becomes S.
The light is received by the light-receiving camera 6 as multiple reflection light 5c that is successively reflected at the interface between the iO 2 film 1b and the Si substrate 1a. Therefore, the reflected light 5 captured by the light receiving camera 6 is
The specular reflection light 5a and the multiple reflection lights 5b and 5c overlap each other, and the reflection intensity I is given by the following equation.

【0022】[0022]

【数1】 [Equation 1]

【0023】なお、I0 は入射光10の強度、RはSi
層1cの反射率、δは多重反射光5b,5cの中のある
1つの波の直前の波に対する位相差である。この位相差
δは次式で与えられる。
I 0 is the intensity of the incident light 10 and R is Si
The reflectance of the layer 1c, δ, is the phase difference of one wave in the multiple reflected lights 5b, 5c with respect to the immediately preceding wave. This phase difference δ is given by the following equation.

【0024】[0024]

【数2】 [Equation 2]

【0025】なお、n' はSi層1cの屈折率、hはS
i層1cの厚さ、λは入射光10の波長、αは屈折角で
ある。
Note that n'is the refractive index of the Si layer 1c and h is S
The thickness of the i layer 1c, λ is the wavelength of the incident light 10, and α is the refraction angle.

【0026】数2により、多重反射光5b,5cのある
1つの波の直前の波に対する位相差δは、反射時の位相
のずれπを考慮すると次式で与えられる。
From Equation 2, the phase difference δ of one wave with the multiple reflected lights 5b and 5c with respect to the immediately preceding wave is given by the following equation in consideration of the phase shift π at the time of reflection.

【0027】[0027]

【数3】 (Equation 3)

【0028】よって、連続する2つの波を考えたとき、
δ=2πmにおいて、mが整数のときに2つの波の位相
差δがゼロになって重なり合い、反射強度Iは極大にな
る。一方、mが半整数のときには位相差δがπになって
2つの波が打ち消し合い、反射強度Iは極小になる。
Therefore, when considering two consecutive waves,
At δ = 2πm, when m is an integer, the phase difference δ of the two waves becomes zero and they overlap each other, and the reflection intensity I becomes maximum. On the other hand, when m is a half integer, the phase difference δ becomes π and the two waves cancel each other, and the reflection intensity I becomes minimum.

【0029】ここで、大気とSi層1cの境界で光が屈
折するときの入射光10の入射角θは、スネルの法則に
より次式で与えられる。
Here, the incident angle θ of the incident light 10 when the light is refracted at the boundary between the atmosphere and the Si layer 1c is given by the following formula according to Snell's law.

【0030】[0030]

【数4】 [Equation 4]

【0031】なお、n0 は大気の屈折率である。Note that n 0 is the refractive index of the atmosphere.

【0032】したがって、反射強度Iが極小になるレー
ザビーム3の入射角θは、数3と数4により求められる
ことになる。そして、このことは、レーザビーム3の入
射角θによって反射強度Iが周期的に変化することを意
味する。
Therefore, the incident angle θ of the laser beam 3 at which the reflection intensity I becomes minimum can be obtained by the equations 3 and 4. And, this means that the reflection intensity I changes periodically depending on the incident angle θ of the laser beam 3.

【0033】本実施例において、以上のことを踏まえて
モデル的に正反射光5aと多重反射光5b,5cを取り
出すと、図2(a)に示すように、これらの反射光5
a,5b,5cの位相が2π/3ずれたとき、図2
(b)に示すように、それぞれが打ち消し合って反射強
度が極小(ゼロ)になるはずである。しかし、実際に受
光カメラ6に捉えられる多重反射光5b,5cはさらに
多く、且つ吸収があるために、このように反射強度はゼ
ロにならない。だが、レーザビーム3の入射角θを変化
させて行くと反射強度Iは現に周期的に変化するのであ
るから、入射角制御部11によって反射光5をモニタ
し、反射強度の極小点を検出することが可能になる。そ
して、前記したように、入射角制御部11によって検出
された極小点においてHe−Neレーザ発振器4の照射
角度を固定すれば、反射光5によるバックグランドノイ
ズは最小になる。
In the present embodiment, based on the above, the specular reflection light 5a and the multiple reflection lights 5b and 5c are extracted as a model, and as shown in FIG.
When the phases of a, 5b and 5c are shifted by 2π / 3,
As shown in (b), they should cancel each other and the reflection intensity should become minimum (zero). However, since the multiple reflected lights 5b and 5c actually captured by the light receiving camera 6 are more and absorbed, the reflection intensity does not become zero in this way. However, as the incident angle θ of the laser beam 3 is changed, the reflected intensity I actually changes periodically. Therefore, the incident angle control unit 11 monitors the reflected light 5 to detect the minimum point of the reflected intensity. It will be possible. Then, as described above, if the irradiation angle of the He—Ne laser oscillator 4 is fixed at the minimum point detected by the incident angle control unit 11, the background noise due to the reflected light 5 is minimized.

【0034】このように、本実施例に示す異物検査装置
によれば、He−Neレーザ発振器4の照射角度を変化
させることによって、周期的に変化する正反射光5aと
多重反射光5b,5cとからなる反射光5の反射強度を
入射角制御部11によってモニタしてその極小点を検出
し、極小点においてHe−Neレーザ発振器4の照射角
度を固定することにより、反射光5の反射強度を最小に
することができる。したがって、この状態において散乱
光8を光電子増倍管9で捉えることによってSOIウエ
ハ1上の異物7を良好な感度で検出することが可能にな
る。
As described above, according to the foreign matter inspection apparatus of the present embodiment, by changing the irradiation angle of the He-Ne laser oscillator 4, the regular reflection light 5a and the multiple reflection lights 5b and 5c which change periodically. The reflection intensity of the reflected light 5 consisting of and is monitored by the incident angle control unit 11 to detect the minimum point, and the irradiation angle of the He-Ne laser oscillator 4 is fixed at the minimum point. Can be minimized. Therefore, in this state, by capturing the scattered light 8 with the photomultiplier tube 9, the foreign matter 7 on the SOI wafer 1 can be detected with good sensitivity.

【0035】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることは言うまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say.

【0036】たとえば、本実施例において示すHe−N
eレーザ発振器4、受光カメラ6、光電子増倍管9はそ
れぞれ光源、反射光検出部、散乱光検出部の一例を示す
ものであり、これらに限定される趣旨のものではない。
For example, He-N shown in this embodiment.
The e-laser oscillator 4, the light receiving camera 6, and the photomultiplier tube 9 are examples of a light source, a reflected light detection unit, and a scattered light detection unit, respectively, and are not intended to be limited to these.

【0037】また、以上の説明では、主として本発明者
によってなされた発明をその背景となった利用分野であ
るSOIウエハ上に付着した異物を検出する技術に適用
した場合について説明したが、それに限定されるもので
はなく、たとえば回路素子を形成するフォトマスクやガ
ラス、レンズ、水晶などを被検査物として適用すること
も可能である。
Further, in the above description, the case where the invention made by the present inventor is mainly applied to the technique of detecting foreign matter adhering to an SOI wafer, which is the field of application which is the background of the invention, has been described. However, it is also possible to apply, for example, a photomask for forming a circuit element, glass, a lens, a crystal, or the like as the inspection object.

【0038】[0038]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば以
下の通りである。
The effects obtained by the typical ones of the inventions disclosed in this application will be briefly described as follows.

【0039】(1).すなわち、本発明に示す異物検査技術
によれば、光源の照射角度を変化させることによって、
周期的に変化する正反射光と多重反射光とからなる反射
光の反射強度を入射角制御部によってモニタしてその極
小点を検出し、この極小点において光源の照射角度を固
定することにより、反射強度を最小にすることが可能に
なる。
(1). That is, according to the foreign matter inspection technique of the present invention, by changing the irradiation angle of the light source,
By detecting the local minimum point by monitoring the reflection intensity of the reflected light composed of the regular reflection light and the multiple reflection light that changes periodically, the minimum point is detected, and by fixing the irradiation angle of the light source at this minimum point, It is possible to minimize the reflection intensity.

【0040】(2).したがって、この状態において散乱光
を散乱光検出部で捉えることによって、被検査物上の異
物を、多重反射光によるバックグランドノイズに影響さ
れることのない良好な感度で検出することができる。
(2) Therefore, by capturing the scattered light in this state by the scattered light detector, the foreign matter on the object to be inspected can be detected with good sensitivity without being affected by the background noise due to the multiple reflected light. Can be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である異物検査装置を示す要
部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing a foreign matter inspection device that is an embodiment of the present invention.

【図2】(a)はその異物検査装置の受光カメラにより
検出される各反射光の位相をモデル的に示すグラフ図、
(b)は(a)の各光を合成したグラフ図である。
FIG. 2A is a graph showing a model of phases of respective reflected lights detected by a light receiving camera of the foreign matter inspection apparatus;
(B) is a graph diagram in which the respective lights of (a) are combined.

【図3】従来の異物検査装置によりSOIウエハに光を
照射した場合の反射光を示す断面図である。
FIG. 3 is a cross-sectional view showing reflected light when an SOI wafer is irradiated with light by a conventional foreign matter inspection apparatus.

【図4】(a)は図3の反射光により検出される各反射
光の位相をモデル的に示すグラフ図、(b)は(a)の
各光を合成したグラフ図である。
4A is a graph showing a model of the phase of each reflected light detected by the reflected light of FIG. 3, and FIG. 4B is a graph obtained by combining the lights of FIG.

【符号の説明】[Explanation of symbols]

1 SOIウエハ(被検査物) 1a Si基板 1b SiO2 膜 1c Si層 2 ウエハステージ 3 レーザビーム(光) 4 He−Neレーザ発振器(光源) 5 反射光 5a 正反射光 5b 多重反射光 5c 多重反射光 6 受光カメラ(反射光検出部) 7 異物 8 散乱光 9 光電子増倍管(散乱光検出部) 10 入射光 11 入射角制御部 θ 入射角 21 SOIウエハ 21a シリコン基板 21b シリコン酸化膜 21c シリコン層 25 反射光 25a 正反射光 25b 多重反射光 25c 多重反射光1 SOI wafer (inspection object) 1a Si substrate 1b SiO 2 film 1c Si layer 2 Wafer stage 3 Laser beam (light) 4 He-Ne laser oscillator (light source) 5 Reflected light 5a Regular reflected light 5b Multiple reflected light 5c Multiple reflected light Light 6 Light receiving camera (reflected light detection part) 7 Foreign matter 8 Scattered light 9 Photomultiplier tube (scattered light detection part) 10 Incident light 11 Incident angle control part θ Incident angle 21 SOI wafer 21a Silicon substrate 21b Silicon oxide film 21c Silicon layer 25 reflected light 25a specular reflected light 25b multiple reflected light 25c multiple reflected light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入射光が多重反射する被検査物を用意
し、 入射角を変化させつつ光源から前記被検査物に光を照射
するとともに入射角の変化により反射強度が周期的に変
化する反射光をモニタし、 前記反射光の反射強度が極小になった時点で散乱光を捉
えて前記被検査物の表面に付着した異物を検出すること
を特徴とする異物検査方法。
1. An object to be inspected in which incident light is multiple-reflected is prepared, and light is irradiated from the light source to the object to be inspected while changing the incident angle, and the reflection intensity changes periodically with the change of the incident angle. A foreign matter inspection method comprising monitoring light and detecting scattered light at the time when the reflection intensity of the reflected light becomes minimum to detect foreign matter adhering to the surface of the object to be inspected.
【請求項2】 入射光が多重反射する被検査物に対する
光の入射角が可変とされた光源と、 前記光源から照射される光による反射光を受光する反射
光検出部と、 前記光源から照射される光による散乱光を受光する散乱
光検出部と、 前記光源および前記反射光検出部と電気的に接続され、
入射角の変化により周期的に変化する前記反射光の反射
強度の極小点を検出し、この極小点において前記光源か
らの入射角を固定する入射角制御部とを有し、 前記反射光の反射強度の極小点において前記散乱光検出
部で散乱光を捉えて前記被検査物の表面に付着した異物
を検出することを特徴とする異物検査装置。
2. A light source having a variable incidence angle of light with respect to an object to be inspected in which incident light is multiply reflected, a reflected light detection unit for receiving reflected light of light emitted from the light source, and an irradiation from the light source. And a scattered light detection unit that receives scattered light due to the light that is electrically connected to the light source and the reflected light detection unit,
An incident angle control unit that detects a minimum point of the reflection intensity of the reflected light that periodically changes due to a change in the incident angle, and fixes the incident angle from the light source at this minimum point, and reflects the reflected light A foreign matter inspection apparatus, characterized in that the scattered light detecting section captures scattered light at a minimum intensity point to detect foreign matter adhering to the surface of the object to be inspected.
【請求項3】 前記被検査物はSOI構造の半導体ウエ
ハであることを特徴とする請求項2記載の異物検査装
置。
3. The foreign matter inspection apparatus according to claim 2, wherein the inspection object is a semiconductor wafer having an SOI structure.
JP19295694A 1994-08-17 1994-08-17 Method and device for inspecting object for foreign matter Pending JPH0854346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19295694A JPH0854346A (en) 1994-08-17 1994-08-17 Method and device for inspecting object for foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19295694A JPH0854346A (en) 1994-08-17 1994-08-17 Method and device for inspecting object for foreign matter

Publications (1)

Publication Number Publication Date
JPH0854346A true JPH0854346A (en) 1996-02-27

Family

ID=16299831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19295694A Pending JPH0854346A (en) 1994-08-17 1994-08-17 Method and device for inspecting object for foreign matter

Country Status (1)

Country Link
JP (1) JPH0854346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus
JP2006203087A (en) * 2005-01-24 2006-08-03 Sumco Corp Micro roughness evaluating method of thin film soi wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139451A (en) * 2000-08-04 2002-05-17 Nikon Corp Surface inspection apparatus
JP2006203087A (en) * 2005-01-24 2006-08-03 Sumco Corp Micro roughness evaluating method of thin film soi wafer

Similar Documents

Publication Publication Date Title
US7643139B2 (en) Method and apparatus for detecting defects
US6645045B2 (en) Method of measuring thickness of a semiconductor layer and method of manufacturing a semiconductor substrate
US4342515A (en) Method of inspecting the surface of an object and apparatus therefor
JP3192426B2 (en) Surface inspection equipment
JP4759228B2 (en) Inspection of edge bead removal by reflectance measurement
JP3166841B2 (en) Particle inspection equipment
JPH0329318B2 (en)
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
US10260868B2 (en) Interferometric method and system using variable fringe spacing for inspecting transparent wafers for electronics, optics or optoelectronics
US6521889B1 (en) Dust particle inspection apparatus, and device manufacturing method using the same
JPH0854346A (en) Method and device for inspecting object for foreign matter
JP2019518197A (en) Method and system for inspecting a substrate for microelectronics or optics by laser Doppler effect
JP3267551B2 (en) Method for detecting defects in multilayer semiconductors etc.
JPH08210985A (en) Detecting method for particle in film, and detecting device therefor
JPH06118009A (en) Foreign matter inspecting device and method therefor
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JPH09210918A (en) Foreign matter sensing optical system for surface of silicon wafer
JPH11190700A (en) Translucent material nonuniformity inspection method, device therefor, and transparent board
JPH08264605A (en) Method for inspecting laminated board, soi wafer using the same, semiconductor integrated circuit using the wafer and apparatus for inspecting the laminated board
JPS61180128A (en) Optical inspecting device
JPH06103272B2 (en) Method for inspecting foreign matter on mask of X-ray exposure mask
KR200207691Y1 (en) Wafer inspection system
JPS632324B2 (en)
JPH06180293A (en) Foreign matter inspection apparatus
JP3761080B2 (en) Measuring method and measuring apparatus using total reflection attenuation