JPH0854286A - Scanning type radiometer - Google Patents

Scanning type radiometer

Info

Publication number
JPH0854286A
JPH0854286A JP21060894A JP21060894A JPH0854286A JP H0854286 A JPH0854286 A JP H0854286A JP 21060894 A JP21060894 A JP 21060894A JP 21060894 A JP21060894 A JP 21060894A JP H0854286 A JPH0854286 A JP H0854286A
Authority
JP
Japan
Prior art keywords
window
mirror
rotating mirror
scanning
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21060894A
Other languages
Japanese (ja)
Other versions
JP3316312B2 (en
Inventor
Masanao Sasaki
正直 佐々木
Masaharu Tateyama
正治 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP21060894A priority Critical patent/JP3316312B2/en
Publication of JPH0854286A publication Critical patent/JPH0854286A/en
Application granted granted Critical
Publication of JP3316312B2 publication Critical patent/JP3316312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain an excellent image without variation in an incident light quantity incident at a measuring angle when a rotary mirror is used and without influence of the lens effect of a measuring window by disposing the window of a spherical shape on an optical axis between an object to be measured and the mirror. CONSTITUTION:A measuring window 2 provided on an optical axis between an object 1 to be measured and a rotary mirror 3 is formed into a semicylindrical shape. Thus even if the measuring angle varys, the angle of the incident light always becomes constant, and the difference of the incident light quantity due to the measuring angle is eliminated. The window 2 is operated as a concave lens in the horizontal direction to radius gamma of curvature. However, when the reflecting surface of the mirror 3 is formed into a curved shape having a convex lens effect only on one direction and the radius of curvature and the disposition are so set as to cancel the lens effect of the window 2, the image formed position becomes equal to the state having no window 2 and no mirror 3. The distortion of the image due to the influence of the window 2 is automatically corrected. Accordingly, the increase of the scanning angle can be realized by a simple mechanism, and always clear image formation can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば鋼板やセメント
キルン等の一方向における輝度または温度分布を計測す
るために用いられる走査放射計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning radiometer used for measuring the brightness or temperature distribution in one direction such as a steel plate or a cement kiln.

【0002】[0002]

【従来の技術】従来、ラインスキャナーとして使用され
る走査放射計として、集光光学系の測定視野内をポリゴ
ンミラーのような回転多面ミラーで走査する機構のもの
が知られている。しかし、この機構方式では集光光学系
のシェーディング現象のために有効走査域の周辺部の光
量が中心に比べて小さくなるという問題があり、電気的
或いは光学的な補正手段が必要となる。このため、装置
が複雑化すると共に、有効走査角度に限界がある。
2. Description of the Related Art Conventionally, as a scanning radiometer used as a line scanner, there is known one having a mechanism for scanning a measuring field of a condensing optical system with a rotating polygon mirror such as a polygon mirror. However, this mechanical system has a problem that the amount of light in the peripheral portion of the effective scanning region becomes smaller than that in the center due to the shading phenomenon of the condensing optical system, and an electrical or optical correction means is required. Therefore, the apparatus becomes complicated and the effective scanning angle is limited.

【0003】また、被測定物体からの放射光を走査する
ための回転ミラーを集光光学系の前面に配置し、測定窓
に硬質塩化ビニルのような透明プラスチック薄板を用い
て測定窓のレンズ効果を抑制し、かつ測定角度による受
光光量差を除去したラインスキャナーが市販されてい
る。この方式では、測定窓に用いるプラスチック薄板の
機械的強度が低いため、変形や破損が生じ易い欠点があ
る。この欠点を補うために、プラスチック窓を肉厚にす
ると、測定窓のレンズ効果が無視できなくなる。また、
一般に放射温度計では赤外域の波長を利用するが、赤外
域におけるプラスチックの透過率は赤外線透過ガラスに
比べて低い関係でエネルギーロスが大きくなり、そのう
え分子結合に起因して特定波長の透過率が減退するた
め、測定波長に制約を受ける問題点がある。
Further, a rotating mirror for scanning the emitted light from the object to be measured is arranged in front of the condensing optical system, and a transparent plastic thin plate such as hard vinyl chloride is used for the measuring window to make the lens effect of the measuring window. A line scanner is commercially available that suppresses the difference and eliminates the difference in the amount of received light depending on the measurement angle. In this method, since the plastic thin plate used for the measurement window has low mechanical strength, it has a drawback that it is easily deformed or damaged. If the plastic window is made thick to compensate for this drawback, the lens effect of the measurement window cannot be ignored. Also,
In general, radiation thermometers use wavelengths in the infrared region, but since the transmittance of plastics in the infrared region is lower than that of infrared-transparent glass, energy loss is large, and in addition, the transmittance of specific wavelengths is high due to molecular bonds. Since it decreases, there is a problem that the measurement wavelength is restricted.

【0004】特開平2−306129号公報には、回転
ミラーを用いる代わりに、被撮像体からの撮像信号を走
査するために、光学系と光路変更ミラーとを連動して傾
動させる機構の機械走査式放射計が提案されている。し
かしながら、この方式では光学系と光路変更ミラーとを
連動させる駆動機構が複雑化する欠点がある。
In Japanese Patent Application Laid-Open No. 2-306129, instead of using a rotating mirror, mechanical scanning of a mechanism in which an optical system and an optical path changing mirror are interlocked and tilted in order to scan an image pickup signal from an image pickup object. Radiometers have been proposed. However, this method has a drawback that the driving mechanism for linking the optical system and the optical path changing mirror is complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解消するためになされたもので、
特殊形状の測定窓を配設することにより、回転ミラーを
用いた場合に測定角度による入射光量の変動がなく、か
つ測定窓のレンズ効果の影響を受けずに常に良好な像を
得ることができる簡易機構の走査式放射計を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art.
By arranging the measurement window with a special shape, it is possible to always obtain a good image without fluctuation of the incident light amount depending on the measurement angle when the rotating mirror is used and without being affected by the lens effect of the measurement window. It is an object to provide a scanning radiometer having a simple mechanism.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による走査式放射計は、被測定物体からの放
射光を走査する回転ミラーと、前記回転ミラーにより反
射された光を受光する集光光学系と、結像された光を電
気信号に変換するための光センサーと、変換された電気
信号をデータ処理する信号処理回路とからなる走査式放
射機構において、被測定物体と回転ミラー間の光軸上に
曲内面が回転ミラー方向に向かう状態に可視もしくは赤
外線を透過する半円筒状の測定窓を介設し、前記測定窓
と対峙する状態に湾曲反射面を有する回転ミラーを入射
光軸に対して45°の角度に傾斜させて設置してなるこ
とを構成上の特徴とする。
In order to achieve the above object, a scanning radiometer according to the present invention includes a rotating mirror for scanning the emitted light from an object to be measured, and a light reflected by the rotating mirror. In the scanning radiation mechanism, which is composed of a condensing optical system, an optical sensor for converting the imaged light into an electric signal, and a signal processing circuit for processing the converted electric signal with data, rotation with an object to be measured is performed. A semi-cylindrical measurement window that transmits visible light or infrared rays is provided on the optical axis between the mirrors in a state where the curved inner surface faces the rotation mirror direction, and a rotation mirror having a curved reflection surface that faces the measurement window is provided. The structural feature is that it is installed at an angle of 45 ° with respect to the incident optical axis.

【0007】図1は、本発明に係る走査式放射計の構成
機構を模式的に示した説明図で、1は被測定物体、2は
測定窓、3は回転ミラー、4は集光光学系、5は光セン
サー、そして6は信号処理回路である。被測定物体1か
ら放射された光は測定窓2を通って回転ミラー3で反射
され、集光光学系4に入射する。集光された光は、光セ
ンサー5に結像され、ここで電気信号に変換されたのち
信号処理回路6によって表示される。本発明は、前記の
構成機構において、図2(測定窓および回転ミラー部分
の拡大斜視図)に示すように、被測定物体1と回転ミラ
ー3の間の光軸上に曲内面が回転ミラー方向に向かう状
態に半円筒状の測定窓2を介設し、該測定窓2と対峙す
る状態に湾曲反射面を有する回転ミラー3を入射光軸に
対して45°の角度に傾斜させて設置した点に主要な構
成要素がある。
FIG. 1 is an explanatory view schematically showing a structural mechanism of a scanning radiometer according to the present invention. 1 is an object to be measured, 2 is a measurement window, 3 is a rotating mirror, and 4 is a converging optical system. 5 is an optical sensor, and 6 is a signal processing circuit. The light emitted from the measured object 1 passes through the measurement window 2 and is reflected by the rotating mirror 3 to enter the condensing optical system 4. The condensed light is imaged on the optical sensor 5, converted into an electric signal here, and then displayed by the signal processing circuit 6. According to the present invention, as shown in FIG. 2 (enlarged perspective view of the measurement window and the rotary mirror portion), the curved inner surface is on the optical axis between the object to be measured 1 and the rotary mirror 3 in the above-mentioned configuration mechanism. The measurement window 2 having a semi-cylindrical shape is provided in a state of facing the measurement window, and the rotating mirror 3 having a curved reflection surface is installed so as to face the measurement window 2 while being inclined at an angle of 45 ° with respect to the incident optical axis. The points have major components.

【0008】測定窓2は、可視もしくは赤外線を透過す
る材料により肉厚の半円筒形状として形成されている。
構成材質としては、例えばCaF2 、MgF2 、BaF
2 などの弗化物系ガラス質物や硬質塩化ビニルのような
透明プラスチック材を挙げることができる。しかし、透
明プラスチック板の分光透過率は、分子結合に起因する
吸収作用により透過率が局部的に低下する現象が生じ、
また全体の透過率も低い。これに対し、弗化物系のガラ
ス質物は透過特性が均一で透過率が高く、測定波長の制
約を受けずに大きな受光エネルギーが得られる有利性が
ある。本発明の目的には光学ガラスまたは光学結晶、特
にCaF2 (屈折率1.4)を溶融成形して半円筒状に
形成した機械的強度の高い肉厚10mm程度のものが好適
に用いられる。該測定窓2と対峙する状態で装備される
湾曲反射面を有する回転ミラー3は、その回転軸が測定
窓2の中心に位置し、入射光軸に対して45°の傾斜角
度になるように配設されており、常にこの傾斜角度で回
転するように装備されている。
The measuring window 2 is formed in a thick semi-cylindrical shape from a material that transmits visible or infrared rays.
As the constituent material, for example, CaF 2 , MgF 2 , BaF
Fluoride glassy materials such as 2 and transparent plastic materials such as hard vinyl chloride can be mentioned. However, the spectral transmittance of the transparent plastic plate is a phenomenon in which the transmittance locally decreases due to the absorption effect caused by the molecular bond,
The overall transmittance is also low. On the other hand, a fluoride-based vitreous material has an advantage in that it has a uniform transmission characteristic and a high transmittance, and a large received light energy can be obtained without being restricted by the measurement wavelength. For the purpose of the present invention, an optical glass or an optical crystal, particularly a material having a thickness of about 10 mm, which has a high mechanical strength and is formed into a semi-cylindrical shape by melt-forming CaF 2 (refractive index 1.4) is preferably used. The rotating mirror 3 having a curved reflecting surface that is mounted in a state of facing the measurement window 2 has its rotation axis located at the center of the measurement window 2 and has an inclination angle of 45 ° with respect to the incident optical axis. It is installed and is always equipped to rotate at this tilt angle.

【0009】この場合、半円筒状で肉厚の測定窓2はレ
ンズ効果をもつため、集光光学系の測定視野が一方向に
のみ拡大して歪みを生じるうえ、その曲率半径rによっ
ては光学系全体が発散系になるため、相対する回転ミラ
ー3の湾曲反射面を前記レンズ効果を打ち消すような曲
率半径rにする必要がある。このためには、半円筒状の
測定窓2および湾曲反射面を有する回転ミラー3におけ
る各球面の曲率半径rを、測定窓をレンズと仮定した際
の焦点距離をf1 とし、回転ミラーの焦点距離をf2
したとき、f1 =−f2 の関係を満たすよう設定する。
In this case, since the semi-cylindrical and thick measurement window 2 has a lens effect, the measurement visual field of the condensing optical system expands in only one direction to cause distortion, and depending on its radius of curvature r Since the entire system is a diverging system, it is necessary to make the curved reflecting surfaces of the rotating mirrors 3 facing each other have a radius of curvature r that cancels the lens effect. For this purpose, the radius of curvature r of each spherical surface in the semi-cylindrical measurement window 2 and the rotating mirror 3 having a curved reflecting surface is set to f 1 as the focal length when the measuring window is assumed to be a lens, and the focus of the rotating mirror is set. When the distance is f 2 , it is set to satisfy the relationship of f 1 = −f 2 .

【0010】[0010]

【作用】本発明の走査式放射計によれば、測定窓を半円
筒形状に形成することにより、測定角度が変動しても入
射する光の角度は常に一定となり、測定角度による入射
光量の差はなくなる。また、測定窓は曲率半径rに水平
な面方向にのみ凹レンズとして作用するが、回転ミラー
の反射面を一方向にのみ凸レンズ効果をもつ湾曲形状と
し、その曲率半径および配置を前記測定窓のレンズ効果
を打ち消すように設定すれば、結像位置は測定窓と回転
ミラーがない状態と等しくなり、測定窓の影響による像
の歪みは自動的に補正される。したがって、単純な機構
により走査角の拡大が図られるうえ、常に鮮明の結像を
得ることが可能となる。
According to the scanning radiometer of the present invention, by forming the measurement window in a semi-cylindrical shape, the angle of incident light is always constant even if the measurement angle changes, and the difference in the amount of incident light depending on the measurement angle. Disappears. Further, the measuring window acts as a concave lens only in the surface direction horizontal to the radius of curvature r, but the reflecting surface of the rotating mirror has a curved shape having a convex lens effect only in one direction, and its radius of curvature and arrangement are the lenses of the measuring window. If the setting is made so as to cancel the effect, the image forming position becomes equal to the state in which the measurement window and the rotating mirror are not provided, and the image distortion due to the influence of the measurement window is automatically corrected. Therefore, the scanning angle can be expanded by a simple mechanism, and a clear image can always be obtained.

【0011】[0011]

【実施例】【Example】

実施例1〜2 図1に示した機構の走査式放射計において、被測定物体
1の光軸上にCaF2(屈折率1.4)で構成された肉
厚および焦点距離(曲率半径)の異なる半円筒状の測定
窓2と湾曲反射面を有する回転ミラー3を図2に示すよ
うに対峙させた状態で配設した。集光光学系4は副鏡と
主鏡からなるカセグレン光学系とした。この場合の結像
距離を表1に示した。なお、結像距離は、集光光学系4
の主鏡から焦点を結ぶ光センサー5までの距離とした。
標準として、測定窓を設置せず、平面の回転ミラーを用
いた際の結像距離を表1に併載した。
Examples 1 to 2 In the scanning radiometer having the mechanism shown in FIG. 1, the thickness and the focal length (radius of curvature) of CaF 2 (refractive index 1.4) formed on the optical axis of the measured object 1 were measured. A different semi-cylindrical measurement window 2 and a rotating mirror 3 having a curved reflecting surface were arranged in a state of facing each other as shown in FIG. The condensing optical system 4 is a Cassegrain optical system including a secondary mirror and a primary mirror. The image forming distance in this case is shown in Table 1. In addition, the image forming distance is determined by the condensing optical system 4.
The distance from the primary mirror to the optical sensor 5 for focusing.
As a standard, Table 1 also shows the image formation distances when a plane rotating mirror was used without setting a measurement window.

【0012】実施例3 測定窓2を、肉厚0.3mmの塩化ビニル薄板からなる半
円筒形状とし、その他は実施例1と同一機構の走査式放
射計を作製した。この場合の結像距離を表1に併載し
た。
Example 3 A scanning radiometer having the same mechanism as in Example 1 except that the measurement window 2 was a semi-cylindrical shape made of a vinyl chloride thin plate having a thickness of 0.3 mm was manufactured. The imaging distance in this case is also shown in Table 1.

【0013】比較例1 実施例1と同一の半円筒状測定窓を設置し、回転ミラー
を平面鏡とした走査式放射計を作製し、結像位置を測定
した。その結果を表1に併載した。
Comparative Example 1 A scanning radiometer having the same semi-cylindrical measurement window as in Example 1 and a rotating mirror as a plane mirror was prepared and the image forming position was measured. The results are also shown in Table 1.

【0014】比較例2 実施例3と同一の半円筒状測定窓を設置し、回転ミラー
を平面鏡とした走査式放射計を作製し、結像位置を測定
した。その結果を表1に併載した。
Comparative Example 2 A scanning radiometer having the same semi-cylindrical measurement window as in Example 3 and having a rotating mirror as a plane mirror was prepared and the image forming position was measured. The results are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果から、実施例の走査式放射計は
半円筒状の測定窓による像の歪みは自動的に補正され、
標準と同一の結像位置を示した。また、測定角度が変動
した場合にも測定窓に対する入射光の角度は常に一定と
なり、入射光量の差を生じることはなかった。しかし、
実施例3では測定窓に塩化ビニルの薄膜を使用した関係
で、変形し易いうえ波長透過率が低い難点が認められ
た。比較例1および比較例2では、回転ミラーに平面鏡
を使用したため、半円筒状測定窓のレンズ効果が打ち消
されず、標準と比べて結像位置が大きくずれる結果を示
した。
From the results shown in Table 1, in the scanning radiometer of the embodiment, the image distortion due to the semi-cylindrical measurement window is automatically corrected,
The same imaging position as the standard is shown. Further, even when the measurement angle fluctuates, the angle of the incident light with respect to the measurement window is always constant, and there is no difference in the amount of incident light. But,
In Example 3, a problem that the film was easily deformed and the wavelength transmittance was low due to the use of a thin film of vinyl chloride in the measurement window was recognized. In Comparative Example 1 and Comparative Example 2, since the plane mirror was used as the rotating mirror, the lens effect of the semi-cylindrical measurement window was not canceled, and the image-forming position was largely displaced from the standard.

【0017】[0017]

【発明の効果】以上のとおり、本発明によれば半円筒状
の測定窓とそのレンズ効果を消去する湾曲反射面を有す
る回転ミラーを組み合わせることにより、入射光量の測
定角度の許容範囲を拡大し、かつ像歪みのない状態で常
に高精度の測定が可能な走査式放射計を提供することが
できる。そのうえ、複雑な機構構造を必要とせず、コン
パクトに設計することができるから、製造現場にける各
種物体の輝度や温度分布の計測機器として優れた実用性
が期待される。
As described above, according to the present invention, the allowable range of the measurement angle of the incident light quantity is expanded by combining the semi-cylindrical measurement window and the rotary mirror having the curved reflection surface for eliminating the lens effect. Moreover, it is possible to provide a scanning radiometer capable of always performing highly accurate measurement without image distortion. In addition, since it does not require a complicated mechanical structure and can be designed compactly, it is expected to have excellent practicability as a measuring device for measuring the brightness and temperature distribution of various objects at the manufacturing site.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による走査式放射計の機構を模式的に示
した構造説明図である。
FIG. 1 is a structural explanatory view schematically showing a mechanism of a scanning radiometer according to the present invention.

【図2】図1の測定窓と回転ミラーの組合せ部分を拡大
して示した斜視図である。
FIG. 2 is an enlarged perspective view of a combined portion of a measurement window and a rotating mirror in FIG.

【符号の説明】[Explanation of symbols]

1 被測定物体 2 測定窓 3 回転ミラー 4 集光光学系 5 光センサー 6 信号処理回路 1 Object to be Measured 2 Measurement Window 3 Rotating Mirror 4 Condensing Optical System 5 Optical Sensor 6 Signal Processing Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物体からの放射光を走査する回転
ミラーと、前記回転ミラーにより反射された光を受光す
る集光光学系と、結像された光を電気信号に変換するた
めの光センサーと、変換された電気信号をデータ処理す
る信号処理回路とからなる走査式放射機構において、被
測定物体と回転ミラー間の光軸上に曲内面が回転ミラー
方向に向かう状態に可視もしくは赤外線を透過する半円
筒状の測定窓を介設し、前記測定窓と対峙する状態に湾
曲反射面を有する回転ミラーを入射光軸に対して45°
の角度に傾斜させて設置してなることを特徴とする走査
式放射計。
1. A rotating mirror for scanning emitted light from an object to be measured, a condensing optical system for receiving light reflected by the rotating mirror, and light for converting the imaged light into an electric signal. In a scanning radiation mechanism consisting of a sensor and a signal processing circuit that processes the converted electrical signal, visible or infrared rays are emitted on the optical axis between the object to be measured and the rotating mirror with the curved inner surface facing the rotating mirror. A rotary mirror having a semi-cylindrical measurement window that is transparent and having a curved reflection surface facing the measurement window is provided at 45 ° with respect to the incident optical axis.
A scanning radiometer characterized by being installed at an angle of.
【請求項2】 半円筒状の測定窓および湾曲反射面を有
する回転ミラーの曲率半径を、測定窓のレンズと仮定し
た際の焦点距離をf1 、回転ミラーの焦点距離をf2
したとき、f1 =−f2 の関係を満たすよう設定する請
求項1記載の走査放射計。
2. When the radius of curvature of a rotating mirror having a semi-cylindrical measuring window and a curved reflecting surface is f 1 when the lens of the measuring window is assumed to be f 1 , and the rotating mirror has a focal length of f 2. , scanning radiometer according to claim 1 wherein the set so as to satisfy the relation f 1 = -f 2.
【請求項3】 半円筒状の測定窓が、光学ガラスまたは
光学結晶の肉厚材料により形成された請求項1記載の走
査放射計。
3. A scanning radiometer according to claim 1, wherein the semi-cylindrical measuring window is made of a thick material of optical glass or optical crystals.
JP21060894A 1994-08-11 1994-08-11 Scanning radiometer Expired - Fee Related JP3316312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21060894A JP3316312B2 (en) 1994-08-11 1994-08-11 Scanning radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21060894A JP3316312B2 (en) 1994-08-11 1994-08-11 Scanning radiometer

Publications (2)

Publication Number Publication Date
JPH0854286A true JPH0854286A (en) 1996-02-27
JP3316312B2 JP3316312B2 (en) 2002-08-19

Family

ID=16592148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21060894A Expired - Fee Related JP3316312B2 (en) 1994-08-11 1994-08-11 Scanning radiometer

Country Status (1)

Country Link
JP (1) JP3316312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666913A3 (en) * 2004-11-19 2007-07-18 Leuze electronic GmbH + Co KG Optical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666913A3 (en) * 2004-11-19 2007-07-18 Leuze electronic GmbH + Co KG Optical sensor

Also Published As

Publication number Publication date
JP3316312B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP2763055B2 (en) Reflective optical triplet with real entrance pupil
US4900914A (en) Wide-angle viewing window with a plurality of optical structures
US5274489A (en) Thermal imager systems
EP1690121A1 (en) Solid catadioptric lens with a single viewpoint
US3604932A (en) Infrared optical scanning system comprising a rotatable faceted mirror having inclined facets
US20050030643A1 (en) Spherical view imaging apparatus and method
JPS59802B2 (en) Autofocusable binocular optics
WO2021112144A1 (en) Glass for vehicles, and camera unit
US4162124A (en) Passive optical rangefinder-sextant
JP3316312B2 (en) Scanning radiometer
JP3360505B2 (en) Three-dimensional measuring method and device
GB2173297A (en) Constant light pyrometer
CN111239959B (en) Variable-focus imaging system
EP0407199B1 (en) Image forming apparatus
JP3155569B2 (en) Dispersion distribution measurement method
Parks et al. SCOTS: A Fast, Inexpensive Test of Solar Concentrators
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JPS61151606A (en) Camera
CN116719160A (en) Asymmetric penta-mirror single-view point refraction and reflection infrared peripheral vision system and method
JP2003315028A (en) Three-dimensional measuring apparatus
JPH0423219Y2 (en)
WO2001094922A1 (en) Apparatus and method for viewing and inspecting a circumferential surface area of an object
JPH0336987Y2 (en)
JP3196614B2 (en) 3D measuring device
KR20180090571A (en) Optical device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees