JPH0854284A - Temperature calibrating apparatus - Google Patents

Temperature calibrating apparatus

Info

Publication number
JPH0854284A
JPH0854284A JP6210496A JP21049694A JPH0854284A JP H0854284 A JPH0854284 A JP H0854284A JP 6210496 A JP6210496 A JP 6210496A JP 21049694 A JP21049694 A JP 21049694A JP H0854284 A JPH0854284 A JP H0854284A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
carbon
radiation
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6210496A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Motohiko Kitazawa
元彦 北沢
Tadashi Iiizumi
正 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP6210496A priority Critical patent/JPH0854284A/en
Publication of JPH0854284A publication Critical patent/JPH0854284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately calibrate a radiation thermometer by providing a radiation tube having a central bottom, and a carbon cylinder provided near the bottom, and measuring the temperature of the bottom via the carbon cylinder. CONSTITUTION:The end of optical fiber 12 of an optical fiber radiation thermometer to be calibrated is disposed in a cavity formed out of a carbon cylinder 8 and a central bottom 4, and its temperature is measured. The temperature of the bottom 4 is measured with a standard radiation thermometer 14, and the both are compared to conduct the temperature calibration in the state equal to the actual state at a high temperature. Instead of a carbon unit 9 or in addition to it, inert gas such as Ar, etc., is fed into a radiation tube 2 to prepare the interior with non-oxidizing atmosphere, thereby preventing the deterioration of the end of the optical fiber 12. The cylinder 8 is provided to improve the effective emissivity of a black body furnace, thereby providing the furnace of further high performance. It can be also used for comparison calibrations of general radiation thermometer, a thermocouple, etc., except optical fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、放射温度計等の校正
に用いられる温度校正装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature calibration device used for calibration of radiation thermometers and the like.

【0002】[0002]

【従来の技術】従来所定温度とされた黒体炉の炉底を、
被校正用の放射温度計と標準用の放射温度計とで視定
し、両者の出力を比較し、被校正用の放射温度計の校正
を行なっている(特公平5−47058等ご参照)。
2. Description of the Related Art The bottom of a blackbody furnace, which has been conventionally at a predetermined temperature,
The radiation thermometer for calibration and the radiation thermometer for standard are evaluated, the outputs of both are compared, and the radiation thermometer for calibration is calibrated (see Japanese Patent Publication No. 5-47058, etc.). .

【0003】[0003]

【発明が解決しようとする課題】この場合、通常の黒体
炉では、放射率が十分大きくなく、高温での高精度の測
定が困難であった。また、光ファイバを溶融金属等に挿
入し、先端からの放射エネルギーを検出して測温するよ
うな光ファイバ放射温度計の校正は、直接、光ファイバ
先端を黒体炉内に挿入させて行なわれる。この場合、光
ファイバの先端は、空気中で高温にさらされることか
ら、OH基を吸収して失透を起し、また、光ファイバを
保護している高分子材の高温での分解による不均一な収
縮により、光フアイバに不均一な歪みが加わるマイクロ
ベンドによる失透を起し、正しい測定が困難である問題
点がある。
In this case, the emissivity is not sufficiently large in a normal black body furnace, and it is difficult to measure with high accuracy at high temperature. In addition, the calibration of an optical fiber radiation thermometer that inserts an optical fiber into molten metal or the like and detects the radiant energy from the tip to measure the temperature is performed by inserting the tip of the optical fiber directly into the blackbody furnace. Be done. In this case, the tip of the optical fiber is exposed to a high temperature in the air, so that the OH group is absorbed to cause devitrification, and the polymer material protecting the optical fiber is decomposed at a high temperature. The uniform shrinkage causes devitrification due to microbends that add non-uniform strain to the optical fiber, and there is a problem that correct measurement is difficult.

【0004】この発明の目的は、以上の点に鑑み、放射
温度計の校正を高精度に可能とした温度校正装置を提供
することである。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide a temperature calibration device capable of highly accurately calibrating a radiation thermometer.

【0005】[0005]

【課題を解決するための手段】この発明は、中央有底部
を有する放射管と、この放射管内の中央有底部に近接し
て設けられたカーボン円筒体とを備え、このカーボン円
筒体を介して中央有底部を測温することにより温度校正
を行うようにした温度校正装置である。
SUMMARY OF THE INVENTION The present invention comprises a radiant tube having a central bottom portion and a carbon cylindrical body provided in the radiant tube in the vicinity of the central bottom portion. It is a temperature calibrating device that calibrates the temperature by measuring the temperature at the bottom of the center.

【0006】[0006]

【実施例】図1は、この発明の一実施例を示す校正説明
図である。図において、1は両端が開口の炭化ケイ素S
iC等よりなる発熱体、2は発熱体1の内部に位置し炭
化ケイ素子SiC等よりなる放射管(空洞部)で、両端
を絶縁体31、32を介し空間をもたせて保持される。
放射管2の内部には、長手方向のほぼ中央に中央有底部
(ターゲット)4が設けられている。発熱体1の外周は
セラミックウールのような断熱材5で保温されている。
そして、前後に保持板61、62を設け、全体として、
温度校正用の黒体炉としている。そして、中央有底部4
の一方の側に熱電対等の温度センサ7を設けて測温し、
図示しない制御手段で発熱体1への電圧・電流等の制御
を行い所定温度の黒体炉とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a calibration explanatory view showing an embodiment of the present invention. In the figure, 1 is silicon carbide S having openings at both ends.
A heating element 2 made of iC or the like is a radiation tube (cavity) located inside the heating element 1 and made of a silicon carbide element SiC or the like, and is held at both ends with a space between the insulators 31 and 32.
Inside the radiation tube 2, a central bottomed portion (target) 4 is provided substantially at the center in the longitudinal direction. The outer circumference of the heating element 1 is kept warm by a heat insulating material 5 such as ceramic wool.
Then, holding plates 61 and 62 are provided at the front and rear, and as a whole,
It is a blackbody furnace for temperature calibration. And the central bottom part 4
A temperature sensor 7 such as a thermocouple is provided on one side to measure the temperature,
The control means (not shown) controls the voltage, current, etc. to the heating element 1 to obtain a blackbody furnace having a predetermined temperature.

【0007】放射管2の中央有底部4の他方の側には、
近接して中空のカーボン円筒体8が設けられ、また、中
央有底部4と離れた位置に円筒状のカーボン体9を設け
ている。
On the other side of the central bottomed part 4 of the radiant tube 2,
A hollow carbon cylindrical body 8 is provided in close proximity to the central bottomed portion 4, and a cylindrical carbon body 9 is provided at a position apart from the central bottomed portion 4.

【0008】そして、側板61に設けられた支持具10
に支えられた挿入管11が放射管2内に挿入され、この
挿入管11を通して、被校正用の光ファイバ放射温度計
の光ファイバ12がアルミナ製のガイド管13に案内さ
れてカーボン円筒体8内に位置され、好ましくはその先
端は中央有底部4の中心に近づける。そして、この中央
有底部4の中心は、図示しない標準の放射温度計14で
視定され、光ファイバ12の他端の測定手段の出力と比
較し、校正が行われる。
Then, the supporting tool 10 provided on the side plate 61.
The insertion tube 11 supported by the is inserted into the radiation tube 2, and the optical fiber 12 of the optical fiber radiation thermometer to be calibrated is guided by the alumina guide tube 13 through the insertion tube 11 and the carbon cylinder 8 It is located inside and preferably its tip is close to the center of the central bottom part 4. Then, the center of the central bottomed portion 4 is calibrated by a standard radiation thermometer 14 (not shown) and compared with the output of the measuring means at the other end of the optical fiber 12 for calibration.

【0009】つまり、光ファイバ12は、その外周が多
くは高分子材で被覆されているので、あらかじめ十分に
燃焼させて炭化させ十分な所要長さ分その先端を焼成し
ておく。これにより、高分子材の分解によって起こるマ
イクロベンドによる失透を防ぐことができる。そして、
あらかじめたとえば1500℃のような高温とされた放
射管2内にガイド管12に挿入して挿入管11を介して
光ファイバ12の先端をカーボン円筒体8内に位置させ
る。このことにより、光ファイバ12の先端に付着して
いるカーボンは燃えずに残り光ファイバ12の失透を生
じることなく、安定的な測定ができる。また、カーボン
体9等が徐々に燃焼することで、内部はCO2の存在す
る非酸化雰囲気となり、大気への開放状態であっても、
光ファイバ12の先端は汚損されず失透防止が図れる。
また、カーボン円筒体8により、光ファイバ12の先端
の設置位置を一定にでき、安定した測定が可能となる。
That is, since the outer circumference of the optical fiber 12 is mostly covered with a polymer material, the tip of the optical fiber 12 is fired for a sufficient length in advance by sufficient combustion and carbonization. This makes it possible to prevent devitrification due to microbending caused by the decomposition of the polymer material. And
The guide tube 12 is inserted into the radiation tube 2 which has been heated to a high temperature such as 1500 ° C. in advance, and the tip of the optical fiber 12 is positioned in the carbon cylindrical body 8 through the insertion tube 11. As a result, the carbon adhering to the tip of the optical fiber 12 does not burn and the devitrification of the optical fiber 12 does not occur, and stable measurement can be performed. Further, due to the gradual combustion of the carbon body 9 and the like, the inside becomes a non-oxidizing atmosphere in which CO2 exists, and even when it is open to the atmosphere,
The tip of the optical fiber 12 is not contaminated and devitrification can be prevented.
Further, the carbon cylindrical body 8 makes it possible to make the installation position of the tip of the optical fiber 12 constant, thereby enabling stable measurement.

【0010】このように光ファイバ12の先端をカーボ
ン円筒体8と中央有底部4とで形成される空洞に位置さ
せて測温するとともに、この中央有底部4を標準の放射
温度計で測温し、両者を比較することで、高温での実際
と等しい状態での温度校正が可能となる。
As described above, the tip of the optical fiber 12 is positioned in the cavity formed by the carbon cylinder 8 and the central bottomed portion 4 to measure the temperature, and the central bottomed portion 4 is measured with a standard radiation thermometer. However, by comparing the two, it becomes possible to perform temperature calibration under the same conditions as at actual high temperatures.

【0011】また、カーボン体9の代わりに、または、
これに加えてAr等の不活性ガスを放射管2内に送入す
ることで、内部を非酸化雰囲気にでき、光ファイバ12
の先端の劣化を防止できる。また、カーボン円筒体8を
設けることで、黒体炉の実効放射率が向上し、いっそう
高性能の黒体炉となり、光ファイバ以外の一般の放射温
度計や熱電対等の比較校正にも用いることができる。
Further, instead of the carbon body 9, or
In addition to this, by sending an inert gas such as Ar into the radiation tube 2, the inside can be made into a non-oxidizing atmosphere, and the optical fiber 12
The deterioration of the tip of the can be prevented. Further, by providing the carbon cylindrical body 8, the effective emissivity of the black body furnace is improved, and the black body furnace has a higher performance, and it can be used for comparative calibration of general radiation thermometers other than optical fibers, thermocouples, etc. You can

【0012】たとえば、カーボン円筒体8の中空の空洞
の長さをL、半径rとの比を4とすれば、カーボン円筒
体8のない放射管2のみによる本黒体炉の空洞放射率は
約0.99であるが(JIS C1612 第25頁参
考4図4 高温域比較黒体炉)、カーボンの放射率を
0.9とすると、カーボン円筒体8を用いることにより
実効放射率ε=0.994となり、その比が8では、ε
=0.998となり、理想的な黒体条件に近ずく(計測
自動制御学会発行「新編温度計測」250頁等参照)。
For example, if the length of the hollow cavity of the carbon cylinder 8 is L and the ratio to the radius r is 4, the cavity emissivity of this blackbody furnace only by the radiation tube 2 without the carbon cylinder 8 is: Although it is about 0.99 (JIS C1612, page 25, reference 4, FIG. 4 high temperature comparative blackbody furnace), assuming that the emissivity of carbon is 0.9, the effective emissivity ε = 0 by using the carbon cylindrical body 8. .994, and when the ratio is 8, ε
= 0.998, which is close to the ideal black body condition (see “New Edition Temperature Measurement” published by the Society of Instrument and Control Engineers, page 250).

【0013】次に比較校正誤差に付いて考察する。たと
えば上記文献199〜200頁を参照し、放射率変化d
εと温度変化dTとの関係は、次式となる。
Next, the comparative calibration error will be considered. For example, referring to the above-mentioned documents 199 to 200, emissivity change d
The relationship between ε and the temperature change dT is as follows.

【0014】dT=(1/n)・(dε/ε)・T ここで、ε=1、n=C2/λTを代入して整理する
と、次式となる。
DT = (1 / n) .multidot. (D.epsilon ./. Epsilon.). Multidot.T Here, substituting .epsilon. = 1 and n = C2 / .lambda.T gives the following formula.

【0015】dT=λ・dε(T2 /C2) 2つの波長λ1、λ2についての測定誤差を改めてdT
とおくと次式となる。
DT = λdε (T 2 / C2) The measurement error for the two wavelengths λ1 and λ2 is again dT
If it puts it, it will become the following formula.

【0016】 dT=(λ1−λ2)dε・(T2 /C2) (1) C2=0.014388m・K、T=1800Kとし、
光ファイバ12による測定波長λ1=1.55μm、標
準の放射温度計14の測定波長λ2=0.9μmとすれ
ば、カーボン円筒体8がL/r=4では、dε=0.0
06となり、結局dT=0.88(K)となり1(K)
以内の十分な比較校正が可能となる。L/r=8では、
dε=0.002となり、dT=0.29(K)とな
り、さらに、誤差の少い温度校正が可能となる。つま
り、前述のカーボン円筒体8がない放射管2のみによる
場合はdε=0.01でdT=1.46(K)であるの
と比べて、2〜5倍改善される。
DT = (λ1−λ2) dε · (T 2 / C2) (1) C2 = 0.014388m · K and T = 1800K,
If the measurement wavelength λ1 of the optical fiber 12 is 1.55 μm and the measurement wavelength λ2 of the standard radiation thermometer 14 is 0.9 μm, dε = 0.0 when the carbon cylinder 8 is L / r = 4.
06, eventually dT = 0.88 (K) and 1 (K)
Sufficient comparative calibration within is possible. With L / r = 8,
Since dε = 0.002 and dT = 0.29 (K), temperature calibration with a small error becomes possible. That is, in the case where only the radiation tube 2 without the carbon cylinder 8 is used, it is improved by 2 to 5 times as compared with dT = 0.01 and dT = 1.46 (K).

【0017】[0017]

【発明の効果】以上述べたように、この発明は、放射管
内にカーボン円筒体を設けるようにした温度校正装置で
ある。このため、黒体炉としての放射率が1に近くな
り、温度校正誤差を大幅に少くすることができ、高精度
の校正が可能となる。また、カーボン体や不活性ガスを
用いることで放射管の内部をCO2等の存在する非酸化
雰囲気となり、光ファイバ温度計の先端を挿入する場
合、その失透や劣化を防止でき、安定的な測定が可能と
なる。また、光ファイバの先端を焼成して炭化処理して
用いることにより、その被覆が燃焼して劣化、汚損を生
じることはない。また、カーボン円筒体の存在により、
光ファイバの先端の挿入位置を一定にでき、安定的な測
定が可能となる。また、光ファイバ放射温度計の他に一
般の放射温度計の校正にも、用いることができ、広範囲
な温度の校正可能となる。
As described above, the present invention is a temperature calibrating device in which a carbon cylinder is provided inside the radiation tube. Therefore, the emissivity of the black body furnace is close to 1, the temperature calibration error can be significantly reduced, and the calibration with high accuracy can be performed. Further, by using a carbon body or an inert gas, the inside of the radiation tube becomes a non-oxidizing atmosphere in which CO2 or the like exists, and when the tip of the optical fiber thermometer is inserted, devitrification and deterioration thereof can be prevented and stable. It becomes possible to measure. Further, by firing and carbonizing the tip of the optical fiber, the coating does not burn and cause deterioration or contamination. Also, due to the presence of the carbon cylinder,
The insertion position of the tip of the optical fiber can be made constant, and stable measurement is possible. Further, it can be used for calibration of general radiation thermometers as well as optical fiber radiation thermometers, and it becomes possible to calibrate a wide range of temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す校正説明図である。FIG. 1 is a calibration explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 発熱体 2 放射管 31、32 絶縁体 4 中央有底部 5 断熱材 61、62 保持板 7 温度センサ 8 カーボン円筒体 9 カーボン体 10 支持具 11 挿入管 12 光ファイバ 13 ガイド管 14 標準の放射温度計 DESCRIPTION OF SYMBOLS 1 Heating element 2 Radiation tube 31, 32 Insulator 4 Central bottomed part 5 Heat insulating material 61, 62 Holding plate 7 Temperature sensor 8 Carbon cylinder 9 Carbon body 10 Supporting tool 11 Insertion tube 12 Optical fiber 13 Guide tube 14 Standard radiation temperature Total

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】中央有底部を有する放射管と、この放射管
内の中央有底部に近接して設けられたカーボン円筒体と
を備え、このカーボン円筒体を介して中央有底部を測温
することにより温度校正を行うことを特徴とする温度校
正装置。
1. A radiation tube having a central bottom portion, and a carbon cylindrical body provided adjacent to the central bottom portion in the radiation tube, wherein the temperature of the central bottom portion is measured through the carbon cylindrical body. A temperature calibration device characterized by performing temperature calibration by means of.
【請求項2】前記放射管の中央有底部から離れた位置に
カーボン体を設けるか、または、放射管内に不活性ガス
を送入することを特徴とする請求項1記載の温度校正装
置。
2. The temperature calibrating device according to claim 1, wherein a carbon body is provided at a position away from the bottom of the central portion of the radiation tube, or an inert gas is fed into the radiation tube.
【請求項3】光ファイバの先端を前記カーボン円筒体の
内部に位置させて比較校正を行うことを特徴とする請求
項1または請求項2記載の温度校正装置。
3. The temperature calibrating device according to claim 1, wherein the tip end of the optical fiber is positioned inside the carbon cylindrical body for comparative calibration.
【請求項4】先端が焼成された光ファイバを用いたこと
を特徴とする請求項3記載の温度校正装置。
4. The temperature calibrating apparatus according to claim 3, wherein an optical fiber whose tip is fired is used.
JP6210496A 1994-08-11 1994-08-11 Temperature calibrating apparatus Pending JPH0854284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210496A JPH0854284A (en) 1994-08-11 1994-08-11 Temperature calibrating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210496A JPH0854284A (en) 1994-08-11 1994-08-11 Temperature calibrating apparatus

Publications (1)

Publication Number Publication Date
JPH0854284A true JPH0854284A (en) 1996-02-27

Family

ID=16590324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210496A Pending JPH0854284A (en) 1994-08-11 1994-08-11 Temperature calibrating apparatus

Country Status (1)

Country Link
JP (1) JPH0854284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271578A (en) * 2006-03-31 2007-10-18 Seiko Npc Corp Infrared sensor measurement device
JP2011215155A (en) * 2011-06-15 2011-10-27 Seiko Npc Corp Infrared sensor measuring device
JP2012186398A (en) * 2011-03-08 2012-09-27 Nippon Avionics Co Ltd Joining device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107049U (en) * 1989-02-14 1990-08-24
JPH05142049A (en) * 1991-11-15 1993-06-08 Nkk Corp Consumable type optical fiber thermometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107049U (en) * 1989-02-14 1990-08-24
JPH05142049A (en) * 1991-11-15 1993-06-08 Nkk Corp Consumable type optical fiber thermometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271578A (en) * 2006-03-31 2007-10-18 Seiko Npc Corp Infrared sensor measurement device
JP2012186398A (en) * 2011-03-08 2012-09-27 Nippon Avionics Co Ltd Joining device
JP2011215155A (en) * 2011-06-15 2011-10-27 Seiko Npc Corp Infrared sensor measuring device

Similar Documents

Publication Publication Date Title
JP2987459B1 (en) Temperature fixed point crucible, temperature fixed point device and thermometer calibration method
Yamada et al. Application of metal (carbide)–carbon eutectic fixed points in radiometry
JP4639383B2 (en) Temperature fixed point cell, temperature fixed point device, and thermometer calibration method
US6641299B2 (en) Fixed-point cell, thermometer calibration method and fixed-point temperature realizing apparatus
JPH0854284A (en) Temperature calibrating apparatus
US4204770A (en) Graphite furnace bore temperature measurements in flameless atomic absorption spectroscopy
RU2325622C1 (en) Technique of controlling authenticity of readings of thermoelectric converter during operation
JP3392936B2 (en) Temperature calibration device
Murthy et al. Radiative Calibration of Heat Flux Sensors at NIST: An Overview
HU180977B (en) Referance heat radiator
JP2958428B2 (en) SiC protective tube for thermocouple
US4440510A (en) Pyrometric gas temperature measurement system
Ulanovskiy et al. Tungsten–Rhenium Thermocouples Calibration in Ultra-High Temperature Range
US4214117A (en) Furnace heated by radiation
Chu et al. An evaluation of infrared thermometers by the intercomparison of standard Black body sources
Lovas et al. Meeting RTP temperature accuracy requirements: measurement and calibrations at NIST
JP3130908B2 (en) Temperature measurement method for heat treatment furnace for substrates
KR200206000Y1 (en) Optical pyrometer and thermocouple combined calibration tube
JP3552861B2 (en) Surface temperature measurement method for objects in heating furnace
Freeman Distributed Seebeck effect at high temperatures
RU2720819C1 (en) Device for calibration of high-temperature thermocouples
Fischer et al. Calibration of tungsten strip lamps as transfer standards for temperature
Coslovi et al. A Radiometric Determination of the Thermodynamic Temperature Interval between the Silver and Gold Freezing Points
Ulanovskiy et al. An approach to Tungsten-rhenium thermocouple calibration in the temperature range 1200-2500° C
Meyer Effects of extraneous radiation on the performance of lightpipe radiation thermometers

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040628