JPH0854203A - Apparatus for measuring plane shape - Google Patents

Apparatus for measuring plane shape

Info

Publication number
JPH0854203A
JPH0854203A JP34982393A JP34982393A JPH0854203A JP H0854203 A JPH0854203 A JP H0854203A JP 34982393 A JP34982393 A JP 34982393A JP 34982393 A JP34982393 A JP 34982393A JP H0854203 A JPH0854203 A JP H0854203A
Authority
JP
Japan
Prior art keywords
work
air
slider
measuring
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34982393A
Other languages
Japanese (ja)
Other versions
JP3313222B2 (en
Inventor
Fumihiro Takemura
文宏 竹村
Yasutake Oshima
泰毅 大島
Hiroyuki Terauchi
宏之 寺内
Katsuaki Kamitari
勝昭 神足
Shiro Majima
志郎 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP34982393A priority Critical patent/JP3313222B2/en
Publication of JPH0854203A publication Critical patent/JPH0854203A/en
Application granted granted Critical
Publication of JP3313222B2 publication Critical patent/JP3313222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To realize an accurate measurement by providing means for standing an object along the vertical plane and supporting the object at several points on the circumference thereof, and means for shifting a measuring secsor in parallel with the plane of the object. CONSTITUTION:Stabilization rolls 14, each having a groove to receive the circumferential fringe of a work W, are formed on a truck 12 while being arranged accurately in parallel to each other. Right and left feed pitches are set equal constantly and the work W is elevated or lowered by means of a cylinder 15. The work W is made to abut on stoppers 15a, 16a and 17a and then a pressurization mechanism 17 is driven to impart a pressure F to the work W thus securing the work W by means of securing mechanisms 15, 16b and 17. A single shaft air slider shaft 18 is disposed contiguously to the mechanism 17 and an air slider, mounting a measuring mechanism 20, is mounted movably on the shaft 18. The air slider 19 is moved when an endless belt 22 is driven by an output from a driving section 21 and a sensor 23, mounted on the measuring mechanism 20, measures the work W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平面形状の測定装置に
関し、さらに詳しくは、シリコンウエハのポリッシュプ
レ−トなどの表面形状を立体的に測定するのに適した板
状物の平面形状の測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar shape measuring apparatus, and more particularly, to a planar shape measuring apparatus for planarly measuring a surface shape such as a polishing plate of a silicon wafer. Regarding measuring device.

【0002】[0002]

【従来の技術】従来知られている板状物の平面形状の測
定装置としては、板状物である被測定物、いわゆるワ−
クを定盤上に直接置いて測定する形式の装置、あるいは
同心円上の3点を支持して表面の形状を測定する形式の
装置がある。例えば、図10に示すように、3点支持に
よる測定装置にあっては、同心円上の各支持点が位置す
る点と、中心とを結ぶ直線X1 に沿った変形は、同心円
内にあっては下方向の曲げ応力Wa が二次曲線を描いて
分布し、同心円外にあっては上向きの応力Wu が同じく
二次曲線を描いて分布する。また中心と各支持点の中間
位置を結ぶX2 においては、同心円内では片持ち梁の自
由端部に曲げモ−メントが作用したかのような曲線によ
る曲げ応力の分布になる。また、図11に示すようなワ
−クを定盤上に直接おいて測定する形式の装置にあって
は、定盤の上面をより平坦にすることが困難であり、ま
た、セラミックス製のポリッシュプレ−ト等の被測定物
における定盤と接触する面をより平坦にすることは困難
である。その結果、定盤とセラミックス製のポリッシュ
プレ−ト等の被測定物は実質上3点支持となる。
2. Description of the Related Art A conventionally known apparatus for measuring the planar shape of a plate-like object is a plate-like object to be measured, a so-called work.
There is a device of the type that directly puts the surface on a surface plate for measurement, or a device of the type that supports three points on a concentric circle to measure the surface shape. For example, as shown in FIG. 10, in a measuring device with three-point support, the deformation along a straight line X 1 connecting the center of each support point on the concentric circle and the center is within the concentric circle. The bending stress W a in the downward direction is distributed along a quadratic curve, and the stress W u in the upward direction is distributed along a quadratic curve outside the concentric circle. Further, at X 2 connecting the center to the intermediate position between the respective support points, the bending stress distribution is a curve that appears as if a bending moment acts on the free end of the cantilever within the concentric circle. Further, in an apparatus of a type in which a work as shown in FIG. 11 is placed directly on a surface plate for measurement, it is difficult to make the upper surface of the surface plate more flat, and a ceramic polish is used. It is difficult to make the surface of an object to be measured, such as a plate, that comes into contact with the surface plate flatter. As a result, the object to be measured such as the surface plate and the ceramic polish plate is substantially supported at three points.

【0003】また、その測定装置の概略を図11に基づ
いて説明する。図に示されるように、この装置はエア−
スライダ軸に変位センサを一個設け、これを直線的に移
動させることで一ライン毎の平面情報を検出するように
したものである。すなわち、ベッド1の上方にエア−ス
ライダ軸2を水平に配置して、その下側には若干の空間
を形成し、前記エア−スライダ軸2にエア−スライダ3
を取付け、モ−タ4、タイミングベルト6により前記ス
ライダ3をエア−スライダ軸2に移動自在とし、前記移
動による変位をロ−タリ−エンコ−ダ7により検出す
る。尚、前記スライダ3には平面形状を検出するセンサ
5が装着されている。
An outline of the measuring device will be described with reference to FIG. As shown in the figure, this device
One displacement sensor is provided on the slider shaft, and the plane information for each line is detected by linearly moving the displacement sensor. That is, the air-slider shaft 2 is horizontally arranged above the bed 1, and a small space is formed below the air-slider shaft 2. The air-slider shaft 3 is attached to the air-slider shaft 2.
The slider 3 is made movable to the air-slider shaft 2 by the motor 4 and the timing belt 6, and the displacement due to the movement is detected by the rotary encoder 7. A sensor 5 for detecting the planar shape is attached to the slider 3.

【0004】そして、ワ−クWは前記ベッド1上に置か
れ、かつ、前記エア−スライダ軸2の下部空間に配置さ
れるようになっている。尚、図において符号8は演算部
としてのパソコン、符号9はプリンタをそれぞれ示して
いる。
The work W is placed on the bed 1 and arranged in the space below the air-slider shaft 2. In the figure, reference numeral 8 indicates a personal computer as an arithmetic unit, and reference numeral 9 indicates a printer.

【0005】この装置では、エア−スライダ軸2に沿っ
てスライダ3を移動させながら、ポリッシュプレ−ト等
の板状のワ−クWの表面の形状、即ち図12に示す直線
3に沿った形状情報を検出すると共に、位置検出情報
とを合わせて図13に示される平面形状情報を得る。次
に、図14に示すように、ワ−クWをベッド1上で90
度回転させて再び直線X4 上の形状を測定して、図15
に示すワ−クWの平面形状情報を得る。
In this apparatus, while moving the slider 3 along the air-slider axis 2, the surface shape of a plate-like work W such as a polish plate, that is, along the straight line X 3 shown in FIG. The detected shape information is combined with the position detection information to obtain the planar shape information shown in FIG. Next, as shown in FIG.
15 degrees, measure the shape on the straight line X 4 again, and
The plane shape information of the work W shown in is obtained.

【0006】[0006]

【発明が解決しようとする課題】上述のような従来の装
置にあっては、ワ−クがたわみ変形をしたままの状態
で、ワ−ク表面の形状測定をすることになり、正確な平
面形状の情報を得ることができないという技術的課題が
あった。。最近大型化するポリッシュプレ−トの測定に
おいて、この課題はとくに顕著に現れ、今日測定精度を
向上させる上において装置の改良が望まれている。本発
明は上記課題を解決するためになされたものであり、ワ
−クの自重によるたわみ変形の影響を受けることなく、
極めて正確に測定することができ、かつ比較的安価な測
定装置を提供することを目的とするものである。
In the conventional device as described above, the shape of the work surface is measured while the work is still flexibly deformed, and an accurate flat surface is obtained. There was a technical problem that it was not possible to obtain shape information. . This problem becomes particularly noticeable in the measurement of the polish plate which has recently become large in size, and today, improvement of the apparatus is desired in order to improve the measurement accuracy. The present invention has been made to solve the above problems, without being affected by flexural deformation due to the weight of the work,
It is an object of the present invention to provide a relatively inexpensive measuring device that can measure extremely accurately.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる平面形状の測定装置は、被測定物の
平面形状を測定するセンサ−と、前記被測定物を垂直面
に沿って起立させると共に、被測定物の周囲数点を支持
固定する手段と、前記測定センサを前記被測定物の平面
に対して平行に移動させる移動手段と備えたこと特徴と
するものである。
In order to achieve the above object, a plane shape measuring apparatus according to the present invention comprises a sensor for measuring the plane shape of an object to be measured and the object to be measured along a vertical plane. And a means for supporting and fixing several points around the object to be measured, and a moving means for moving the measurement sensor parallel to the plane of the object to be measured.

【0008】[0008]

【作用】本発明にかかる平面形状測定装置よれば、ワ−
クを垂直面に沿って起立状態に保持してその平面の形状
を測定するので、ワ−クの自重によるひずみなどの影響
がなく、さらに、本発明装置によれば、装置の機構複雑
化もなく、正確な測定が可能になる。
According to the plane shape measuring apparatus of the present invention,
Since the work is held upright along the vertical surface and the shape of the plane is measured, there is no influence of strain due to the weight of the work, and the device of the present invention also complicates the mechanism of the device. Without, accurate measurement is possible.

【0009】[0009]

【実施例】以下本発明にかかる装置の一実施例を図1乃
至図9に基づいて説明する。図1に示すように、この装
置10はベッド11の上に、ロ−ラ付きの台車12が軌
道13上に搭載されており、この台車12、12の間に
ポリッシュプレ−トであるワ−クWが前記軌道13の長
さ方向と直交する平面に沿った方向に搭載される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus according to the present invention will be described below with reference to FIGS. As shown in FIG. 1, this apparatus 10 has a trolley 12 with a roller mounted on a track 13 on a bed 11, and between the trolleys 12, 12 is a polish plate work station. The track W is mounted in a direction along a plane orthogonal to the length direction of the track 13.

【0010】前記台車12、12にはワ−クWの周縁が
納まる溝をもった安定ロ−ル14、14が形成され、こ
れらのロ−ル14、14は正確に平行配置されており、
左右の送りピッチは常に同一である。
Stabilizing rolls 14 and 14 having grooves for accommodating the periphery of the work W are formed on the carriages 12 and 12, and these rolls 14 and 14 are precisely arranged in parallel.
The left and right feed pitches are always the same.

【0011】この安定ロ−ル14、14は前記台車12
の上において、油圧などのシリンダ15により、ワ−ク
Wを上昇、下降させることができるようになっている。
即ち、前記安定ロ−ル14、14上にワ−クWを搭載し
た後、ワ−クWを測定位置まで台車12、12で移動さ
せ、ストッパ15a,16a,17aに当接させる。そ
の後、前記シリンダ15を収縮させて測定位置までワ−
クWを下降させた後、加圧機構17及び固定機構15、
16bによりワ−クWをいわゆる3点支持で固定する。
即ち、ワ−クWをストッパ15a,16a,17aに当
接させた後、加圧機構17を駆動し、加圧力Fをワ−ク
Wに付与し、固定機構15、16b、加圧機構17で固
定するものである。
The stable rolls 14 and 14 are mounted on the carriage 12.
On the top, the work W can be raised and lowered by a cylinder 15 such as a hydraulic pressure.
That is, after mounting the work W on the stable rolls 14 and 14, the work W is moved to the measurement position by the carriages 12 and 12 and brought into contact with the stoppers 15a, 16a and 17a. Then, the cylinder 15 is contracted to reach the measurement position.
After lowering W, the pressing mechanism 17 and the fixing mechanism 15,
The work W is fixed by 16b by so-called three-point support.
That is, after the work W is brought into contact with the stoppers 15a, 16a, 17a, the pressing mechanism 17 is driven to apply the pressing force F to the work W, and the fixing mechanisms 15, 16b and the pressing mechanism 17 are provided. It is something to fix with.

【0012】ここで、ワ−クWを加圧機構17との静摩
擦係数をμとし、加圧機構17の取付け角度θとする
と、A点におけるワ−クWの測定方向の摩擦力(ワ−ク
保持力)Pは、P=μFCOSθで表される。同様に、
ワ−クWと固定機構16bの静摩擦係数をμ’とする
と、B点におけるワ−ク保持力Qは、Q=μ’FCOS
θで表される。また、C点におけるワ−ク保持力Rは、
ワ−クWと固定機構15の静摩擦係数をμ’、ワ−クW
の自重をWgとすると、R=μ’Wg+μ’FSINθ
で表される。これからもわかるように、振動等のを外力
に対抗してワ−クWをしっかり固定できるように、保持
力P、Q、Rを所定の大きさするには、Fの大きさを決
定すれば良い。
Assuming that the work W has a coefficient of static friction with the pressurizing mechanism 17 and a mounting angle θ of the pressurizing mechanism 17, a frictional force (work) in the measuring direction of the work W at the point A is obtained. The holding force P is represented by P = μFCOSθ. Similarly,
If the static friction coefficient between the work W and the fixing mechanism 16b is μ ′, the work holding force Q at the point B is Q = μ′FCOS
It is represented by θ. The work holding force R at point C is
The coefficient of static friction between the work W and the fixing mechanism 15 is μ ′, and the work W is
Let Wg be the own weight of R = μ'Wg + μ'FSINθ
It is represented by. As can be seen from this, the holding force P, Q, R can be set to a predetermined value so that the work W can be firmly fixed against the external force such as vibration by fixing the size of F. good.

【0013】また、前記ストッパ15a,16a,17
aは後に説明するエア−スライダ19の移動面、言い換
えればエア−スライダ軸18と平行な平面内に形成され
ている。そのため、ワ−クWを加圧機構17及び固定機
構15、16bにより固定した際、前記ワ−クWはエア
−スライダ軸18と平行に配置されることになる。尚、
図中の16は、予期せぬワ−クWの転倒防止のための安
全機構である。一軸を中心として、回動可能に形成され
ている。
Further, the stoppers 15a, 16a, 17
a is formed on the moving surface of the air-slider 19 described later, in other words, in the plane parallel to the air-slider axis 18. Therefore, when the work W is fixed by the pressing mechanism 17 and the fixing mechanisms 15 and 16b, the work W is arranged in parallel with the air-slider shaft 18. still,
Reference numeral 16 in the figure is a safety mechanism for preventing the work W from falling down unexpectedly. It is formed so as to be rotatable about one axis.

【0014】これらの固定機構と隣り合って、一軸型の
エア−スライダ軸18が配置され、このエア−スライダ
軸18にエア−スライダ19が移動可能に搭載されてお
り、このエア−スライダ19に測定機構20が搭載され
ている。
A uniaxial type air-slider shaft 18 is arranged adjacent to these fixing mechanisms, and an air-slider 19 is movably mounted on the air-slider shaft 18 and is mounted on the air-slider 19. The measuring mechanism 20 is mounted.

【0015】即ち、前記エア−スライダ19は、前記エ
ア−スライダ軸18に沿って駆動部21の出力により無
端ベルト22が駆動されることで移動されるもので、前
記測定機構20には、ワ−クWの表面と接触する接触子
を有する二つのセンサ23が装着されて、前記センサ2
3によりワ−クWの平面形状を測定する。尚、図には示
されていないが、この装置にも従来の装置同様、ロ−タ
リエンコ−ダが備えられ、エア−スライダ19の位置情
報がロ−タリエンコ−ダにより検出されるようになって
いる。また同様に、エア−スライダ19に搭載されたセ
ンサ23から得た表面の形状情報と、前記ロ−タリエン
コ−ダから得た位置情報とを演算するパソコン、得た情
報を印刷するプリンタ、エア−スライダ19などの駆動
系を制御する制御部が備えられている。
That is, the air-slider 19 is moved along with the air-slider shaft 18 by driving the endless belt 22 by the output of the driving portion 21, and the measuring mechanism 20 has -The two sensors 23 having the contacts that come into contact with the surface of
The plan shape of the work W is measured by 3. Although not shown in the figure, this device is also provided with a rotary encoder as in the conventional device so that the position information of the air slider 19 can be detected by the rotary encoder. There is. Similarly, a personal computer for calculating surface shape information obtained from the sensor 23 mounted on the air slider 19 and position information obtained from the rotary encoder, a printer for printing the obtained information, and an air printer. A control unit that controls a drive system such as the slider 19 is provided.

【0016】ワ−クWとエア−スライダ19とは前述の
ように平行に配されるが、更に、その平行度を増すため
に、図4に示すようにエア−スライダ19移動線と、ワ
−クWとの平行調整を行う必要がある。このための調整
機構も搭載している。この調整機構は、エア−スライダ
軸18に支点26を設けるともに、他端側をエア−スラ
イダ軸18に取付けられた押し板18aを図示しない調
整ネジを回動させることにより、バネユニット25に抗
してエア−スライダ軸18が弧を描いて微動するように
なっている。尚、微動距離はマイクロメ−タ24により
測定される。
The work W and the air-slider 19 are arranged parallel to each other as described above. In order to further increase the parallelism, the movement line of the air-slider 19 and the work line are shown in FIG. -It is necessary to carry out parallel adjustment with W. The adjustment mechanism for this is also installed. In this adjusting mechanism, a fulcrum 26 is provided on the air-slider shaft 18, and a push plate 18a attached to the air-slider shaft 18 at the other end is rotated by an adjusting screw (not shown) so as to resist the spring unit 25. Then, the air-slider shaft 18 draws an arc and moves slightly. The fine movement distance is measured by the micrometer 24.

【0017】次に、調整機構の調整方法について説明す
ると、まず、ワ−クW上の一点(P点)とエア−スライ
ダ軸18との距離をセンサ23で測定する。続いてエア
−スライダ19を移動させ、ワ−クW上の他の一点(Q
点)における距離も同様に測定する。ここで、P点及び
Q点の支点26からの距離はロ−タリエンコ−ダによっ
て検出できるため、これらの関係からエア−スライダ1
8とワ−クWの傾き角を計算により求めることができ
る。
Next, the adjusting method of the adjusting mechanism will be described. First, the sensor 23 measures the distance between one point (point P) on the work W and the air-slider shaft 18. Then, the air-slider 19 is moved to another point (Q
The distance at the point) is measured in the same manner. Here, since the distances of the P point and the Q point from the fulcrum 26 can be detected by the rotary encoder, the air-slider 1 can be detected from these relationships.
The inclination angle between 8 and the work W can be calculated.

【0018】即ち、P点のエア−スライダ軸18との距
離d、支点26からの距離をbとし、Q点のエア−スラ
イダ軸18との距離y、支点26からの距離をaとする
と、θ=tan-1(y−e/b−a)となる。したがっ
て、エア−スライダ軸18を支点26を中心に角度θ回
動させことにより、ワ−クWとエア−スライダ軸18と
を平行にすることができる。尚、マイクロメ−タヘッド
24の移動量Yは、支点26からの距離Xに前記θを乗
じけば、求めることができる。
That is, assuming that the distance d from the point P to the air-slider shaft 18 is b, the distance from the fulcrum 26 is b, the distance y from the point Q to the air-slider shaft 18 is a, and the distance from the fulcrum 26 is a. θ = tan −1 (ye / ba). Therefore, by rotating the air-slider shaft 18 by the angle θ about the fulcrum 26, the work W and the air-slider shaft 18 can be made parallel to each other. The movement amount Y of the micrometer head 24 can be obtained by multiplying the distance X from the fulcrum 26 by the above-mentioned θ.

【0019】また、この装置にあっては、測定機構20
にエア−供給用チュ−ブ27やセンサに接続される電線
28の外力が加わると、測定機構20が微小変動を起こ
し、そのため測定誤差が発生する。これを防止するた
め、エア−スライド軸18と平行にスライド軸29を設
けると共に、測定機構20(エア−スライダ19)を駆
動するプ−リ22と同軸に、前記プ−リ22と同ピッチ
のプ−リ30を形成すると共に、同ピッチ同寸のタイミ
ングベルト31により、常に測定機構20(エア−スラ
イダ19)と等間隔で移動するスライド台32を設け、
前記スライド台32にチュ−ブ27や電線28を固定す
ることにより、チュ−ブ27や電線28の外力をスライ
ド台32で受け、測定機構20に力が加わることがない
ように形成されている。
Further, in this apparatus, the measuring mechanism 20
When the external force of the electric wire 28 connected to the air supply tube 27 or the sensor is applied to the measuring mechanism 20, the measuring mechanism 20 causes a minute fluctuation, which causes a measurement error. In order to prevent this, a slide shaft 29 is provided in parallel with the air-slide shaft 18, and at the same pitch as the pulley 22 coaxially with the pulley 22 that drives the measuring mechanism 20 (air-slider 19). In addition to forming the pulley 30, there is provided a slide base 32 that always moves at equal intervals with the measurement mechanism 20 (air-slider 19) by the timing belt 31 having the same pitch and the same size.
By fixing the tube 27 and the electric wire 28 to the slide base 32, the external force of the tube 27 and the electric wire 28 is received by the slide base 32 so that no force is applied to the measuring mechanism 20. .

【0020】そして、ワ−クWの設定が終了した後、ス
ライダ19をエア−スライダ−軸18に沿って移動させ
ながらセンサ23の接触子によりワ−クWの平面の形状
を測定するとともに、エア−スライダ19の位置情報
と、前記センサ23から得た表面形状情報とを、この実
施例では図示を省略してあるが演算部において演算され
て、ワ−クWの全体の平面情報にすることができる。
After the setting of the work W is completed, the slider 19 is moved along the air-slider shaft 18 while the contact of the sensor 23 measures the planar shape of the work W. Although not shown in this embodiment, the position information of the air-slider 19 and the surface shape information obtained from the sensor 23 are calculated by a calculation unit to obtain plane information of the entire work W. be able to.

【0021】さらに、ワ−クWを例えば、45度回転さ
せて、前述の要領により再びセンサ23による測定を行
い、平面情報と位置情報とからワ−クWの表面を測定す
る。
Further, the work W is rotated, for example, by 45 degrees, and the measurement by the sensor 23 is performed again in the same manner as described above, and the surface of the work W is measured from the plane information and the position information.

【0022】上述のように、ワ−クWは垂直面に沿った
状態におかれて表面の形状の測定が行われるので、25
kgを越えるに至ったポリシュプレ−トなどのワ−クW
を自重による影響をまったく受けずに正確に測定するこ
とができるのである。
As described above, the work W is placed in a state along the vertical plane to measure the surface shape.
Work W such as polish plate that has reached over kg
Can be accurately measured without being affected by its own weight.

【0023】次に、本発明の装置を用いた測定作業につ
いて、詳しく説明する。先ず、図6に示すように、ワ−
クWの中心Oがセンサ23の移動線上になるように位置
を設定した後、直線G0H、直線IQJをセンサ23に
よりトレ−スする。この時のZは二つのセンサ23、2
3の間隔になっている。
Next, the measurement work using the apparatus of the present invention will be described in detail. First, as shown in FIG.
After the position is set so that the center O of the black W is on the moving line of the sensor 23, the straight line G0H and the straight line IQJ are traced by the sensor 23. At this time, Z is two sensors 23, 2.
The intervals are 3.

【0024】さらに、ワ−クWを中心の移動がないよう
にして、図7に示すように90度だけ回転させ、直線K
QOL、さらに直線MPNに沿った表面形状の情報を得
る。このとき、ワ−クWを90度回転する前と後では、
ワ−クWの表面形状や、固定機構との接触状態により異
なることになるが、測定結果のG0Hの情報と、測定結
果KQOLのうち、Oの高さ情報を一致させ、さらに、
直線IQJと、直線KQOLにおけるQの高さ情報を一
致させることにより二組のセンサ23、23により得た
デ−タが同一基準面のデ−タに変換されることになり、
このときの測定曲線が図8に示されている。以上のデ−
タから図9に示すようにワ−クWの表面形状をが立体的
に得ることができる。
Further, the work W is rotated by 90 degrees as shown in FIG.
Information on the surface shape along the QOL and the straight line MPN is obtained. At this time, before and after rotating the work W by 90 degrees,
Although it depends on the surface shape of the work W and the contact state with the fixing mechanism, the information of G0H of the measurement result and the height information of O of the measurement result KQOL are matched, and
By matching the height information of Q on the straight line IQJ and the straight line KQOL, the data obtained by the two sets of sensors 23, 23 will be converted into the data on the same reference plane.
The measurement curve at this time is shown in FIG. The above data
As shown in FIG. 9, the surface shape of the work W can be three-dimensionally obtained from the data.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
による測定方法によれば、ワ−クを垂直状態にして測定
するので、ワ−ク自体の重量による変形がなく、比較的
正確に表面の形状を測定することができる。
As is apparent from the above description, according to the measuring method of the present invention, since the work is measured in the vertical state, there is no deformation due to the weight of the work itself, and the work is relatively accurate. The shape of the surface can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例かかる平面形状測定装置の正
面図である。
FIG. 1 is a front view of a planar shape measuring apparatus according to an embodiment of the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】図1の平面図である。FIG. 3 is a plan view of FIG.

【図4】本発明の平面形状測定装置にかかる調整機構の
概略図である。
FIG. 4 is a schematic view of an adjusting mechanism according to the planar shape measuring apparatus of the present invention.

【図5】図4に示した調整機構による調整方法を説明す
る図である。
FIG. 5 is a diagram illustrating an adjusting method by the adjusting mechanism shown in FIG.

【図6】本発明の測定装置による測定過程を示す説明図
である。
FIG. 6 is an explanatory view showing a measuring process by the measuring apparatus of the present invention.

【図7】さらに本発明の測定装置による測定過程を示す
説明図である。
FIG. 7 is an explanatory diagram showing a measuring process by the measuring apparatus of the present invention.

【図8】さらに本発明の測定装置による測定結果の説明
図である。
FIG. 8 is an explanatory diagram of measurement results by the measuring device of the present invention.

【図9】本発明の測定装置による測定結果の立体的斜面
図である。
FIG. 9 is a three-dimensional perspective view of a measurement result by the measuring device of the present invention.

【図10】従来方法による測定状態におけるワ−クの変
形状態を示す説明図である。
FIG. 10 is an explanatory diagram showing a deformed state of the work in a measurement state by the conventional method.

【図11】従来の測定装置の斜面図である。FIG. 11 is a perspective view of a conventional measuring device.

【図12】測定過程を示す説明図である。FIG. 12 is an explanatory diagram showing a measurement process.

【図13】従来の測定装置による測定結果を示す曲線図
である。
FIG. 13 is a curve diagram showing a measurement result by a conventional measuring device.

【図14】従来の測定装置によるさらに行う測定過程の
説明図である。
FIG. 14 is an explanatory diagram of a measurement process further performed by a conventional measurement device.

【図15】図14に示す測定過程に対応した曲線図であ
る。
15 is a curve diagram corresponding to the measurement process shown in FIG.

【符号の説明】[Explanation of symbols]

11 ベッド 12 台車 13 軌道 14 ロ−ラ 15 固定機構 16b 固定機構 17 加圧機構 18 エア−スライダ軸 19 エア−スライダ 20 測定機構 11 bed 12 bogie 13 orbit 14 roller 15 fixing mechanism 16b fixing mechanism 17 pressurizing mechanism 18 air-slider shaft 19 air-slider 20 measuring mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神足 勝昭 神奈川県秦野市曽屋30 東芝セラミックス 株式会社開発研究所内 (72)発明者 真島 志郎 神奈川県秦野市曽屋30 東芝セラミックス 株式会社開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuaki Kamiashi 30 Soya, Hadano City, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd. (72) Inventor Shiro Majima 30 Soya, Hadano City, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定物の平面形状を測定するセンサ−
と、前記被測定物を垂直面に沿って起立させると共に、
被測定物の周囲数点を支持固定する手段と、前記測定セ
ンサを前記被測定物の平面に対して平行に移動させる移
動手段と備えたことを特徴とする平面形状の測定装置。
1. A sensor for measuring a planar shape of an object to be measured.
And, while standing up the measured object along a vertical plane,
A plane-shaped measuring device comprising: a means for supporting and fixing several points around an object to be measured; and a moving means for moving the measurement sensor in parallel to the plane of the object to be measured.
JP34982393A 1993-12-27 1993-12-27 Planar shape measuring device Expired - Lifetime JP3313222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34982393A JP3313222B2 (en) 1993-12-27 1993-12-27 Planar shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34982393A JP3313222B2 (en) 1993-12-27 1993-12-27 Planar shape measuring device

Publications (2)

Publication Number Publication Date
JPH0854203A true JPH0854203A (en) 1996-02-27
JP3313222B2 JP3313222B2 (en) 2002-08-12

Family

ID=18406361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34982393A Expired - Lifetime JP3313222B2 (en) 1993-12-27 1993-12-27 Planar shape measuring device

Country Status (1)

Country Link
JP (1) JP3313222B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195823A (en) * 2000-12-26 2002-07-10 Tosoh Quartz Corp Flatness measuring device
KR101134356B1 (en) * 2010-10-18 2012-04-19 한전케이피에스 주식회사 Apparatus for measuring concentricity and flatness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195823A (en) * 2000-12-26 2002-07-10 Tosoh Quartz Corp Flatness measuring device
JP4558929B2 (en) * 2000-12-26 2010-10-06 東ソー・クォーツ株式会社 Flatness measuring device
KR101134356B1 (en) * 2010-10-18 2012-04-19 한전케이피에스 주식회사 Apparatus for measuring concentricity and flatness

Also Published As

Publication number Publication date
JP3313222B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US6327788B1 (en) Surface form measurement
JP3467063B2 (en) Coordinate measuring device
US4298273A (en) Projection aligner and method of positioning a wafer
JP3040454B2 (en) Coordinate measuring device
JPH11351857A (en) Method and apparatus for measurement of surface shape of thin plate
JPH02285209A (en) Orthogonal coordinate measuring machine and method for determining rotating axis of table of the same
JPH06320391A (en) Device for real time measurement and correction of straight line deviation for machine tool
JP2000136923A (en) Contact-type pipe-inside-diameter measuring apparatus
EP1029219B1 (en) Optoelectronic apparatus for the dimension and/or shape checking of pieces with complex tridimensional shape
JPH0854203A (en) Apparatus for measuring plane shape
JP4417130B2 (en) Glass substrate vertical holding device
JP3310748B2 (en) Planar shape measuring device and planar shape measuring method using the same
JPS62226007A (en) Position detecting device for printer
JPH08338708A (en) Measuring means
JP3444800B2 (en) Tilt stage
CN113155600B (en) Space three-way force loading test device
JP3759254B2 (en) Camshaft measuring method and measuring apparatus
JP3089859B2 (en) CMM
JPH0410969B2 (en)
JP2524913B2 (en) Alignment measuring method and device
JPH07218207A (en) Surface shape measuring apparatus
JP4465690B2 (en) Vertical substrate holding device
JPH10554A (en) Local polishing device
JP2717492B2 (en) Bonding tool parallelism measurement mechanism
JP3439174B2 (en) Tool measuring and re-grinding equipment installed on machine tools

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20140531

EXPY Cancellation because of completion of term