JPH0854153A - Single and double effect absorption type refrigerating machine - Google Patents

Single and double effect absorption type refrigerating machine

Info

Publication number
JPH0854153A
JPH0854153A JP6188278A JP18827894A JPH0854153A JP H0854153 A JPH0854153 A JP H0854153A JP 6188278 A JP6188278 A JP 6188278A JP 18827894 A JP18827894 A JP 18827894A JP H0854153 A JPH0854153 A JP H0854153A
Authority
JP
Japan
Prior art keywords
temperature
heat source
low
regenerator
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6188278A
Other languages
Japanese (ja)
Other versions
JP3086594B2 (en
Inventor
Takeo Ishikawa
豪夫 石河
Masahiko Ikemori
雅彦 池森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06188278A priority Critical patent/JP3086594B2/en
Publication of JPH0854153A publication Critical patent/JPH0854153A/en
Application granted granted Critical
Publication of JP3086594B2 publication Critical patent/JP3086594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent condensating even when the cooling water of a generator is employed for a low-temperature heat source supplied to a low heat source regenerator and contrive the simplification of control of supplying amount of the low temperature heat source. CONSTITUTION:Circulation passages of absorbing liquid and refrigerant are formed by connecting an evaporator 1, an absorber 2, a low-temperature regenerator 6, a condenser 7, a low heat source regenerator 9 employing hot waste water and the like as a low temperature heat source, another condenser 10 and a high temperature regenerator 4 through pipelines while a three-way valve 29E is provided so as to communicate the supplying tube of a low-temperature heat source with the returning tube of the same. The heating amount of the high-temperature regenerator 4 is controlled based on the outlet temperature of cold water, taken out of the evaporator 1, while the three-way valve 29E is controlled based on the outlet temperature of the cold water. Controllers 30, 36, 38, increasing the set valve of the outlet temperature of the cold water for controlling the three-way valve when the returning temperature of the low-temperature heat source has become a predetermined temperature or less, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に低熱源再生器及び凝縮器を収納した低熱源再生器凝縮
器胴を備えた一重二重効用吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to a single-effect double-effect absorption refrigerating machine having a low heat source regenerator condenser barrel containing a low heat source regenerator and a condenser.

【0002】[0002]

【従来の技術】例えば、特開平4ー260760号公報
には、蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成した一重二重効用吸収
式冷凍機が開示されている。
2. Description of the Related Art For example, in Japanese Unexamined Patent Publication (Kokai) No. 4-260760, an evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and Low heat source regenerator that uses low temperature heat source such as waste water and a low heat source regenerator that contains a condenser. A single double-effect absorption type in which a condenser body and a high temperature regenerator are connected by piping to form a circulation path for absorbing liquid and refrigerant. A refrigerator is disclosed.

【0003】また、一重二重効用吸収式冷凍機の制御方
法としては、例えば特願平5―130686号等があ
る。これらの制御は、蒸発器から取り出す冷水の出口温
度を一定に保つための制御である。このため、低熱源再
生器で仕事をして戻って行く低温熱源の温度が冷水負荷
が大きくなるほど低下する傾向があった。このため、例
えば発電機などの冷却水を低温熱源として用いる場合に
は、発電機へ戻る低温熱源の温度が大きく低下すると、
結露が発生して発電機にトラブルが起こる虞がある。従
って、図5に示したように、温度センサーS1と制御器
C1と流量制御弁(三方弁)29Eとを設け、冷水出口
温度に応じて低熱源熱交換器29Bへの流量を制御する
とともに、設備側で低温熱源の戻り温度が一定になるよ
うに温度センサーS5と制御器C4と流量制御弁(三方
弁)29Fとを設け、低熱源供給管29Aから供給さ
れ、低熱源熱交換器29Bを通って放熱し、低熱源戻し
管29Cを通って戻って行く低温熱源の戻り温度が一定
になるように制御している。
Further, as a control method of a single-double-effect absorption refrigerator, there is, for example, Japanese Patent Application No. 5-130686. These controls are for keeping the outlet temperature of the cold water taken out from the evaporator constant. For this reason, the temperature of the low-temperature heat source returning from the low heat source regenerator tends to decrease as the cold water load increases. Therefore, for example, when using cooling water such as a generator as a low-temperature heat source, if the temperature of the low-temperature heat source returning to the generator drops significantly,
Condensation may occur and the generator may be in trouble. Therefore, as shown in FIG. 5, the temperature sensor S1, the controller C1, and the flow rate control valve (three-way valve) 29E are provided to control the flow rate to the low heat source heat exchanger 29B according to the chilled water outlet temperature. A temperature sensor S5, a controller C4, and a flow control valve (three-way valve) 29F are provided so that the return temperature of the low temperature heat source is constant on the equipment side, and the low heat source supply pipe 29A supplies the low heat source heat exchanger 29B. It is controlled so that the return temperature of the low-temperature heat source that radiates heat therethrough and returns through the low-heat-source return pipe 29C is constant.

【0004】なお、図5において1は蒸発器、2は吸収
器、4は高温再生器、6は低温再生器、9は低熱源再生
器、7と10とは凝縮器、12は低温熱交換器、13は
高温熱交換器であり、P1は稀吸収液ポンプ、P2は中
間吸収液ポンプ、P3は冷媒液ポンプ、C1、C2、C
3及びC4は制御器である。
In FIG. 5, 1 is an evaporator, 2 is an absorber, 4 is a high temperature regenerator, 6 is a low temperature regenerator, 9 is a low heat source regenerator, 7 and 10 are condensers, and 12 is a low temperature heat exchange. , 13 is a high temperature heat exchanger, P1 is a rare absorption liquid pump, P2 is an intermediate absorption liquid pump, P3 is a refrigerant liquid pump, C1, C2, C
3 and C4 are controllers.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の一
重二重効用吸収式冷凍機においては、低温熱源の供給量
を制御するために、高価な三方弁などの弁が二重に必要
になると云った問題点があり、コスト削減の観点からこ
の問題点の解決が課題とされていた。
In the conventional single-double-effect absorption type refrigerator as described above, two expensive valves such as a three-way valve are required in order to control the supply amount of the low temperature heat source. However, the solution to this problem has been an issue from the viewpoint of cost reduction.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1に記載の発明によれば、蒸発器と
吸収器とを収納した蒸発器吸収器胴、低温再生器と凝縮
器とを収納した低温再生器凝縮器胴、温廃水などを低温
熱源とする低熱源再生器と凝縮器とを収納した低熱源再
生器凝縮器胴、高温再生器を配管接続して吸収液及び冷
媒の循環路を形成し、低温熱源の供給管と戻し管とを連
通するように三方弁を設け、蒸発器から取り出す冷水の
出口温度に基づいて高温再生器の加熱量を制御するとと
もに、冷水の出口温度に基づいて三方弁を制御し、か
つ、低温熱源の戻り温度が所定温度以下になった時に、
三方弁制御用の冷水出口温度の設定値を高める制御器を
設けた一重二重効用吸収式冷凍機を提供するものであ
る。
In order to solve the above-mentioned problems, the present invention provides, according to the invention as set forth in claim 1, an evaporator-absorber barrel containing an evaporator and an absorber, and a low-temperature regenerator. Low temperature regenerator containing a condenser and a low heat source regenerator containing a condenser body and a low heat source regenerator that uses hot waste water as a low temperature heat source And, forming a circulation path of the refrigerant, a three-way valve is provided so as to connect the supply pipe and the return pipe of the low temperature heat source, and while controlling the heating amount of the high temperature regenerator based on the outlet temperature of the cold water taken out from the evaporator, The three-way valve is controlled based on the outlet temperature of the cold water, and when the return temperature of the low temperature heat source falls below a predetermined temperature,
It is intended to provide a single-effect double-effect absorption refrigerator provided with a controller for increasing a set value of a cold water outlet temperature for controlling a three-way valve.

【0007】また、請求項2に記載された発明によれ
ば、 蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成し、低温熱源の供給管
と戻し管とを連通するように三方弁を設け、蒸発器から
取り出す冷水の出口温度に基づいて高温再生器の加熱量
を制御するとともに、冷水の出口温度に基づいて三方弁
を制御し、かつ、低温熱源の戻り温度が所定温度より低
下するのに従い、三方弁制御用の冷水出口温度の設定値
を次第に高める制御器を設けた一重二重効用吸収式冷凍
機を提供するものである。
Further, according to the invention described in claim 2, an evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and Low-heat-source regenerator that uses a low-temperature heat source such as waste water and a low-heat-source regenerator that houses a condenser, connecting the condenser body and the high-temperature regenerator to form a circulation path for absorbing liquid and refrigerant, and supplying a low-temperature heat source A three-way valve is provided so as to connect the return pipe and the return pipe, and the heating amount of the high temperature regenerator is controlled based on the outlet temperature of the cold water taken out from the evaporator, and the three-way valve is controlled based on the outlet temperature of the cold water, and Provided is a single-effect double-effect absorption refrigerator having a controller for gradually increasing the set value of the cold water outlet temperature for controlling the three-way valve as the return temperature of the low temperature heat source decreases below a predetermined temperature.

【0008】さらに、請求項3に記載された発明によれ
ば、 蒸発器と吸収器とを収納した蒸発器吸収器胴、低
温再生器と凝縮器とを収納した低温再生器凝縮器胴、温
廃水などを低温熱源とする低熱源再生器と凝縮器とを収
納した低熱源再生器凝縮器胴、高温再生器を配管接続し
て吸収液及び冷媒の循環路を形成し、低温熱源の供給管
と戻し管とを連通するように三方弁を設け、蒸発器から
取り出す冷水の出口温度に基づいて高温再生器の加熱量
を制御するとともに、冷水の出口温度に基づいて三方弁
を制御し、かつ、低温熱源の戻り温度が所定温度より低
下したときには、この低下に伴い、低温熱源再生器へ流
入する低温熱源の量を減少させる制御器を設けた一重二
重効用吸収式冷凍機を提供するものである。
Further, according to the invention described in claim 3, an evaporator-absorber cylinder containing an evaporator and an absorber, a low-temperature regenerator condenser cylinder containing a low-temperature regenerator and a condenser, and Low-heat-source regenerator that uses a low-temperature heat source such as waste water and a low-heat-source regenerator that houses a condenser, connecting the condenser body and the high-temperature regenerator to form a circulation path for absorbing liquid and refrigerant, and supplying a low-temperature heat source A three-way valve is provided so as to connect the return pipe and the return pipe, and the heating amount of the high temperature regenerator is controlled based on the outlet temperature of the cold water taken out from the evaporator, and the three-way valve is controlled based on the outlet temperature of the cold water, and When a return temperature of the low temperature heat source is lower than a predetermined temperature, a single double-effect absorption refrigerator provided with a controller for reducing the amount of the low temperature heat source flowing into the low temperature heat source regenerator with the decrease Is.

【0009】[0009]

【作用】請求項1の発明によれば、蒸発器から取り出す
冷水の出口温度に基づいて高温再生器の加熱量及び三方
弁を制御するので、負荷の変動に対する応答性を向上で
き、低熱源再生器に供給する低温熱源の増減及び負荷の
変動に拘わらず、冷水の出口温度を設定値に維持するこ
とができる。
According to the invention of claim 1, since the heating amount of the high temperature regenerator and the three-way valve are controlled based on the outlet temperature of the cold water taken out from the evaporator, the responsiveness to load fluctuation can be improved and the low heat source regeneration The outlet temperature of the cold water can be maintained at the set value regardless of increase / decrease of the low temperature heat source supplied to the vessel and fluctuation of the load.

【0010】また、負荷の変動などにより、低温熱源の
戻り温度が低下したときには、冷水の出口温度の設定値
を高め、低温熱源再生器に流入する低温熱源の量を減少
し、低温熱源の戻り温度を所定の温度以上に維持するこ
とができ、発電機の冷却水などを低温熱源にした場合に
も、温度が大幅に低下した低温熱源によって発電機を冷
却する際に結露すると云うようなトラブルを回避するこ
とが可能になる。
Further, when the return temperature of the low temperature heat source is lowered due to a change in load or the like, the set value of the outlet temperature of the cold water is increased and the amount of the low temperature heat source flowing into the low temperature heat source regenerator is decreased to return the low temperature heat source. Even if the cooling water of the generator can be used as a low temperature heat source, the temperature can be maintained above the specified temperature. Can be avoided.

【0011】さらに、、このような優れた作用効果が一
つの三方弁を操作することによって得ることができ、コ
スト的のも優れた一重二重効用吸収式冷凍機を提供する
ことが可能になる。また、請求項2の発明によれば、低
温熱源の戻り温度が低下したときには、低下の度合いに
応じて低温熱源再生器に流入する低温熱源の量を次第に
減少し、低温熱源再生器での放熱量を次第に減少させ、
負荷の変動に対する応答性を向上でき、かつ、低温熱源
の戻り温度を所定の温度以上に維持することができ、発
電機の冷却水などを低温熱源にしているとき、低温熱源
の戻り温度が低下した場合にも、低温熱源を有効に利用
しつつ温度が大幅に低下した低温熱源によって発電機を
冷却する際に結露すると云うようなトラブルを回避する
ことができる。
Further, such an excellent effect can be obtained by operating a single three-way valve, and it is possible to provide a single-double-effect absorption refrigerating machine which is also excellent in cost. . Further, according to the invention of claim 2, when the return temperature of the low temperature heat source is lowered, the amount of the low temperature heat source flowing into the low temperature heat source regenerator is gradually reduced according to the degree of the reduction, and the discharge in the low temperature heat source regenerator is reduced. Gradually reduce the amount of heat,
The responsiveness to load fluctuations can be improved, the return temperature of the low-temperature heat source can be maintained above the specified temperature, and the return temperature of the low-temperature heat source decreases when the generator cooling water is used as the low-temperature heat source. Even in such a case, it is possible to avoid the trouble that dew condensation occurs when the generator is cooled by the low temperature heat source whose temperature has dropped significantly while effectively using the low temperature heat source.

【0012】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、かつ、低温熱源の熱量が変化
した場合にも低温熱源の熱を一層有効に利用し、冷媒の
再生が効果的に行われてCOPを向上することが可能に
なる。また、請求項3の発明によれば、蒸発器から取り
出す冷水の出口温度に基づいて高温再生器の加熱量及び
三方弁を制御し、かつ、低温熱源の戻り温度が所定温度
より低下したときには、この低下に伴い、低温熱源再生
器へ流入する低温熱源の量を減少させ、低熱源再生器に
供給する低温熱源の多少及び負荷の変動に拘わらず、冷
水の出口温度を設定値に維持し、負荷の変動に対する応
答性を向上することが可能になり、かつ、低温熱源の戻
り温度が低下したときには、低温熱源再生器に流入する
低温熱源の量を減少し、低温熱源再生器での放熱量を減
少させ、低温熱源の戻り温度を所定の温度以上に維持す
ることができ、発電機の冷却水などを低温熱源に使用し
た場合にも、温度が大幅に低下した低温熱源によって発
電機を冷却する際に結露すると云うようなトラブルを回
避することが可能になる。
Further, it is possible to prevent the regeneration temperature of the low heat source regenerator from being extremely lowered, and even when the heat quantity of the low temperature heat source changes, the heat of the low temperature heat source is more effectively utilized, and the regeneration of the refrigerant is effective. It is possible to improve COP. According to the invention of claim 3, the heating amount of the high temperature regenerator and the three-way valve are controlled based on the outlet temperature of the cold water taken out from the evaporator, and when the return temperature of the low temperature heat source is lower than a predetermined temperature, With this decrease, the amount of the low temperature heat source flowing into the low temperature heat source regenerator is reduced, and the outlet temperature of the cold water is maintained at the set value regardless of the fluctuation of the low temperature heat source supplied to the low heat source regenerator and the load. It becomes possible to improve the responsiveness to load fluctuations, and when the return temperature of the low temperature heat source decreases, the amount of low temperature heat source flowing into the low temperature heat source regenerator is reduced to reduce the amount of heat released by the low temperature heat source regenerator. Can be maintained and the return temperature of the low temperature heat source can be maintained above a predetermined temperature, and even when cooling water of the generator is used as the low temperature heat source, the generator is cooled by the low temperature heat source whose temperature has dropped significantly. Condensation when doing It becomes possible to avoid the trouble, such as say that.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は冷媒に例えば水、吸収液(溶液)
に臭化リチウム(LiBr)溶液を用いた一重二重効用
吸収式冷凍機の概略構成図であり、1は蒸発器、2は吸
収器、3は蒸発器1及び吸収器2を収納した蒸発器吸収
器胴(以下、下胴と云う)、4は例えばガスバーナ5を
備え高温熱源によって加熱される高温再生器、5Aはガ
スバーナ5に供給されるガスの量を調節する燃料制御
弁、6は低温再生器、7は低温再生器6のための凝縮器
(以下、第1凝縮器と云う)、8は低温再生器6及び第
1凝縮器7を収納した低温再生器凝縮器胴(以下、第1
上胴と云う)、9は例えば95℃前後の温廃水を低温熱
源とする低熱源再生器、10は低温熱源再生器9のため
の凝縮器(以下、第2凝縮器と云う)、11は低熱源再
生器9と第2凝縮器10とを収納した低熱源再生器凝縮
器胴(以下、第2上胴と云う)、12は低温熱交換器、
13は高温熱交換器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows that the refrigerant is, for example, water or an absorbing liquid (solution)
FIG. 1 is a schematic configuration diagram of a single-double-effect absorption refrigerating machine using a lithium bromide (LiBr) solution as a solvent. 1 is an evaporator, 2 is an absorber, 3 is an evaporator containing an evaporator 1 and an absorber 2. An absorber cylinder (hereinafter, referred to as a lower cylinder) 4, a high temperature regenerator which is equipped with a gas burner 5 and is heated by a high temperature heat source, 5A is a fuel control valve for adjusting the amount of gas supplied to the gas burner 5, and 6 is a low temperature A regenerator, 7 is a condenser for the low-temperature regenerator 6 (hereinafter, referred to as a first condenser), 8 is a low-temperature regenerator condenser cylinder (hereinafter, referred to as a first condenser) accommodating the low-temperature regenerator 6 and the first condenser 7. 1
Upper body), 9 is a low heat source regenerator which uses warm wastewater of around 95 ° C. as a low temperature heat source, 10 is a condenser for the low temperature heat source regenerator 9 (hereinafter referred to as a second condenser), and 11 is A low heat source regenerator condenser barrel (hereinafter, referred to as a second upper barrel) accommodating the low heat source regenerator 9 and the second condenser 10, 12 is a low temperature heat exchanger,
13 is a high temperature heat exchanger.

【0014】2Aは吸収器2の下部に形成された稀吸収
液溜りであり、この稀吸収液溜り2Aと低熱源再生器9
の気相部とは、途中に稀吸収液ポンプP1を備えた稀吸
収液配管14によって配管接続されている。また、低熱
源再生器9の下部に形成された中間吸収液溜り9Aと高
温再生器4の気相部とは、途中に中間吸収液ポンプP2
を備えた中間吸収液配管15によって配管接続されてい
る。
Reference numeral 2A denotes a rare absorbent pool formed in the lower portion of the absorber 2, and the rare absorbent pool 2A and the low heat source regenerator 9 are provided.
The gas phase part is connected by a dilute absorption liquid pipe 14 equipped with a dilute absorption liquid pump P1 on the way. Further, the intermediate absorbent pool 9A formed in the lower part of the low heat source regenerator 9 and the gas phase portion of the high temperature regenerator 4 are connected to the intermediate absorbent pump P2 midway.
The pipe is connected by an intermediate absorption liquid pipe 15 provided with.

【0015】4Aは高温再生器4に形成された中間吸収
液溜りであり、この中間吸収液溜り4Aと低温再生器6
に気相部とは、中間吸収液配管16によって配管接続さ
れている。また、低温再生器6の下部に形成された濃吸
収液溜り6Aと吸収器2の気相部に設けられた濃吸収液
散布装置2Bとは濃吸収液管17A、17Bからなる濃
吸収液配管17によって配管接続されている。
Reference numeral 4A denotes an intermediate absorption liquid pool formed in the high temperature regenerator 4, and the intermediate absorption liquid pool 4A and the low temperature regenerator 6 are provided.
The gas phase portion is connected to the gas phase portion by an intermediate absorption liquid pipe 16. Further, the concentrated absorbent pool 6A formed in the lower portion of the low temperature regenerator 6 and the concentrated absorbent spraying device 2B provided in the gas phase part of the absorber 2 are concentrated absorbent pipes composed of concentrated absorbent pipes 17A and 17B. It is connected by pipes by 17.

【0016】また、中間吸収液ポンプP2の吸込側の中
間吸収液管15Aと低温熱交換器12の上流側の濃吸収
液管17Aとは、吸収液管18によって接続されてい
る。この吸収液管18は第1上胴8よりも低い位置に設
けられ、第2上胴11内の圧力と第1上胴8内の圧力の
間に差が生じた場合でも、それぞれの胴間は吸収液によ
ってUシールされる。
An intermediate absorption liquid pipe 15A on the suction side of the intermediate absorption liquid pump P2 and a concentrated absorption liquid pipe 17A on the upstream side of the low temperature heat exchanger 12 are connected by an absorption liquid pipe 18. The absorbing liquid pipe 18 is provided at a position lower than that of the first upper body 8, and even if there is a difference between the pressure in the second upper body 11 and the pressure in the first upper body 8, the distance between the respective bodies is increased. Is U-sealed by the absorbent.

【0017】また、高温熱交換器13の上流側の中間吸
収液管16Aと吸収器2とは、開閉弁10Vを途中に備
えた中間吸収液配管19によって配管接続されている。
そして、開閉弁19Vは冷水供給時に閉じられ、温水供
給時に開放される。20は高温再生器4の気相部から第
1上胴8に至る冷媒蒸気配管であり、低温再生器6の内
部を経由して第1凝縮器7の底部に開口している。21
は途中に開閉弁21Vを備え、低温再生器6の上流側の
冷媒蒸気配管21Aと吸収器2の気相部とを連通する冷
媒蒸気配管である。そして、開閉弁21Vは冷水供給時
に閉じられ、温水供給時に開放される。
Further, the intermediate absorption liquid pipe 16A on the upstream side of the high temperature heat exchanger 13 and the absorber 2 are connected by an intermediate absorption liquid pipe 19 having an opening / closing valve 10V in the middle thereof.
The on-off valve 19V is closed when cold water is supplied and opened when hot water is supplied. Reference numeral 20 denotes a refrigerant vapor pipe extending from the gas phase portion of the high temperature regenerator 4 to the first upper body 8, and opens at the bottom of the first condenser 7 via the inside of the low temperature regenerator 6. 21
Is a refrigerant vapor pipe that is provided with an on-off valve 21V on the way and connects the refrigerant vapor pipe 21A on the upstream side of the low temperature regenerator 6 and the vapor phase portion of the absorber 2. The on-off valve 21V is closed when cold water is supplied and opened when hot water is supplied.

【0018】22は第1凝縮器7の底部と蒸発器1の気
相部とを配管接続する第1冷媒液配管であり、この第1
冷媒液配管22の途中にUシール部22Aが形成されて
いる。また、23は第2凝縮器10の底部と第1冷媒液
配管22のUシール部22Aとを配管接続する第2冷媒
液配管であり、第2冷媒液配管23にも、第1冷媒液配
管22との接続部にUシール部23Aが形成されてい
る。
Reference numeral 22 is a first refrigerant liquid pipe for connecting the bottom portion of the first condenser 7 and the vapor phase portion of the evaporator 1 by piping.
A U-seal portion 22A is formed in the middle of the refrigerant liquid pipe 22. Reference numeral 23 is a second refrigerant liquid pipe that connects the bottom portion of the second condenser 10 and the U-seal portion 22A of the first refrigerant liquid pipe 22 to the second refrigerant liquid pipe 23. A U-seal portion 23A is formed at a connection portion with 22.

【0019】24は蒸発器1の冷媒液溜り1Aと冷媒散
布装置1Bとを配管接続する冷媒液循環配管であり、こ
の冷媒液循環配管24の途中に冷媒液ポンプP3が設け
られている。また、25は冷媒液溜り1Aと稀吸収液溜
り2Aとの間に配管接続された冷媒液ドレン配管であ
り、この冷媒液ドレン配管25の途中に開閉弁25Vが
設けられている。
Reference numeral 24 denotes a refrigerant liquid circulation pipe for connecting the refrigerant liquid reservoir 1A of the evaporator 1 and the refrigerant spraying device 1B, and a refrigerant liquid pump P3 is provided in the middle of the refrigerant liquid circulation pipe 24. Reference numeral 25 denotes a refrigerant liquid drain pipe connected between the refrigerant liquid reservoir 1A and the rare absorption liquid reservoir 2A, and an opening / closing valve 25V is provided in the refrigerant liquid drain pipe 25.

【0020】26は冷温水配管であり、この冷温水管配
管26は冷温水管26A、蒸発器熱交換器26B、冷温
水管26Cから構成されている。27は冷却水配管であ
り、この冷却水配管27は冷却塔(図示せず)から吸収
器熱交換器27A、第1凝縮器熱交換器27B、第2凝
縮器熱交換器27Cを経て冷却塔に戻る冷却水の循環路
を形成している。また、28は、第1凝縮器熱交換器2
7Bから第2凝縮器熱交換器27Cに至る冷却水管27
Dと冷温水配管26との間に配管接続された冷却水配管
であり、この冷却水配管28の途中に開閉弁28Vが設
けられている。開閉弁28Vは温水供給時に開放され、
水が冷温水管26Cから冷却水配管27に送られて貯留
される。
Reference numeral 26 is a cold / hot water pipe, and this cold / hot water pipe pipe 26 is composed of a cold / hot water pipe 26A, an evaporator heat exchanger 26B, and a cold / hot water pipe 26C. 27 is a cooling water pipe, and this cooling water pipe 27 passes from a cooling tower (not shown) through the absorber heat exchanger 27A, the first condenser heat exchanger 27B, and the second condenser heat exchanger 27C. A cooling water circulation path is formed. Further, 28 is the first condenser heat exchanger 2
Cooling water pipe 27 from 7B to the second condenser heat exchanger 27C
D is a cooling water pipe connected between the hot and cold water pipe 26, and an opening / closing valve 28V is provided in the middle of the cooling water pipe 28. The on-off valve 28V is opened when hot water is supplied,
Water is sent from the cold / hot water pipe 26C to the cooling water pipe 27 and stored.

【0021】29は例えば95℃程度の温廃水、例えば
図示しない発電機の冷却水などを低温熱源(以下、熱源
温水と云う)として低熱源再生器9に供給するための低
熱源供給配管である。この低熱源供給配管29は、低熱
源供給管29A、低熱源熱交換器29B、低熱源戻し管
29C、側路管29D、三方弁29Eから構成されてい
る。
Reference numeral 29 is a low heat source supply pipe for supplying warm waste water of about 95 ° C., for example, cooling water of a generator (not shown) as a low temperature heat source (hereinafter referred to as heat source hot water) to the low heat source regenerator 9. . The low heat source supply pipe 29 includes a low heat source supply pipe 29A, a low heat source heat exchanger 29B, a low heat source return pipe 29C, a bypass pipe 29D, and a three-way valve 29E.

【0022】30はメイン制御器、31、32、33、
34及び35は温度センサーであり、温度センサー31
は冷温水管26Cを流れている冷温水の温度T1を検出
し、温度センサー32は吸収器2へ流入する冷却水の温
度T2を検出し、温度検出器33は高温再生器4内の溶
液の温度T3を検出し、温度検出器34は低熱源再生器
9から中間吸収液配管15に流出する中間吸収液の温度
T4を検出し、温度センサー35は熱源温水の戻り温度
T5を検出する。また、メイン制御器30は温度センサ
ー31が検出した冷温水の温度T1を制御器36、3
7、38に与える。
Reference numeral 30 is a main controller, 31, 32, 33,
34 and 35 are temperature sensors, and the temperature sensor 31
Is the temperature T1 of the cold / hot water flowing through the hot / cold water pipe 26C, the temperature sensor 32 is the temperature T2 of the cooling water flowing into the absorber 2, and the temperature detector 33 is the temperature of the solution in the high temperature regenerator 4. The temperature detector 34 detects T3, the temperature detector 34 detects the temperature T4 of the intermediate absorption liquid flowing out from the low heat source regenerator 9 to the intermediate absorption liquid pipe 15, and the temperature sensor 35 detects the return temperature T5 of the heat source hot water. Further, the main controller 30 controls the temperature T1 of the cold / hot water detected by the temperature sensor 31 to the controllers 36, 3
Give to 7, 38.

【0023】制御器36は、メイン制御器30から得た
冷温水の温度に基づいて燃料制御弁5Aの開度を制御
し、例えば冷水温度T1と例えば7.0℃の設定温度と
を比較し、冷水温度T1が設定温度より低いときには燃
料制御弁5Aへ閉信号を出力し、燃料制御弁5Aの開度
は次第に減少する。また、冷水温度T1が設定温度より
高いときには燃料制御弁5Aへ閉信号を出力し、燃料制
御弁5Aの開度は次第に増加する。そして、燃料制御弁
5Aの開度の変化に伴い、ガスバーナ5に供給するガス
流量が変化する。
The controller 36 controls the opening degree of the fuel control valve 5A based on the temperature of the cold / hot water obtained from the main controller 30, and compares, for example, the cold water temperature T1 with the set temperature of 7.0 ° C., for example. When the cold water temperature T1 is lower than the set temperature, a close signal is output to the fuel control valve 5A, and the opening degree of the fuel control valve 5A gradually decreases. When the cold water temperature T1 is higher than the set temperature, a close signal is output to the fuel control valve 5A, and the opening degree of the fuel control valve 5A gradually increases. The flow rate of gas supplied to the gas burner 5 changes as the opening of the fuel control valve 5A changes.

【0024】また、制御器36は、メイン制御器30か
ら得た冷温水の温度に基づいて中間吸収液ポンプP2の
起動/停止制御を行い、さらに、温度センサー32が検
出する冷却水の温度T2と温度センサー33が検出する
高温再生器4内の溶液の温度T3とに基づいて、中間吸
収液ポンプP2に供給する電力の周波数を制御する。そ
して、制御器36によって制御された周波数の電力が周
波数変換器40から中間吸収液ポンプP2へ供給され、
中間吸収液ポンプP2の回転数が制御される。
Further, the controller 36 controls the start / stop of the intermediate absorbent pump P2 based on the temperature of the cold / hot water obtained from the main controller 30, and further the temperature T2 of the cooling water detected by the temperature sensor 32. And the temperature T3 of the solution in the high temperature regenerator 4 detected by the temperature sensor 33, the frequency of the electric power supplied to the intermediate absorption liquid pump P2 is controlled. Then, the power of the frequency controlled by the controller 36 is supplied from the frequency converter 40 to the intermediate absorbent pump P2,
The rotation speed of the intermediate absorption liquid pump P2 is controlled.

【0025】制御器37は、メイン制御器30から得た
冷温水の温度T1に基づいて稀吸収液ポンプP1の定格
運転を指示し、この定格運転が指示されていないときに
は、温度センサー34が検出する中間吸収液の温度T4
に基づいて稀吸収液ポンプP1に供給する電力の周波数
を制御する。そして、制御器37によって制御された周
波数の電力が周波数変換器41から稀吸収液ポンプP1
へ供給され、稀吸収液ポンプP1の回転数が制御され
る。
The controller 37 instructs the rated operation of the diluted absorbent pump P1 based on the temperature T1 of the cold / hot water obtained from the main controller 30, and when the rated operation is not instructed, the temperature sensor 34 detects it. Intermediate absorption liquid temperature T4
The frequency of the electric power supplied to the diluted absorbent pump P1 is controlled based on the above. Then, the electric power of the frequency controlled by the controller 37 is supplied from the frequency converter 41 to the diluted absorbent pump P1.
And the rotational speed of the diluted absorbent pump P1 is controlled.

【0026】制御器38は、流量制御弁29Eの開度を
制御する制御器であり、この制御器38はメイン制御器
30から得た冷温水の温度T1と設定温度とを比較して
流量制御弁29Eへ開閉信号を出力し、低熱源戻し管2
9Cを流れて戻っていく熱源温水の流量を制御する。こ
こで、例えば冷水の供給時には、検出した冷水温度T1
と例えば6.5℃の設定温度とを比較し、流量制御弁2
9Eへ開閉信号を出力する。さらに、制御器38は、温
度センサー35が検出した熱源温水の戻り温度T5に基
づいて上記設定温度を変化させ、例えば、冷水供給時に
は図2に実線にて示したように冷水温度T1に基づいて
設定温度は変化する。
The controller 38 is a controller for controlling the opening of the flow control valve 29E. The controller 38 compares the temperature T1 of the cold / warm water obtained from the main controller 30 with the set temperature to control the flow rate. An open / close signal is output to the valve 29E, and the low heat source return pipe 2
The flow rate of the heat source hot water flowing back through 9C is controlled. Here, for example, when supplying cold water, the detected cold water temperature T1
And the set temperature of, for example, 6.5 ° C. are compared, and the flow control valve 2
Open / close signal is output to 9E. Further, the controller 38 changes the set temperature based on the return temperature T5 of the heat source hot water detected by the temperature sensor 35. For example, at the time of supplying the cold water, based on the cold water temperature T1 as shown by the solid line in FIG. The set temperature changes.

【0027】上記のように構成された吸収式冷凍機にお
いて、開閉弁19V、21V、25V及び28Vを閉
じ、冷温水管26Cを介して冷水を負荷に供給する冷水
供給時の制御を説明する。先ず、温度センサー34が検
出した冷水の温度T1がメイン制御器30から各制御器
36、37及び38に与えられる。
In the absorption refrigerating machine constructed as described above, the control at the time of supplying cold water to the load by closing the on-off valves 19V, 21V, 25V and 28V and supplying cold water to the load through the hot / cold water pipe 26C will be described. First, the temperature T1 of the cold water detected by the temperature sensor 34 is given from the main controller 30 to the controllers 36, 37 and 38.

【0028】制御器36は冷水の温度T1に基づいて燃
料制御弁5Aの開度を制御し、ガスバーナ5に供給する
ガスの量を制御する。さらに、低熱源供給配管29から
低熱源再生器9に供給する熱源温水は、制御器38がメ
イン制御器30から送られた冷水の温度T1に基づいて
流量制御弁29Eの開度を制御し、低熱源熱交換器29
E側に流れる熱源温水流量を制御する。このため、熱源
温水の熱量の増減に伴い、高温再生器4の加熱量が増減
し、熱源温水の不足量が高温再生器4によって補われ、
低熱源供給配管29から第2上胴11の低熱源再生器9
に供給する熱源温水の熱量の多少に拘わらず、供給され
る冷水の温度T1を設定値に保つことができる。
The controller 36 controls the opening degree of the fuel control valve 5A based on the temperature T1 of the cold water, and controls the amount of gas supplied to the gas burner 5. Further, the heat source hot water supplied from the low heat source supply pipe 29 to the low heat source regenerator 9 controls the opening degree of the flow rate control valve 29E based on the temperature T1 of the cold water sent from the main controller 30 by the controller 38, Low heat source heat exchanger 29
The heat source hot water flow rate flowing to the E side is controlled. Therefore, the heating amount of the high temperature regenerator 4 increases and decreases as the heat amount of the heat source hot water increases and decreases, and the shortage amount of the heat source hot water is compensated by the high temperature regenerator 4.
From the low heat source supply pipe 29 to the low heat source regenerator 9 of the second upper body 11
The temperature T1 of the supplied cold water can be maintained at the set value regardless of the heat quantity of the heat source hot water supplied to the.

【0029】また、制御器38では、図2に示したよう
に低熱源戻し管29Cを通って熱源へ戻っていく熱源温
水の戻り温度T5に応じて冷水温度の設定値が変化し、
熱源温水の戻り温度T5が例えば82.5℃より低下す
ると、戻り温度T5が低下するにつれて冷水温度の設定
値が次第に高くなる。そして、制御器38での設定値が
高くなったときにも、上記のように冷水の温度T1に応
じて高温再生器4の加熱量が制御されているため、冷水
の温度T1はほぼ設定温度の7℃に保たれる。冷水の温
度T1がほぼ一定で、制御器38での冷水温度の設定値
が上昇すると、制御器38は、流量制御弁29Eへ信号
を出力する。このため、流量制御弁29Eの低熱源熱交
換器29B側の開度が減少し、三方弁熱源供給配管29
から低熱源再生器9に供給する熱源温水の量は減少し、
側路管29D側の開度が増加し、低熱源供給管29Aか
ら供給されて側路管29D側に流れる熱源温水の量が増
加し、戻り温度T5は上昇する。
Further, in the controller 38, as shown in FIG. 2, the set value of the cold water temperature changes according to the return temperature T5 of the heat source hot water returning to the heat source through the low heat source return pipe 29C,
When the return temperature T5 of the heat source hot water falls below 82.5 ° C., for example, the set value of the cold water temperature gradually rises as the return temperature T5 falls. Even when the set value in the controller 38 becomes high, the heating amount of the high temperature regenerator 4 is controlled according to the temperature T1 of the cold water as described above, so that the temperature T1 of the cold water is almost the set temperature. Maintained at 7 ° C. When the temperature T1 of the cold water is substantially constant and the set value of the cold water temperature in the controller 38 rises, the controller 38 outputs a signal to the flow control valve 29E. Therefore, the opening degree of the flow control valve 29E on the low heat source heat exchanger 29B side is reduced, and the three-way valve heat source supply pipe 29
Amount of heat source hot water supplied to the low heat source regenerator 9 from
The opening degree of the bypass pipe 29D increases, the amount of heat source hot water supplied from the low heat source supply pipe 29A and flowing to the bypass pipe 29D increases, and the return temperature T5 rises.

【0030】以下、第2上胴11の低温熱源再生器9で
冷水負荷に対して十分な熱量が熱源温水から得られる場
合と、充分な熱量が得られない場合とに分けて、それぞ
れ具体的な一制御例を説明する。例えば、熱源から流れ
たて来た熱源温水から冷水負荷に対して十分な熱量が得
られる場合は、制御器38がメイン制御器30から送ら
れてきた冷水の温度T1に基づいて流量制御弁29Eの
開度を制御する。そして、冷水の温度に応じて低熱源熱
交換器29Bに流れる熱源温水の量は変化し、これによ
って、冷温水管26Cを介して負荷に供給される冷水の
温度T1が設定温度に保たれる。
Hereinafter, the case where a sufficient amount of heat is obtained from the heat source hot water with respect to the cold water load in the low temperature heat source regenerator 9 of the second upper case 11 and the case where an adequate amount of heat is not obtained are divided into specific cases. Another control example will be described. For example, when a sufficient amount of heat is obtained for the cold water load from the heat source hot water flowing from the heat source, the controller 38 determines the flow rate control valve 29E based on the temperature T1 of the cold water sent from the main controller 30. Control the opening of. Then, the amount of the heat source hot water flowing through the low heat source heat exchanger 29B changes according to the temperature of the cold water, whereby the temperature T1 of the cold water supplied to the load via the cold / hot water pipe 26C is maintained at the set temperature.

【0031】従って、低熱源供給配管29を流れる熱源
温水から冷水負荷に対して十分な熱量が得られている場
合は、負荷に供給される冷水の温度は高温再生器4の加
熱量制御のための設定温度の例えば7℃より低下してい
る。このため、制御器36は燃料制御弁5Aの制御を行
わず、燃料制御弁5Aは閉じたままであり、ガスバーナ
5は燃焼せず、高温再生器4は停止している。また、制
御器36は中間吸収液ポンプP2へ起動信号を出力せ
ず、中間吸収液ポンプP2は運転を停止している。
Therefore, when a sufficient amount of heat is obtained for the cold water load from the heat source hot water flowing through the low heat source supply pipe 29, the temperature of the cold water supplied to the load is for controlling the heating amount of the high temperature regenerator 4. It is lower than the set temperature of 7 ° C., for example. Therefore, the controller 36 does not control the fuel control valve 5A, the fuel control valve 5A remains closed, the gas burner 5 does not burn, and the high temperature regenerator 4 is stopped. Further, the controller 36 does not output a start signal to the intermediate absorbent pump P2, and the intermediate absorbent pump P2 is stopped.

【0032】制御器37は、冷水の温度T1が制御器3
6の設定値である7℃より低いときのメイン制御器30
からの温度信号に基づいて、稀吸収液ポンプP1の運転
を制御するのではなく、温度センサー34が検出した中
間吸収液の温度T4に基づいて、稀吸収液ポンプP1に
供給する電力の周波数を例えば図3のように制御し、稀
吸収液ポンプP1の回転数を制御する。
The controller 37 determines that the temperature T1 of the cold water is equal to that of the controller 3
Main controller 30 when the temperature is lower than 7 ° C which is the set value of 6
The operation of the rare absorbent pump P1 is not controlled on the basis of the temperature signal from the above, but the frequency of the electric power supplied to the rare absorbent pump P1 is determined based on the temperature T4 of the intermediate absorbent detected by the temperature sensor 34. For example, control is performed as shown in FIG. 3 to control the rotation speed of the diluted absorbent pump P1.

【0033】例えば、中間吸収液の温度が80℃以上に
なっているときには、稀吸収液ポンプP1は定格の60
Hzで運転し、70℃以下のときには例えば定格の半分
の周波数30Hzで運転する。また、中間吸収液の温度
が70〜80℃の間のときには例えば温度に比例する周
波数で運転する。このため、負荷が少なく冷媒の再生量
が少なく、再生温度が低い場合には稀吸収液の循環量が
減少し、顕熱ロスが減少し、吸収式冷凍機のCOPが向
上する。
For example, when the temperature of the intermediate absorption liquid is 80 ° C. or higher, the rare absorption liquid pump P1 is rated at 60.
When the temperature is 70 ° C. or lower, for example, the frequency is 30 Hz, which is half the rated frequency. Further, when the temperature of the intermediate absorption liquid is between 70 and 80 ° C., the operation is performed at a frequency proportional to the temperature, for example. For this reason, when the load is small, the amount of refrigerant regenerated is small, and the regeneration temperature is low, the circulation amount of the rare absorption liquid is reduced, sensible heat loss is reduced, and COP of the absorption chiller is improved.

【0034】以下、冷媒と溶液との循環について説明す
る。冷媒と溶液の循環は従来の一重二重効用吸収式冷凍
機の循環と同様であり、冷水供給運転であり、熱源温水
から冷水負荷に対して十分な熱量が得られている場合に
は、中間吸収液ポンプP2及び高温再生器4は停止して
おり、低温熱源再生器9で冷媒を蒸発分離して濃度が上
昇した中間吸収液は、中間吸収液管15A、吸収液管1
8、濃吸収液管17A、低温熱交換器12、濃吸収液管
17Bを経て吸収器2の濃吸収液散布装置2Bから吸収
器熱交換器27Aに散布される。
The circulation of the refrigerant and the solution will be described below. The circulation of the refrigerant and the solution is the same as the circulation of the conventional single-double-effect absorption refrigerator, it is a cold water supply operation, and if a sufficient amount of heat is obtained from the heat source hot water to the cold water load, The absorption liquid pump P2 and the high temperature regenerator 4 are stopped, and the intermediate absorption liquid whose concentration has increased by evaporating and separating the refrigerant in the low temperature heat source regenerator 9 is the intermediate absorption liquid pipe 15A and the absorption liquid pipe 1
8, the concentrated absorbent liquid pipe 17A, the low temperature heat exchanger 12, and the concentrated absorbent liquid pipe 17B are sprayed from the concentrated absorbent liquid spraying device 2B of the absorber 2 to the absorber heat exchanger 27A.

【0035】また、低熱源再生器9で分離した冷媒は、
第2凝縮器10に流入して冷却され凝縮する。そして、
冷媒液は第2冷媒液配管23を流下し、Uシール部23
A、22Aに溜まる。Uシール部23A,22Aに溜ま
った冷媒液は溢れて蒸発器1に流入する。蒸発器1に流
入して冷媒液溜り1Aに溜まった冷媒液は、冷媒液ポン
プP3の運転により冷媒液循環配管24を流れ、冷媒散
布装置1Bから冷温水熱交換器26Bに散布される。そ
して、冷媒液が気化するときの潜熱によって冷却された
冷水が冷温水熱交換器26B、冷温水管26Cから負荷
に供給される。また、蒸発器1で気化した冷媒は吸収器
2へ流れ、濃吸収液散布装置2Bから散布される濃吸収
液に吸収される。
The refrigerant separated by the low heat source regenerator 9 is
It flows into the second condenser 10 and is cooled and condensed. And
The refrigerant liquid flows down the second refrigerant liquid pipe 23, and the U seal portion 23
It collects in A and 22A. The refrigerant liquid accumulated in the U seal portions 23A and 22A overflows and flows into the evaporator 1. The refrigerant liquid that has flowed into the evaporator 1 and accumulated in the refrigerant liquid pool 1A flows through the refrigerant liquid circulation pipe 24 by the operation of the refrigerant liquid pump P3, and is sprayed from the refrigerant spraying device 1B to the cold / hot water heat exchanger 26B. Then, the cold water cooled by the latent heat when the refrigerant liquid is vaporized is supplied to the load from the cold / hot water heat exchanger 26B and the cold / hot water pipe 26C. Further, the refrigerant vaporized in the evaporator 1 flows to the absorber 2 and is absorbed by the concentrated absorbent spread from the concentrated absorbent dispersion device 2B.

【0036】吸収器2で冷媒を吸収して稀液になった吸
収液は、稀吸収液ポンプP1により稀吸収液配管14を
通って低熱源再生器4に送られる。以下、冷水供給運転
時で、熱源温水から冷水負荷に対して十分な熱量が得ら
れない場合の制御について説明する。この場合も、温度
センサー34が検出した冷水の温度T1が各制御器3
6、37、38にそれぞれ与えられる。
The absorbing liquid which has become a dilute liquid by absorbing the refrigerant in the absorber 2 is sent to the low heat source regenerator 4 through the dilute absorbing liquid pipe 14 by the dilute absorbing liquid pump P1. Hereinafter, the control in the case where a sufficient amount of heat is not obtained from the heat source hot water against the cold water load during the cold water supply operation will be described. In this case as well, the temperature T1 of the cold water detected by the temperature sensor 34 is the temperature of each controller 3
6, 37, 38 respectively.

【0037】この場合、冷水負荷に対して十分な熱量が
熱源温水から低熱源再生器9に与えられないので、冷水
の出口温度を設定温度の6.5℃まで低下することがで
きない。このため、冷水の温度T1が所定の設定温度ま
で低下していないという情報をメイン制御器30から得
た制御器36は、中間吸収液ポンプP2の起動及びガス
ナーナ5の点火を指示し、かつ、燃料制御弁5Aの開度
をメイン制御器30から得た冷水の温度T1に基づいて
制御する。このため、ガスバーナ5に供給されるガス流
量が冷水の温度T1に応じて制御され、高温再生器4内
で吸収液が加熱されて吸収液から冷媒蒸気が分離する。
In this case, since a sufficient amount of heat for the cold water load cannot be given from the heat source hot water to the low heat source regenerator 9, the outlet temperature of the cold water cannot be lowered to the preset temperature of 6.5 ° C. Therefore, the controller 36, which has obtained the information from the main controller 30 that the temperature T1 of the cold water has not dropped to the predetermined set temperature, instructs the activation of the intermediate absorbent pump P2 and the ignition of the gas sonar 5, and The opening degree of the fuel control valve 5A is controlled based on the temperature T1 of the cold water obtained from the main controller 30. Therefore, the flow rate of the gas supplied to the gas burner 5 is controlled according to the temperature T1 of the cold water, the absorbing liquid is heated in the high temperature regenerator 4, and the refrigerant vapor is separated from the absorbing liquid.

【0038】制御器36は温度センサ32が検出した冷
却水の温度T2と温度センサ33が検出する高温再生器
4内の溶液温度T3に基づいて、中間吸収液ポンプP2
に供給する電力の周波数を周波数変換器40において例
えば図4に示したように制御し、中間吸収液ポンプP2
の回転数を制御する。すなわち、定格周波数が例えば6
0Hzである場合は、最低周波数を例えば定格の半分以
下の28Hzとし、定格周波数と最低周波数との間で冷
却水の温度T2が低いほど、高温再生器4内の溶液の温
度T3が高いほど、周波数を上げるように変換し、中間
吸収液ポンプP2の回転数を高める制御を行う。
Based on the temperature T2 of the cooling water detected by the temperature sensor 32 and the solution temperature T3 in the high temperature regenerator 4 detected by the temperature sensor 33, the controller 36 determines the intermediate absorption liquid pump P2.
The frequency of the electric power supplied to the intermediate absorber pump P2 is controlled by the frequency converter 40 as shown in FIG. 4, for example.
Control the rotation speed of. That is, the rated frequency is 6
In the case of 0 Hz, the lowest frequency is, for example, 28 Hz, which is half or less of the rated value, and the lower the cooling water temperature T2 is between the rated frequency and the lower frequency, the higher the temperature T3 of the solution in the high temperature regenerator 4, The conversion is performed so as to increase the frequency, and control is performed to increase the rotation speed of the intermediate absorption liquid pump P2.

【0039】制御器37はメイン制御器30から得た冷
水の温度T1が設定温度の7℃にまで低下していないと
の温度情報に基づいて、稀吸収液ポンプP1の定格運転
の継続を指示する。このため、吸収器2、低熱源再生器
9、高温再生器4、高温熱交換器13、低温再生器6、
低温熱交換器12、第1凝縮器7、第2凝縮器10及び
蒸発器1による一重二重効用の冷凍サイクルが形成さ
れ、冷水負荷の増加にも速やかに対応することができ
る。
The controller 37 gives an instruction to continue the rated operation of the dilute absorbent pump P1 based on the temperature information that the temperature T1 of the cold water obtained from the main controller 30 has not dropped to the set temperature of 7 ° C. To do. Therefore, the absorber 2, the low heat source regenerator 9, the high temperature regenerator 4, the high temperature heat exchanger 13, the low temperature regenerator 6,
The low-temperature heat exchanger 12, the first condenser 7, the second condenser 10, and the evaporator 1 form a single-double-effect refrigeration cycle, and can quickly cope with an increase in cold water load.

【0040】上記の一重二重効用の冷凍サイクル構成時
において制御器38は、温度センサ35から得た熱源温
水の戻り温度T5に基づいて図2に示した冷水の出口温
度T1の設定値になるように流量制御弁29Eを制御す
る。すなわち、熱源温水の戻り温度T5が82.5℃を
下回ると、冷水の出口温度T1の設定値が高くなり、検
出した冷水の出口温度T1と設定値とに基づいて制御器
38は流量制御弁29Eへ側路管29D側の開度を増加
し、低熱源熱交換器29B側の開度を減少させる信号を
出力する。そして、流量制御弁29Eの側路管29D側
の開度が増加し、側路管29Dを流れる熱源温水が増加
し、低熱源熱交換器29B側に流れる熱源温水が減少す
る。このため、熱源温水の戻り温度T5は上昇する。ま
た、熱源温水の戻り温度T5が82.5℃を越えると、
冷水の出口温度T1の設定値が低くなり、検出した冷水
の出口温度T1と設定値とに基づいて制御器38は流量
制御弁29Eへ側路管29D側の開度を減少し、低熱源
熱交換器29B側の開度を増加させる信号を出力する。
そして、制御器38からの信号に基づいて流量制御弁2
9Eの側路管29D側の開度が減少し、側路管29Dを
流れる熱源温水が減少し、低熱源熱交換器29B側に流
れる熱源温水が増加する。このため、熱源温水の戻り温
度T5は低下する。
In the above-mentioned single-double-effect refrigeration cycle configuration, the controller 38 becomes the set value of the cold water outlet temperature T1 shown in FIG. 2 based on the return temperature T5 of the heat source hot water obtained from the temperature sensor 35. The flow rate control valve 29E is controlled as described above. That is, when the return temperature T5 of the heat source hot water falls below 82.5 ° C., the set value of the outlet temperature T1 of the cold water becomes high, and the controller 38 controls the flow control valve based on the detected outlet temperature T1 of the cold water and the set value. A signal for increasing the opening degree on the bypass pipe 29D side and decreasing the opening degree on the low heat source heat exchanger 29B side is output to 29E. Then, the opening degree of the flow control valve 29E on the bypass pipe 29D side increases, the heat source hot water flowing through the bypass pipe 29D increases, and the heat source hot water flowing toward the low heat source heat exchanger 29B side decreases. Therefore, the return temperature T5 of the heat source hot water rises. When the return temperature T5 of the heat source hot water exceeds 82.5 ° C,
The set value of the outlet temperature T1 of the cold water becomes low, and the controller 38 reduces the opening degree of the side passage pipe 29D to the flow control valve 29E based on the detected outlet temperature T1 of the cold water and the set value, and the low heat source heat A signal for increasing the opening on the side of the exchanger 29B is output.
Then, based on the signal from the controller 38, the flow control valve 2
The opening degree of 9E on the bypass pipe 29D side decreases, the heat source hot water flowing on the bypass pipe 29D decreases, and the heat source hot water flowing on the low heat source heat exchanger 29B side increases. Therefore, the return temperature T5 of the heat source hot water decreases.

【0041】上記のように、熱源温水の戻り温度T5に
基づいて制御器38の流量制御弁29E制御用のが冷水
の出口温度の設定値が変化し、制御器38が流量制御弁
29Eを制御するので、低熱源戻し管29Cを通って戻
って行く熱源温水の温度はほぼ82.5℃以上に保たれ
る。このように、熱源温水の熱量が冷水負荷に対して不
足しているときにも、熱源温水の戻り温度T5は所定の
温度、実施例においては82.5℃より大幅に低下する
ことがないので、熱源温水を例えば発電機などに戻して
冷却に使用しても結露することがなく、熱源温水の供給
源の運転を安定させることができる。
As described above, the set value of the outlet temperature of the cold water for controlling the flow rate control valve 29E of the controller 38 changes based on the return temperature T5 of the heat source hot water, and the controller 38 controls the flow rate control valve 29E. Therefore, the temperature of the heat source hot water returning through the low heat source return pipe 29C is maintained at approximately 82.5 ° C. or higher. Thus, even when the heat quantity of the heat source hot water is insufficient with respect to the cold water load, the return temperature T5 of the heat source hot water does not drop significantly below a predetermined temperature, 82.5 ° C. in the embodiment. Even if the heat source hot water is returned to, for example, a generator and used for cooling, dew condensation does not occur, and the operation of the heat source hot water supply source can be stabilized.

【0042】また、熱源温水の戻り温度T5がほぼ8
2.5℃以上に安定しているため、低熱源再生器9の再
生温度が極端に低下することがなく、常に冷媒の再生に
必要な温度に維持されるため、冷媒再生に熱源温水を有
効に利用でき、COPを向上することもできる。上記一
重二重効用の冷凍サイクルでは、低熱源再生器9にて冷
媒の一部が分離した中間吸収液は中間吸収液ポンプP2
によって高温再生器4へ送られる。高温再生器4では、
ガスバーナ5によって中間吸収液が加熱されて冷媒が蒸
発分離する。高温再生器4で冷媒が分離して濃度が上昇
した中間吸収液は、高温熱交換器13を経て低温再生器
6へ送られる。中間吸収液は低温再生器6で冷媒蒸気配
管20を通って送られてきた冷媒蒸気によって加熱さ
れ、さらに冷媒が中間吸収液から蒸発分離する。そし
て、一層濃度が高くなった濃吸収液が低温再生器6から
低温熱交換器12を経て吸収器2へ送られ、濃吸収液散
布装置2Bから散布される。
Further, the return temperature T5 of the heat source hot water is about 8
Since it is stable at 2.5 ° C. or higher, the regeneration temperature of the low heat source regenerator 9 does not drop extremely, and is always maintained at the temperature required for refrigerant regeneration. Therefore, the heat source hot water is effective for refrigerant regeneration. It can also be used to improve COP. In the single-double effect refrigeration cycle described above, the intermediate absorption liquid from which a part of the refrigerant is separated in the low heat source regenerator 9 is the intermediate absorption liquid pump P2.
Is sent to the high temperature regenerator 4. In the high temperature regenerator 4,
The intermediate burner is heated by the gas burner 5 to evaporate and separate the refrigerant. The intermediate absorption liquid whose refrigerant has been separated in the high-temperature regenerator 4 and whose concentration has increased is sent to the low-temperature regenerator 6 via the high-temperature heat exchanger 13. The intermediate absorbing liquid is heated in the low temperature regenerator 6 by the refrigerant vapor sent through the refrigerant vapor pipe 20, and the refrigerant is evaporated and separated from the intermediate absorbing liquid. Then, the concentrated absorbent having a higher concentration is sent from the low temperature regenerator 6 through the low temperature heat exchanger 12 to the absorber 2, and is sprayed from the concentrated absorbent spraying device 2B.

【0043】また、低熱源再生器9で分離した冷媒蒸気
は第2凝縮器10で凝縮し、低温再生器6で分離した冷
媒蒸気は第1凝縮器7で凝縮する。そして、冷媒液が第
1凝縮器7及び第2凝縮器10から第1冷媒配管22及
び第2冷媒配管23を経て蒸発器1へ流れ、冷媒散布器
1Bから散布される。蒸発器1では、冷媒が蒸発すると
きに潜熱によって冷温水熱交換器26Bで冷却された冷
水が冷水負荷に供給される。また、蒸発器1で気化した
冷媒蒸気は吸収器2へ流れ、濃吸収液散布装置2Bから
散布される濃吸収液によって吸収される。吸収器2で冷
媒を吸収して濃度が低下した稀吸収液は稀吸収液ポンプ
P1によって低熱源再生器9へ送られる。
The refrigerant vapor separated by the low heat source regenerator 9 is condensed by the second condenser 10, and the refrigerant vapor separated by the low temperature regenerator 6 is condensed by the first condenser 7. Then, the refrigerant liquid flows from the first condenser 7 and the second condenser 10 to the evaporator 1 via the first refrigerant pipe 22 and the second refrigerant pipe 23, and is sprayed from the refrigerant distributor 1B. In the evaporator 1, the cold water cooled by the cold / hot water heat exchanger 26B is supplied to the cold water load by latent heat when the refrigerant evaporates. Further, the refrigerant vapor that is vaporized in the evaporator 1 flows to the absorber 2 and is absorbed by the concentrated absorbent that is sprayed from the concentrated absorbent dispersion device 2B. The rare absorbent that has absorbed the refrigerant in the absorber 2 and has a reduced concentration is sent to the low heat source regenerator 9 by the rare absorbent pump P1.

【0044】なお、負荷に温水を供給するときには、開
閉弁19V、21V、25V、28Vを開放し、高温再
生器4で発生した高温の冷媒蒸気を冷媒蒸気管20A、
冷媒蒸気配管21を経て下胴3に導く。冷温水熱交換器
26Bを流れる水は下胴3に送られた冷媒蒸気によって
加熱され、負荷に供給される。また、冷温水熱交換器2
6Bに触れて凝縮し、冷媒液溜り1Aに溜まった冷媒液
は冷媒液ドレン配管25を経て稀吸収液溜り2Aに導か
れる。そして、稀吸収液が稀吸収液ポンプP1及び中間
吸収液ポンプP2の運転によって吸収器2から低熱源再
生器9を経て高温再生器4へ送られる。
When hot water is supplied to the load, the on-off valves 19V, 21V, 25V and 28V are opened and the high temperature refrigerant vapor generated in the high temperature regenerator 4 is transferred to the refrigerant vapor pipe 20A.
It is guided to the lower body 3 via the refrigerant vapor pipe 21. The water flowing through the cold / hot water heat exchanger 26B is heated by the refrigerant vapor sent to the lower case 3 and supplied to the load. In addition, the cold / hot water heat exchanger 2
The refrigerant liquid condensing by touching 6B and accumulated in the refrigerant liquid pool 1A is guided to the rare absorption liquid pool 2A through the refrigerant liquid drain pipe 25. Then, the rare absorption liquid is sent from the absorber 2 to the high temperature regenerator 4 through the low heat source regenerator 9 by the operation of the rare absorption liquid pump P1 and the intermediate absorption liquid pump P2.

【0045】なお、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲の記載の主旨から逸脱しな
い範囲で各種の変形実施が可能である。例えば、図2に
一点鎖線で示したように、熱源温水の戻り温度が例えば
上記実施例よりも低い温度である80℃より低くなる
と、冷水の出口温度の設定値を次第に高くすることによ
って上記実施例と同様に、熱源温水の戻り温度をほぼ8
0℃以上に保つことができる。さらに、上記実施例より
も低い温度まで冷水の出口温度の設定値が変更されない
ため、熱源温水を低い温度まで一層有効に使用すること
ができ、吸収式冷凍機のCOPをさらに向上することが
できる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the claims. For example, as shown by the alternate long and short dash line in FIG. 2, when the return temperature of the heat source hot water becomes lower than 80 ° C., which is a lower temperature than the above-mentioned embodiment, for example, the set value of the outlet temperature of the cold water is gradually increased. Similar to the example, set the return temperature of the heat source hot water to about 8
It can be maintained at 0 ° C or higher. Further, since the set value of the outlet temperature of the cold water is not changed to a temperature lower than that in the above-mentioned embodiment, the heat source hot water can be used more effectively even at a low temperature, and the COP of the absorption chiller can be further improved. .

【0046】また、図2に二点鎖線で示したように、熱
源温水の戻り温度が例えば80℃より低くなると、制御
器36の冷水の出口温度の設定値を例えば7.5℃と高
くすることによって上記実施例と同様に、熱源温水の戻
り温度をほぼ80℃以上に保つことができる。さらに、
上記実施例よりも低い温度まで冷水の出口温度の設定値
が変更されないため、熱源温水を低い温度まで一層有効
に使用することができ、吸収式冷凍機のCOPをさらに
向上することができ、かつ、冷水の出口温度の設定値の
変更は上記80℃のみで済み、制御の簡略化を図ること
ができる。
Further, as indicated by the chain double-dashed line in FIG. 2, when the return temperature of the heat source hot water becomes lower than 80 ° C., the set value of the outlet temperature of the cold water of the controller 36 becomes high, for example 7.5 ° C. As a result, the return temperature of the heat source hot water can be maintained at approximately 80 ° C. or higher, as in the above embodiment. further,
Since the set value of the outlet temperature of the cold water is not changed to a temperature lower than that in the above-mentioned embodiment, the heat source hot water can be used more effectively to a lower temperature, and the COP of the absorption chiller can be further improved, and It is only necessary to change the set value of the outlet temperature of the cold water at 80 ° C., and the control can be simplified.

【0047】[0047]

【発明の効果】本発明は上記実施例のように構成された
一重二重効用吸収式冷凍機であり、請求項1の発明によ
れば、低温熱源の供給管と戻し管とを連通するように三
方弁を設け、蒸発器から取り出す冷水の出口温度に基づ
いて高温再生器の加熱量を制御するとともに、冷水の出
口温度に基づいて三方弁を制御し、かつ、低温熱源の戻
り温度が所定温度以下になった時に、三方弁制御用の冷
水出口温度の設定値を高めるので、負荷の変動に対する
応答性を向上でき、低熱源再生器に供給する低温熱源の
増減及び負荷の変動に拘わらず、冷水の出口温度を設定
値に維持することができる。
The present invention is a single-double-effect absorption refrigerator constructed as in the above embodiment, and according to the invention of claim 1, the supply pipe and the return pipe of the low temperature heat source are communicated with each other. Is equipped with a three-way valve to control the heating amount of the high temperature regenerator based on the outlet temperature of the cold water extracted from the evaporator, the three-way valve is controlled based on the outlet temperature of the cold water, and the return temperature of the low temperature heat source is set to a predetermined value. When the temperature falls below the temperature, the set value of the chilled water outlet temperature for three-way valve control is increased, so the responsiveness to load fluctuations can be improved, regardless of the increase / decrease in low temperature heat source supplied to the low heat source regenerator and load fluctuations. The outlet temperature of cold water can be maintained at the set value.

【0048】また、低温熱源の戻り温度が低下したとき
には、冷水の出口温度の設定値を高め、低温熱源再生器
に流入する低温熱源の量を減少し、低温熱源の戻り温度
を所定の温度以上に維持することができ、発電機の冷却
水などを低温熱源にした場合にも、温度が大幅に低下し
た低温熱源によって発電機を冷却する際に結露すると云
うようなトラブルを回避することができる。
When the return temperature of the low temperature heat source is lowered, the set value of the outlet temperature of the cold water is increased, the amount of the low temperature heat source flowing into the low temperature heat source regenerator is decreased, and the return temperature of the low temperature heat source is set to a predetermined temperature or higher. Therefore, even when the cooling water of the generator is used as a low-temperature heat source, it is possible to avoid troubles such as dew condensation when the generator is cooled by the low-temperature heat source whose temperature has dropped significantly. .

【0049】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、常に冷媒再生に必要な温度に
維持され、冷媒の再生が効果的に行われてCOPを向上
することができる。しかも、このような優れた作用効果
が一つの三方弁を操作することによって得ることがで
き、コスト的のも優れた一重二重効用吸収式冷凍機を提
供することができる。
Further, it is possible to avoid the regeneration temperature of the low heat source regenerator from being extremely lowered, always maintain the temperature required for the regeneration of the refrigerant, and effectively perform the regeneration of the refrigerant to improve the COP. . Moreover, such an excellent effect can be obtained by operating a single three-way valve, and it is possible to provide a single-double-effect absorption refrigerator with excellent cost performance.

【0050】また、請求項2に記載された発明によれ
ば、低温熱源の供給管と戻し管とを連通するように三方
弁を設け、蒸発器から取り出す冷水の出口温度に基づい
て高温再生器の加熱量を制御するとともに、冷水の出口
温度に基づいて三方弁を制御し、かつ、低温熱源の戻り
温度が所定温度より低下したときには、低下に従い、三
方弁制御用の冷水出口温度の設定値を次第に高めるの
で、負荷の変動に対する応答性を向上でき、低熱源再生
器に供給する低温熱源の多少及び負荷の変動に拘わら
ず、冷水の出口温度を設定値に維持することができる。
According to the second aspect of the invention, a three-way valve is provided so as to connect the supply pipe and the return pipe of the low temperature heat source, and the high temperature regenerator is based on the outlet temperature of the cold water taken out from the evaporator. Control the three-way valve based on the outlet temperature of the cold water, and when the return temperature of the low temperature heat source falls below a predetermined temperature, the set value of the cold water outlet temperature for controlling the three-way valve The responsiveness to load changes can be improved, and the outlet temperature of the cold water can be maintained at the set value regardless of the amount of low-temperature heat source supplied to the low heat source regenerator and the load changes.

【0051】また、低温熱源の戻り温度が低下したとき
には、低下の度合いに応じて低温熱源再生器に流入する
低温熱源の量を次第に減少し、低温熱源再生器での放熱
量を次第に減少させ、負荷の変動などに拘わらず低温熱
源の戻り温度を所定の温度以上に維持することができ、
発電機の冷却水などを低温熱源にした場合にも、温度が
大幅に低下した低温熱源によって発電機を冷却する際に
結露すると云うようなトラブルを回避することができ
る。
When the return temperature of the low temperature heat source decreases, the amount of the low temperature heat source flowing into the low temperature heat source regenerator is gradually decreased according to the degree of the decrease, and the heat radiation amount in the low temperature heat source regenerator is decreased gradually. It is possible to maintain the return temperature of the low temperature heat source above a predetermined temperature regardless of load fluctuations, etc.
Even when the cooling water or the like of the generator is used as the low temperature heat source, it is possible to avoid a trouble such as dew condensation when the generator is cooled by the low temperature heat source whose temperature is significantly lowered.

【0052】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、かつ、低温熱源の熱量が変化
した場合にも低温熱源の熱を有効に利用し、冷媒の再生
が効果的に行われてCOPを向上することができる。さ
らに、請求項3に記載された発明によれば、低温熱源の
供給管と戻し管とを連通するように三方弁を設け、蒸発
器から取り出す冷水の出口温度に基づいて高温再生器の
加熱量を制御するとともに、冷水の出口温度に基づいて
三方弁を制御し、かつ、低温熱源の戻り温度が所定温度
より低下したときには、この低下に伴い低温熱源再生器
へ流入する低温熱源の量を減少させるので、負荷の変動
に対する応答性を向上でき、低熱源再生器に供給する低
温熱源の多少及び負荷の変動に拘わらず、冷水の出口温
度を設定値に維持することができる。
Further, it is possible to prevent the regeneration temperature of the low heat source regenerator from dropping extremely, and to effectively utilize the heat of the low temperature heat source even when the amount of heat of the low temperature heat source changes, and to effectively regenerate the refrigerant. The COP can be improved. Further, according to the invention described in claim 3, a three-way valve is provided so as to connect the supply pipe and the return pipe of the low temperature heat source, and the heating amount of the high temperature regenerator is based on the outlet temperature of the cold water taken out from the evaporator. Control the three-way valve based on the outlet temperature of the cold water, and when the return temperature of the low temperature heat source falls below a predetermined temperature, the amount of the low temperature heat source flowing into the low temperature heat source regenerator is reduced with this decrease. As a result, the responsiveness to load changes can be improved, and the outlet temperature of cold water can be maintained at the set value regardless of the amount of low-temperature heat sources supplied to the low heat source regenerator and load changes.

【0053】また、低温熱源の戻り温度が低下したとき
には、低温熱源再生器に流入する低温熱源の量を減少
し、低温熱源再生器での放熱量を減少させ、低温熱源の
戻り温度を所定の温度以上に維持することができ、発電
機の冷却水などを低温熱源にした場合にも、温度が大幅
に低下した低温熱源によって発電機を冷却する際に結露
すると云うようなトラブルを回避することができる。
When the return temperature of the low temperature heat source is lowered, the amount of low temperature heat source flowing into the low temperature heat source regenerator is reduced to reduce the amount of heat radiation in the low temperature heat source regenerator, and the return temperature of the low temperature heat source is set to a predetermined value. It is possible to maintain the temperature above the temperature, and even when the cooling water of the generator is used as a low temperature heat source, avoid troubles such as dew condensation when cooling the generator by the low temperature heat source whose temperature has dropped significantly. You can

【0054】さらに、低熱源再生器の再生温度が極端に
低下することを回避でき、常に冷媒再生に必要な温度に
維持され、冷媒の再生が効果的に行われてCOPを向上
することができる。
Further, the regeneration temperature of the low heat source regenerator can be prevented from being extremely lowered, the temperature is always maintained at the temperature required for the regeneration of the refrigerant, and the refrigerant can be effectively regenerated to improve the COP. .

【図面の簡単な説明】[Brief description of drawings]

【図1】一重二重効用吸収式冷凍機の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a single-double-effect absorption refrigerator.

【図2】熱源温水の戻り温度と冷水出口温度設定値との
関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a return temperature of heat source hot water and a cold water outlet temperature set value.

【図3】稀吸収液ポンプの制御例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of control of a rare absorbent pump.

【図4】中間吸収液ポンプの制御例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an example of control of an intermediate absorbent pump.

【図5】従来の一重二重効用吸収式冷凍機の概略構成図
である。
FIG. 5 is a schematic configuration diagram of a conventional single-double-effect absorption refrigerator.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 下胴(蒸発器吸収器胴) 4 高温再生器 6 低温再生器 7 第1凝縮器 8 低熱源再生器凝縮器胴 9 低熱源再生器 10 第2凝縮器 11 低温再生器凝縮器胴 12 低温熱交換器 13 高温熱交換器 26 冷温水配管 29D 側路管 29E 流量制御弁(三方弁) 30 メイン制御器 38 制御器 1 Evaporator 2 Absorber 3 Lower body (Evaporator absorber body) 4 High temperature regenerator 6 Low temperature regenerator 7 First condenser 8 Low heat source regenerator Condenser body 9 Low heat source regenerator 10 Second condenser 11 Low temperature regeneration Condenser body 12 Low temperature heat exchanger 13 High temperature heat exchanger 26 Hot / cold water pipe 29D Side passage pipe 29E Flow control valve (three-way valve) 30 Main controller 38 Controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度以下になった時に、三方弁制御用の冷水出口温度の設
定値を高める制御器を設けたことを特徴とする一重二重
効用吸収式冷凍機。
1. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for absorbing liquid and refrigerant, and a three-way valve is connected to connect the supply pipe and the return pipe of the low temperature heat source. It controls the heating amount of the high temperature regenerator based on the outlet temperature of the cold water extracted from the evaporator, controls the three-way valve based on the outlet temperature of the cold water, and the return temperature of the low temperature heat source is below a predetermined temperature. The single-double-effect absorption refrigerator is provided with a controller for increasing the set value of the cold water outlet temperature for controlling the three-way valve at the time of opening.
【請求項2】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度より低下するのに従い、三方弁制御用の冷水出口温度
の設定値を次第に高める制御器を設けたことを特徴とす
る一重二重効用吸収式冷凍機。
2. An evaporator absorber body containing an evaporator and an absorber, a low temperature regenerator condenser body containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for absorbing liquid and refrigerant, and a three-way valve is connected to connect the supply pipe and the return pipe of the low temperature heat source. The heating amount of the high temperature regenerator is controlled on the basis of the outlet temperature of the cold water taken out from the evaporator, the three-way valve is controlled on the basis of the outlet temperature of the cold water, and the return temperature of the low temperature heat source is lower than the predetermined temperature. A single-double-effect absorption refrigerating machine is provided with a controller for gradually increasing the set value of the cold water outlet temperature for controlling the three-way valve.
【請求項3】 蒸発器と吸収器とを収納した蒸発器吸収
器胴、低温再生器と凝縮器とを収納した低温再生器凝縮
器胴、温廃水などを低温熱源とする低熱源再生器と凝縮
器とを収納した低熱源再生器凝縮器胴、高温再生器を配
管接続して吸収液及び冷媒の循環路を形成し、低温熱源
の供給管と戻し管とを連通するように三方弁を設け、蒸
発器から取り出す冷水の出口温度に基づいて高温再生器
の加熱量を制御するとともに、冷水の出口温度に基づい
て三方弁を制御し、かつ、低温熱源の戻り温度が所定温
度より低下したときには、この低下に伴い、低温熱源再
生器へ流入する低温熱源の量を減少させる制御器を設け
たことを特徴とする一重二重効用吸収式冷凍機。
3. An evaporator absorber cylinder containing an evaporator and an absorber, a low temperature regenerator condenser cylinder containing a low temperature regenerator and a condenser, and a low heat source regenerator using hot wastewater as a low temperature heat source. A low heat source regenerator containing a condenser and a high temperature regenerator are connected by piping to form a circulation path for absorbing liquid and refrigerant, and a three-way valve is connected to connect the supply pipe and the return pipe of the low temperature heat source. The heating amount of the high temperature regenerator is controlled based on the outlet temperature of the cold water extracted from the evaporator, the three-way valve is controlled based on the outlet temperature of the cold water, and the return temperature of the low temperature heat source is lower than the predetermined temperature. At times, with this decrease, a single-double-effect absorption refrigerator is provided with a controller that reduces the amount of the low-temperature heat source flowing into the low-temperature heat source regenerator.
JP06188278A 1994-08-10 1994-08-10 Single double effect absorption refrigerator Expired - Fee Related JP3086594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06188278A JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06188278A JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0854153A true JPH0854153A (en) 1996-02-27
JP3086594B2 JP3086594B2 (en) 2000-09-11

Family

ID=16220860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06188278A Expired - Fee Related JP3086594B2 (en) 1994-08-10 1994-08-10 Single double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3086594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342190C (en) * 2004-04-14 2007-10-10 三洋电机株式会社 Absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342190C (en) * 2004-04-14 2007-10-10 三洋电机株式会社 Absorption refrigerating machine

Also Published As

Publication number Publication date
JP3086594B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
KR101137582B1 (en) Single and double effect absorption refrigerator and operation control method therefor
JP3363518B2 (en) Operation control method of single double effect absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JPH07324839A (en) Single and double effect absorption hot and chilled water generator
JP3754206B2 (en) Single double-effect absorption chiller / heater
JPH09243197A (en) Cooling water temperature controller of absorption cooling and heating machine
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JP3813348B2 (en) Absorption refrigerator
JP2538424B2 (en) Single-double-effect absorption refrigerator
JP2538423B2 (en) Single-double-effect absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP2895974B2 (en) Absorption refrigerator
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3434280B2 (en) Absorption refrigerator and its operation method
JPH04313652A (en) Absorption refrigerating machine
JPH11211262A (en) Absorption type refrigerating machine system
JPS6113888Y2 (en)
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
KR960005669B1 (en) Double effective absorption type refrigerator
JPH04151469A (en) Control device for absorption type freezer
JP2001208443A (en) Absorption freezer
JPH0510627A (en) Absorption type apparatus for cooling/heating water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees