JPH0853722A - Production of magnesium-base alloy excellent in high temperature creep strength - Google Patents

Production of magnesium-base alloy excellent in high temperature creep strength

Info

Publication number
JPH0853722A
JPH0853722A JP18862994A JP18862994A JPH0853722A JP H0853722 A JPH0853722 A JP H0853722A JP 18862994 A JP18862994 A JP 18862994A JP 18862994 A JP18862994 A JP 18862994A JP H0853722 A JPH0853722 A JP H0853722A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
solid solution
creep
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18862994A
Other languages
Japanese (ja)
Inventor
Tomohiko Shintani
智彦 新谷
Hiroyuki Uchida
博幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18862994A priority Critical patent/JPH0853722A/en
Publication of JPH0853722A publication Critical patent/JPH0853722A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To develop an Mg-base alloy having high proof stress and excellent in high temp. creep properties by adding specified amounts of rare earth elements, Al or the like to Mg. CONSTITUTION:At the time of casting the molten metal of an Mg-base alloy having a compsn. contg., by weight, 0.2 to 7% lanthanoid-series rare earth elements such as La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu as well as Sc and Y and 1 to 10% Al or furthermore contg. <2% Mn, the casting is rapidly cooled at >=7 deg.C/sec cooling rate. Al is added to the Mg alloy to improve its proof stress, furthermore deterioration in the solid solution rate of rare earth elements as the elements for improving its high temp. creep caused by the addition of Al is prevented by the rapid cooling of the casting to enter >=0.2% rare earth elements into solid solution, and moreover, Mn is incorporated by <=2% as the element for improving its corrosion resistance. The Mg alloy casting having the minimum creep rate of less than 1X10<-4>%/hr at 5kgf/mm<2> (at 150 deg.C) and excellent in strength, creep properties and corrosion resistance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐力を有すると共に
高温クリープ特性にも優れたMg系合金を製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Mg-based alloy having high yield strength and excellent high temperature creep characteristics.

【0002】[0002]

【従来の技術】Mg系合金は、現在実用化されている各
種合金の中でも最も軽量な合金の1つであり、自動車産
業を始めとする各種産業分野、例えば輸送機器等におけ
る輸送コスト低減のための軽量化対策の一つとして、M
g系合金の利用分野も次第に増大してきている。
2. Description of the Related Art Mg-based alloys are one of the lightest alloys currently in practical use, and are used to reduce transportation costs in various industrial fields including the automobile industry, such as transportation equipment. As one of the measures to reduce the weight of
The fields of application of g-based alloys are also gradually increasing.

【0003】ところが、Mg系合金を例えば自動車用部
品の高温に曝される部位に適用するとクリープ変形を起
こし、当該部品の変形が問題になるばかりでなく、使用
時における部品取り付けボルトの緩みを促進させるとい
った問題が生じてくる。そこで、Mg系合金の高温クリ
ープ特性を高めるための手段として希土類元素を含有さ
せることが試みられているが、それだけでは引張強度や
耐力等の機械的特性を十分に高めることができないた
め、構造材料としての適性を欠く。
However, when the Mg-based alloy is applied to, for example, a portion of an automobile part exposed to a high temperature, creep deformation occurs and not only the deformation of the component becomes a problem, but also loosening of the component mounting bolt during use is promoted. The problem of causing it will arise. Therefore, it has been attempted to contain a rare earth element as a means for enhancing the high temperature creep property of the Mg-based alloy, but it is not possible to sufficiently enhance the mechanical properties such as tensile strength and proof stress alone, so that the structural material Lacks aptitude as.

【0004】この様なところから、例えば英国特許第8
75929号、特公昭54−11765号、同59−1
8457号公報等では、Mg系合金に有効量の希土類元
素を含有させると共に、Ag等の高価な合金元素を添加
することによって高温クリープ特性を高める方法が開発
された。しかしながらこれらの方法では、高価な合金元
素添加によるコストアップのため、自動車用等の汎用構
造材料としては経済上の理由から汎用性に問題がある。
更に特開昭46−6202号公報には、Mg系合金に希
土類元素と共にAlやMnを含有させることによって、
強度とクリープ特性を改善する方法も開示されており、
この方法であれば、用いる合金元素も安価であるので、
コスト上の難点を生じることもなく実用化し得るものと
考えられる。
From such a point, for example, British Patent No. 8
75929, Japanese Patent Publications 54-11765, 59-1
In Japanese Patent No. 8457, etc., a method has been developed in which an Mg-based alloy contains an effective amount of a rare earth element and an expensive alloying element such as Ag is added to enhance the high temperature creep property. However, these methods have a problem in versatility for economical reasons as a general-purpose structural material for automobiles because the cost is increased by adding expensive alloy elements.
Further, in JP-A-46-6202, a Mg-based alloy contains Al and Mn together with a rare earth element.
Methods for improving strength and creep properties are also disclosed,
With this method, the alloy elements used are also inexpensive,
It is considered that it can be put to practical use without causing any difficulty in cost.

【0005】しかしながら、この方法はあくまでもダイ
キャスト鋳造に特定されるため、特殊形状の鋳造品には
有効に活用できるが、ダイキャスト法の適用できない様
な分野への適用が困難であり、応用分野の汎用性に問題
がある。しかも上記公報には、Mg系合金中に添加され
るAlや希土類元素の存在形態等について十分な理論的
な究明がなされている訳ではなく、単にそれら合金元素
添加量の影響を示しているだけであって、冷却速度等に
よって大幅に変わってくると思われる各合金元素の固溶
状態などについては全く明らかにされていない。
However, since this method is limited to die-cast casting, it can be effectively used for castings with a special shape, but it is difficult to apply it to fields where the die-cast method cannot be applied. There is a problem with the versatility of. Moreover, the above-mentioned publication does not make a sufficient theoretical investigation into the existence forms of Al and rare earth elements added to the Mg-based alloy, but merely shows the influence of the addition amount of these alloy elements. However, the solid solution state of each alloying element, which is thought to change significantly depending on the cooling rate and the like, has not been clarified at all.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、Mg
系合金中における特に希土類元素の存在形態を明らかに
し、希土類元素添加による高温クリープ特性に悪影響を
及ぼすことの明らかなAlの障害を可及的に抑えて該A
l添加による強度向上効果も有効に発揮せしめ、強度特
性と高温クリープ特性を共に満足し得る様なMg系合金
の製法を確立しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to obtain Mg
In particular, by clarifying the existence form of rare earth elements in the Al-based alloy, it is possible to suppress Al obstruction due to the addition of rare earth elements, which has a detrimental effect on the high temperature creep characteristics, as much as possible.
It is intended to establish a manufacturing method of an Mg-based alloy that can effectively exert the strength improving effect by the addition of 1 and satisfy both strength characteristics and high temperature creep characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製法の構成は、希土類元素:0.
2〜7重量%、とAl:1〜10重量%を含み、残部が
実質的にMgよりなるMg系合金溶湯を、7.0℃/秒
以上の速度で急冷し、希土類元素を0.2重量%以上固
溶させると共に、応力5kgf/mm2 (at150
℃)で1×10-4%/hr以下の最小クリープ速度を得
るところに要旨を有するものである。上記方法を実施す
るに当たり、Mg系合金として2重量%以下のMnを更
に他の元素として含有するものを使用すると、当該Mg
系合金の耐食性も高めることができるので好ましい。
尚、本発明で用いられる希土類元素(RE)としては、
Sc,Yの他、La系列元素のLa,Ce,Pr,N
d,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu等が含まれ、これらは単独で使用
し得る他2種以上の混合物を使用することもでき、従っ
て希土類元素を主成分とする混合物であるミッシュメタ
ルも同様に使用することができる。
The structure of the manufacturing method according to the present invention, which has been able to solve the above-mentioned problems, is a rare earth element: 0.
2 to 7 wt% and Al: 1 to 10 wt%, the balance of the Mg-based alloy melt consisting essentially of Mg is rapidly cooled at a rate of 7.0 ° C./sec or more to reduce the rare earth element content to 0.2. With 5% by weight or more solid solution, a stress of 5 kgf / mm 2 (at150
The main point is to obtain a minimum creep rate of 1 × 10 −4 % / hr or less at (° C.). In carrying out the above method, when a Mg-based alloy containing 2% by weight or less of Mn as another element is used,
It is preferable because the corrosion resistance of the system alloy can be enhanced.
In addition, as the rare earth element (RE) used in the present invention,
In addition to Sc, Y, La series elements La, Ce, Pr, N
d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu, etc. are included, and these can be used alone or as a mixture of two or more kinds. Therefore, a misch metal which is a mixture containing a rare earth element as a main component is also used. be able to.

【0008】[0008]

【作用および実施例】以下、実験の経緯を追って本発明
の構成および作用効果を詳細に説明する。まず図1は、
Mg−2%RE合金のクリープ曲線(応力:10kg/
mm2 、温度:150℃)を示したものであり、この合
金は耐力が低いため、荷重を付加した瞬間の変化量、即
ち瞬間歪みは大きいけれども、その直後にクリープ歪み
が殆どなくなってそれ以降は変形を起こさないという、
非常に優れたクリープ特性を示す。従って、こうしたク
リープ特性を実用面で有効に生かすには、Mg−RE系
合金のこうした優れたクリープ特性を損なうことなく、
耐力を実用レベルにまで高めることのできる第三合金元
素の添加が必要となる。
OPERATION AND EXAMPLES Hereinafter, the structure and operation and effect of the present invention will be described in detail with the background of the experiment. First of all,
Creep curve of Mg-2% RE alloy (stress: 10 kg /
mm 2, a temperature: 0.99 ° C.) and shows the, this alloy has a low yield strength, the amount of change the moment of adding the load, i.e. the moment although distortion is large, immediately thereafter creep strain most gone later Does not cause deformation,
It exhibits very good creep properties. Therefore, in order to effectively utilize such creep characteristics in practical use, without impairing such excellent creep characteristics of the Mg-RE alloy,
It is necessary to add a third alloying element that can increase the yield strength to a practical level.

【0009】ここで、Mg合金にRE元素を添加するこ
とによって高温クリープ特性が高められる理由を追求し
たところ、添加されたRE元素のうちクリープ特性の向
上に好影響を及ぼすのはMg合金中に固溶したRE元素
であり、即ちRE元素が固溶した状態のMg系合金が高
温クリープ変形を受けた時に、0.1μm以下の非常に
微細なMg−RE系化合物が析出し、これが高温クリー
プ特性の向上に顕著な影響をもたらしていることが確認
された。
Here, when the reason why the high temperature creep property is enhanced by adding the RE element to the Mg alloy was investigated, it was found that among the added RE elements, the Mg alloy had a favorable effect on the improvement of the creep property. When the Mg-based alloy, which is a solid solution of RE element, that is, in the state where the RE element is in solid solution, is subjected to high-temperature creep deformation, very fine Mg-RE-based compound of 0.1 μm or less is deposited, which is high-temperature creep. It was confirmed that it had a remarkable influence on the improvement of the characteristics.

【0010】ところが、このMg−RE系合金に、耐力
向上元素としてAlを含有させると、例えば図2にも示
す様に上記Mg−RE系化合物の析出に必要な合金中の
RE元素の固溶量が急激に低下し、ひいては、RE元素
添加による高温クリープ特性改善効果が殆ど発揮されな
くなることが明らかとなった。尚、こうしたRE元素の
固溶量低減に与えるAl添加量の影響は、約1.0重量
%の少量添加で顕著に現われ、それ以上にAl添加量を
増大してもRe元素の固溶量は殆ど変わらない。従っ
て、Mg−RE系合金に耐力向上元素として1重量%以
上のAlを含有させたMg−RE−Al系合金におい
て、RE元素含有による高温クリープ特性向上効果を有
効に発揮させるには、Al含有にも拘らず当該合金中に
おけるRE元素の固溶量を高めることのできる他の手段
を明らかにする必要がある。
However, when Al is added as a proof stress improving element to this Mg-RE type alloy, for example, as shown in FIG. 2, the solid solution of the RE element in the alloy necessary for the precipitation of the Mg-RE type compound is obtained. It was revealed that the amount decreased sharply, and by extension, the effect of improving the high temperature creep characteristics by adding the RE element was hardly exhibited. The influence of the added amount of Al on the reduction of the solid solution amount of the RE element appears remarkably when a small amount of about 1.0 wt% is added, and even if the added amount of Al is further increased, the solid solution amount of the Re element is increased. Is almost unchanged. Therefore, in an Mg-RE-Al based alloy containing 1 wt% or more of Al as a proof stress improving element in the Mg-RE based alloy, in order to effectively exert the high temperature creep property improving effect by the RE element inclusion, Nevertheless, it is necessary to clarify other means capable of increasing the solid solution amount of RE element in the alloy.

【0011】そこで、こうした観点にたって様々の角度
から研究を進めたところ、Mg−RE−Al系合金にお
いても、当該合金溶湯を鋳造する際の溶湯冷却速度を
7.0℃/sec以上に高めてやれば、Alの共存にも
拘らすRE元素の固溶量を著しく高めることができ、ひ
いては当該合金鋳造品の高温クリープ特性を著しく高め
得ることが明らかとなった。
From this point of view, studies have been conducted from various angles. Even in the Mg-RE-Al alloy, the molten metal cooling rate when casting the molten alloy is increased to 7.0 ° C./sec or more. It was revealed that the solid solution amount of the RE element due to the coexistence of Al can be remarkably increased, and the high temperature creep property of the alloy cast product can be remarkably enhanced.

【0012】ちなみに図3は、Mg−2%RE−4%A
l合金溶湯を鋳造する際における冷却速度と、該合金鋳
造品におけるRE固溶量の関係を、また表1および図4
は、得られた鋳造品の冷却速度と最小クリープ速度の関
係を調べた結果を示したものであり、図3からは、鋳造
時の冷却速度が7℃/secを超えたあたりからRE固
溶量は明らかな増大傾向を示し、特に10℃/sec以
上になるとRE固溶量が急増すること、また表1および
図4からは、冷却速度が7℃/sec以上、より明確に
は9℃/sec以上になると、最小クリープ速度が1×
10-4%/hr以下の非常に小さい値を示す様になるこ
とが分かる。
By the way, FIG. 3 shows Mg-2% RE-4% A.
Table 1 and FIG. 4 show the relationship between the cooling rate at the time of casting a molten alloy and the amount of RE solid solution in the cast alloy.
Shows the results of examining the relationship between the cooling rate of the obtained cast product and the minimum creep rate. From FIG. 3, it is seen that the RE solid solution starts when the cooling rate during casting exceeds 7 ° C / sec. The amount of RE solid solution increases sharply at 10 ° C./sec or more, and from Table 1 and FIG. 4, the cooling rate is 7 ° C./sec or more, more clearly 9 ° C. / Sec or more, the minimum creep speed is 1 ×
It can be seen that a very small value of 10 −4 % / hr or less is exhibited.

【0013】[0013]

【表1】 [Table 1]

【0014】即ち、図3,4からも明らかである様に、
冷却速度とRE元素固溶量および最小クリープ速度の間
には明らかな相関関係が認められ、これらの結果を総合
すると、鋳造時の冷却速度を7℃/sec以上に設定す
ることによって0.2重量%以上のRE元素の固溶量を
確保すれば、得られるMg−RE−Al合金鋳造品の高
温クリープ特性を最小クリープ速度で1×10-4℃/h
r以下の非常に優れたものにできることが確認できる。
That is, as is clear from FIGS. 3 and 4,
A clear correlation was found between the cooling rate, the amount of RE elemental solid solution, and the minimum creep rate. These results are summarized as follows: By setting the cooling rate during casting to 7 ° C / sec or more, If a solid solution amount of RE element of not less than wt% is secured, the high temperature creep property of the obtained Mg-RE-Al alloy cast product is 1 x 10 -4 ° C / h at the minimum creep rate.
It can be confirmed that it can be made very excellent with r or less.

【0015】尚、上記の様な冷却速度を得るための具体
的な手段としては、鋳造品の肉厚を極力薄くして合金溶
湯の熱容量を小さくすることにより冷却速度を高める方
法、鋳型を水冷構造としたり或は熱伝導性の高い鋳型材
料を用いる等によって冷却速度を高める方法等を採用す
ることができ、更にはロール鋳造法や水アトマイズ法な
どによって急冷を行なうことも可能であり、冷却手段に
は一切制限されない。
As specific means for obtaining the above cooling rate, a method of increasing the cooling rate by reducing the heat capacity of the molten alloy by reducing the wall thickness of the cast product as much as possible, and cooling the mold with water It is possible to adopt a method of increasing the cooling rate by using a structure or using a mold material having high heat conductivity, etc. Furthermore, it is also possible to perform rapid cooling by a roll casting method or a water atomizing method. There are no restrictions on the means.

【0016】また、上記の結果から考察すると、RE元
素固溶量の増大による高温クリープ特性の向上効果は、
冷却速度を7℃/sec以上、より好ましくは10℃/
sec以上とすることにより、RE元素固溶量を0.2
重量%以上、より好ましくは0.5重量%以上とするこ
とによって顕著に現われるが、冷却速度を10℃/se
c以上に高めてRE元素固溶量を1.0%程度以上に高
めても、最小クリープ速度のそれ以上の低下は殆ど見ら
れない。こうした傾向からすると、RE元素固溶量増大
による高温クリープ特性向上効果は、RE元素固溶量で
0.2〜1.0重量%を確保すれば十分に発揮させるこ
とができ、従ってこの様な条件設定を行なうことによっ
て本発明の目的を達成できることが分かる。
Considering the above results, the effect of improving the high temperature creep characteristics by increasing the amount of RE element solid solution is as follows:
Cooling rate is 7 ° C / sec or more, more preferably 10 ° C / sec
By setting it to be not less than sec, the solid solution amount of RE element is 0.2.
When the cooling rate is 10 ° C./se, which is remarkably exhibited by setting the content by weight% or more, more preferably 0.5 weight% or more.
Even if the RE elemental solid solution amount is increased to about 1.0% or more by increasing it to c or more, almost no further decrease in the minimum creep rate is observed. From such a tendency, the effect of improving the high temperature creep property by increasing the solid solution amount of the RE element can be sufficiently exerted if the solid solution amount of the RE element is 0.2 to 1.0% by weight. It can be seen that the object of the present invention can be achieved by setting the conditions.

【0017】従って、本発明の目的を達成するためのR
E元素含有率は、少なくとも0.2重量%以上とすべき
であるが、RE元素の固溶量には自ずと限界があり、し
かも前述の如くRE元素固溶量が1.0%を超えてもそ
れ以上に高温クリープ特性が向上する訳ではなく、多過
ぎると例えば表2に示す如く鋳造品の伸び率が明らかに
低下傾向を示す様になるので、好ましくは5%程度以
下、より好ましくは2.5%程度以下に抑えることが望
ましい。
Therefore, in order to achieve the object of the present invention, R
The content of the E element should be at least 0.2% by weight or more, but the solid solution amount of the RE element is naturally limited, and as described above, the solid solution amount of the RE element exceeds 1.0%. However, the high-temperature creep property is not improved more than that, and if it is too much, the elongation rate of the cast product tends to decrease obviously as shown in Table 2, so that it is preferably about 5% or less, more preferably It is desirable to suppress it to about 2.5% or less.

【0018】[0018]

【表2】 [Table 2]

【0019】またAlについては、前記図2にも示した
様に含有量を1重量%を超えて多量含有させてもRE元
素の固溶を阻害する効果は殆ど変わらず、その悪影響は
前述の様な冷却速度の設定によって抑えることができる
ので、Al添加による強度向上効果が有効に発揮できる
1〜10重量%程度までの含有が可能である。しかし、
下記表3からも明らかである様に、Al含有量が多過ぎ
ると、合金鋳造品の伸び率に悪影響が現われてくるの
で、好ましくは10重量%以下、より好ましくは6重量
%程度以下に抑えることが望まれる。
As for Al, as shown in FIG. 2, even if the content of Al exceeds 1% by weight, the effect of inhibiting the solid solution of RE element hardly changes, and the adverse effects thereof are as described above. Since it can be suppressed by setting such a cooling rate, the content can be up to about 1 to 10% by weight so that the effect of improving the strength by adding Al can be effectively exhibited. But,
As is clear from Table 3 below, if the Al content is too high, the elongation of the alloy cast product will be adversely affected, so it is preferably 10% by weight or less, more preferably 6% by weight or less. Is desired.

【0020】[0020]

【表3】 [Table 3]

【0021】更に本発明では、RE元素とAlの含有に
よる耐力と高温クリープ特性の改善に加えて、適量のM
nを含有させることによって耐食性を高めることも、実
用面で非常に有効である。ちなみに表4は、Mg−2%
RE−5%Al系合金に適量のMnを添加したものにつ
いて腐食減量(塩化ナトリウム水溶液を試料に噴霧し、
腐食を加速させることにより材料の耐食性を評価する試
験、試験条件:塩濃度5%、試験温度35℃)に与える
影響を調べた結果を示したものであり、この結果からも
明らかである様に2.0重量%程度以下のMnを複合添
加すると、合金鋳造品の耐食性を有意に高めることがで
きる。但しMn含有量が多くなり過ぎると合金の伸びが
低下する(合金が脆化する)傾向が現われてくるので、
Mn含有量は2.0重量%程度以下に抑えるべきであ
る。
Further, according to the present invention, in addition to the improvement of proof stress and high temperature creep characteristics by the inclusion of RE element and Al, an appropriate amount of M is added.
Increasing the corrosion resistance by incorporating n is also very effective in practical use. By the way, Table 4 shows Mg-2%
Corrosion loss of RE-5% Al alloy with appropriate amount of Mn added (sodium chloride solution was sprayed on the sample,
This is a test for evaluating the corrosion resistance of the material by accelerating the corrosion, and the results of examining the effect on the test conditions: salt concentration 5%, test temperature 35 ° C. are shown. If Mn of about 2.0 wt% or less is added in combination, the corrosion resistance of the alloy cast product can be significantly improved. However, if the Mn content becomes too large, the elongation of the alloy tends to decrease (the alloy becomes brittle).
The Mn content should be kept below about 2.0% by weight.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】本発明は以上の様に構成されており、合
金溶湯の冷却速度を規定することによって、Al複合添
加によるRE元素固溶量の激減を防止し、0.2重量%
以上のRE元素固溶量を確保することにより、耐力およ
び高温クリープ特性を共に高めることができ、更には適
量のMnを複合添加することによって耐食性を高めるこ
とも可能であり、強度、クリープ特性、耐食性の全ての
要求特性を満足する高性能のMg系合金鋳造品を提供し
得ることになった。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and by defining the cooling rate of the molten alloy, it is possible to prevent the RE element solid solution amount from being drastically reduced by the addition of Al and to reduce the content of 0.2 wt%
By securing the above RE element solid solution amount, both the yield strength and the high temperature creep property can be enhanced, and further, it is possible to enhance the corrosion resistance by adding an appropriate amount of Mn in combination, the strength, the creep property, It has become possible to provide a high-performance Mg-based alloy cast product that satisfies all the required properties of corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】Mg−2%Re合金の歪み量と時間の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the strain amount of Mg-2% Re alloy and time.

【図2】Mg合金中のAl量がRE固溶量に与える影響
を示すグラフである。
FIG. 2 is a graph showing the influence of the amount of Al in the Mg alloy on the amount of RE solid solution.

【図3】冷却速度がRE固溶量に与える影響を示すグラ
フである。
FIG. 3 is a graph showing the influence of the cooling rate on the RE solid solution amount.

【図4】鋳造時の冷却速度と最小クリープ速度の関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the cooling rate during casting and the minimum creep rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素:0.2〜7重量%、とA
l:1〜10重量%を含み、残部が実質的にMgよりな
るMg系合金溶湯を、7.0℃/秒以上の速度で急冷
し、希土類元素を0.2重量%以上固溶させると共に、
応力5kgf/mm2 (at150℃)で1×10-4
/hr以下の最小クリープ速度を得ることを特徴とする
高温クリープ特性に優れたMg系合金の製法。
1. A rare earth element: 0.2 to 7% by weight, and A
1: 1 to 10% by weight, the balance of the Mg-based alloy melt consisting essentially of Mg is rapidly cooled at a rate of 7.0 ° C./sec or more to form a solid solution of 0.2% by weight or more of a rare earth element. ,
1 × 10 -4 % at a stress of 5 kgf / mm 2 (at 150 ° C)
A method for producing a Mg-based alloy having excellent high-temperature creep characteristics, which is characterized by obtaining a minimum creep rate of / hr or less.
【請求項2】 Mg系合金が、更に他の元素として2重
量%以下のMnを含有するものである請求項1に記載の
Mg系合金の製法。
2. The method for producing a Mg-based alloy according to claim 1, wherein the Mg-based alloy further contains 2% by weight or less of Mn as another element.
JP18862994A 1994-08-10 1994-08-10 Production of magnesium-base alloy excellent in high temperature creep strength Withdrawn JPH0853722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18862994A JPH0853722A (en) 1994-08-10 1994-08-10 Production of magnesium-base alloy excellent in high temperature creep strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18862994A JPH0853722A (en) 1994-08-10 1994-08-10 Production of magnesium-base alloy excellent in high temperature creep strength

Publications (1)

Publication Number Publication Date
JPH0853722A true JPH0853722A (en) 1996-02-27

Family

ID=16227048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18862994A Withdrawn JPH0853722A (en) 1994-08-10 1994-08-10 Production of magnesium-base alloy excellent in high temperature creep strength

Country Status (1)

Country Link
JP (1) JPH0853722A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
GB2384248B (en) * 2001-08-13 2005-06-22 Honda Motor Co Ltd Magnesium alloy
WO2005108634A1 (en) * 2004-05-10 2005-11-17 Norsk Hydro Technology B.V. Magnesium alloy having improved elevated temperature performance
EP1847626A2 (en) * 2006-04-17 2007-10-24 Tetsuichi Motegi Magnesium alloys
JP2008075176A (en) * 2006-08-22 2008-04-03 Kobe Steel Ltd Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP2013524004A (en) * 2010-03-25 2013-06-17 マグネシウム エレクトロン リミテッド Heavy rare earth element-containing magnesium alloy
CN104651641A (en) * 2014-10-08 2015-05-27 张亚荟 Method for optimizing magnesium alloy property by adding La and Sc
CN107893181A (en) * 2017-10-26 2018-04-10 安徽恒利增材制造科技有限公司 A kind of magnesium alloy ingot
CN109722580A (en) * 2019-03-07 2019-05-07 洛阳理工学院 One kind anode magnesium alloy containing Dy and the preparation method and application thereof
CN109750199A (en) * 2019-03-07 2019-05-14 洛阳理工学院 A kind of anode magnesium alloy and the preparation method and application thereof
CN109750198A (en) * 2019-03-07 2019-05-14 洛阳理工学院 One kind magnesium-alloy anode material containing Eu and the preparation method and application thereof
KR20200073472A (en) * 2018-12-14 2020-06-24 울산과학기술원 Magnesium alloy materials and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327231A (en) * 2001-03-02 2002-11-15 Mitsubishi Alum Co Ltd Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
GB2384248B (en) * 2001-08-13 2005-06-22 Honda Motor Co Ltd Magnesium alloy
WO2005108634A1 (en) * 2004-05-10 2005-11-17 Norsk Hydro Technology B.V. Magnesium alloy having improved elevated temperature performance
EP1847626A2 (en) * 2006-04-17 2007-10-24 Tetsuichi Motegi Magnesium alloys
EP1847626A3 (en) * 2006-04-17 2007-10-31 Tetsuichi Motegi Magnesium alloys
JP2008075176A (en) * 2006-08-22 2008-04-03 Kobe Steel Ltd Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP2013524004A (en) * 2010-03-25 2013-06-17 マグネシウム エレクトロン リミテッド Heavy rare earth element-containing magnesium alloy
CN104651641A (en) * 2014-10-08 2015-05-27 张亚荟 Method for optimizing magnesium alloy property by adding La and Sc
CN107893181A (en) * 2017-10-26 2018-04-10 安徽恒利增材制造科技有限公司 A kind of magnesium alloy ingot
KR20200073472A (en) * 2018-12-14 2020-06-24 울산과학기술원 Magnesium alloy materials and method for producing the same
WO2020122472A3 (en) * 2018-12-14 2020-10-01 울산과학기술원 Magnesium alloy material and method for producing same
JP2022513645A (en) * 2018-12-14 2022-02-09 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Magnesium alloy material and its manufacturing method
CN109722580A (en) * 2019-03-07 2019-05-07 洛阳理工学院 One kind anode magnesium alloy containing Dy and the preparation method and application thereof
CN109750199A (en) * 2019-03-07 2019-05-14 洛阳理工学院 A kind of anode magnesium alloy and the preparation method and application thereof
CN109750198A (en) * 2019-03-07 2019-05-14 洛阳理工学院 One kind magnesium-alloy anode material containing Eu and the preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3204572B2 (en) Heat resistant magnesium alloy
Closset et al. Structure and properties of hypoeutectic Al-Si-Mg alloys modified with pure strontium
CN1088762C (en) Magnesium alloy having superior elevated-temperature properties and die castability
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
KR100199362B1 (en) Aluminum alloy for die casting and ball joint using the same
EP1882754B1 (en) Aluminium alloy
JPH0853722A (en) Production of magnesium-base alloy excellent in high temperature creep strength
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
US6838049B2 (en) Room-temperature-formable magnesium alloy with excellent corrosion resistance
US5023051A (en) Hypoeutectic aluminum silicon magnesium nickel and phosphorus alloy
EP0494900B1 (en) Strontium-magnesium-aluminum master alloy
JP2002105611A (en) Method for manufacturing automobile part by die casting
JPH07331375A (en) Heat resistant magnesium alloy for casting
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
JPH0814011B2 (en) Zinc base alloy for high strength die casting
RU2211872C1 (en) Aluminum-scandium master alloy for production of aluminum and magnesium alloys
JPH03253538A (en) High corrosion-resistant magnesium alloy
JP3147244B2 (en) Manufacturing method of material for plastic working
JP3107267B2 (en) Heat resistant magnesium alloy
JP2002129271A (en) Aluminum alloy and method for producing casting made of aluminum alloy
JPH0823058B2 (en) Superplastic magnesium alloy
JPH08157981A (en) Casting of heat resistant magnesium alloy
JP2001107171A (en) Magnesium alloy and magnesium alloy heat resistant member excellent in heat resistance and castability
JPH0416533B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106