JPH0853720A - Dissolving method of platinum group metal in collector metal - Google Patents

Dissolving method of platinum group metal in collector metal

Info

Publication number
JPH0853720A
JPH0853720A JP20613694A JP20613694A JPH0853720A JP H0853720 A JPH0853720 A JP H0853720A JP 20613694 A JP20613694 A JP 20613694A JP 20613694 A JP20613694 A JP 20613694A JP H0853720 A JPH0853720 A JP H0853720A
Authority
JP
Japan
Prior art keywords
metal
hydrochloric acid
platinum group
collector metal
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20613694A
Other languages
Japanese (ja)
Inventor
Michihiro Akahori
道弘 赤堀
Masayuki Nakamura
正幸 中村
Yoichi Kakimoto
羊一 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP20613694A priority Critical patent/JPH0853720A/en
Publication of JPH0853720A publication Critical patent/JPH0853720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently dissolve a platinum group metal in a collector metal by firing the collector metal and heating and dissolving it in hydrochloric acid while adding an oxidizing agent. CONSTITUTION:A hardly soluble waste catalyst powder (collector metal) containing platinum group metal with various impurities is fired at 700-100 deg.C for 2-12hr in closed state. The collector metal is heated and dissolved in the hydrochloric acid by stirring and keeping at 60-100 deg.C for 2-10hr while adding the oxidizing agent (H2O2). In this case, 700-1200ml hydrochloric acid of 35% concn. and 400-700ml H2O2 of 35% concn. per 100g collector metal are used. As a result, the platinum group metal is dissolved at about 87.5% dissolution rate without using a special reagent and repeating complicated processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種不純物とともに白金
族金属を含有する難溶解性廃触媒粉末(以下、コレクタ
ーメタルと称する)から白金族金属を効率的に溶解する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently dissolving a platinum group metal from a sparingly soluble waste catalyst powder (hereinafter referred to as a collector metal) containing a platinum group metal together with various impurities.

【0002】[0002]

【従来の技術およびその問題点】使用済自動車触媒はマ
フラーごと溶解し、セラミックハニカムの場合は、Si
層に担持している触媒物質(Pt,Pd,Rh)をFe
層に位相(PHASE)させてアトマイズして粉末にし、ステ
ンレスハニカムの場合は、単に溶解してアトマイズす
る。とちらの場合にもFeが白金族金属を補集すること
から、通称コレクターメタルと呼ばれるが、セラミック
ハニカムの比率が大きいとSi品位が高くなると予想さ
れる。この粉末は白金族金属(Pt,Pd,Rh)を微
量含有するものの、Feをベースとしてその他の各種金
属(Cu,Ni,Cr等)および非金属(Si,P,S
等)を含有するため、処理が非常に困難である。今、そ
の品位例を表1に示す。
2. Description of the Prior Art Used automobile catalysts are dissolved together with the muffler, and in the case of a ceramic honeycomb, Si is used.
Fe as a catalyst substance (Pt, Pd, Rh) supported on the layer
The layer is phased and atomized into powder, and in the case of a stainless honeycomb, it is simply melted and atomized. In this case as well, since Fe collects the platinum group metal, it is commonly called a collector metal, but it is expected that the Si quality will increase if the ratio of the ceramic honeycomb is large. Although this powder contains a trace amount of platinum group metals (Pt, Pd, Rh), it is based on Fe and other various metals (Cu, Ni, Cr, etc.) and nonmetals (Si, P, S).
Etc.), it is very difficult to process. Table 1 shows an example of the quality.

【0003】[0003]

【表1】 [Table 1]

【0004】従来、上記のようなコレクターメタル中の
白金族金属を溶解するには、前処理を行わず、王水また
は塩酸単独で溶解していた。
Conventionally, in order to dissolve the platinum group metal in the collector metal as described above, no pretreatment was carried out, and aqua regia or hydrochloric acid alone was dissolved.

【0005】しかしながら、従来方法の内、塩酸単独で
溶解する方法では、溶出率が30〜80%と低く、しか
もその溶出率はかなりバラツキの大きいものであった。
バラツキは原料中のSi品位によるもので、一般的にS
i品位が高いと溶出率は低かった。未溶出分は残渣中に
残留して工程繰返しとなるため、ワンパスでの白金族金
属の回収率が低かった。
However, among the conventional methods, the method of dissolving with hydrochloric acid alone has a low elution rate of 30 to 80%, and the elution rate varies considerably.
The variation is due to the Si grade in the raw material, and generally S
When the i grade was high, the elution rate was low. The uneluted content remained in the residue and was repeated in the process, so the recovery rate of the platinum group metal in one pass was low.

【0006】また、王水による溶解の場合にも、溶解す
る際の容器の材質が限られてくるので、実操業を考える
と、規模を大きくしたとき設備にコストがかかる恐れが
ある。また、塩酸対硝酸比3:1の王水は後工程に支障
を来し、脱硝酸処理が必要となるものであった。
Also, in the case of dissolution with aqua regia, the material of the container for dissolution is limited, so considering the actual operation, there is a risk that the equipment will be expensive when the scale is increased. Further, aqua regia with a hydrochloric acid to nitric acid ratio of 3: 1 interfered with the subsequent steps and required denitrification treatment.

【0007】本発明の目的は、特殊な試薬を使用せず、
また複雑な方法や繰返しによらずにワンパスでコレクタ
ーメタル中の白金族金属を効率よく溶解する方法を提供
することにあり、後工程の処理の都合から塩酸系で溶解
することを目的とする。
The object of the present invention is to use no special reagents,
Another object of the present invention is to provide a method for efficiently dissolving the platinum group metal in the collector metal in one pass without depending on a complicated method or repetition, and an object of the invention is to dissolve the platinum group metal in a hydrochloric acid system for the convenience of the treatment in the subsequent step.

【0008】[0008]

【問題点を解決するための手段】本発明は、コレクター
メタルを焼成した後、塩酸に酸化剤を添加しながら加熱
溶解することを特徴とするものである。以下、本発明を
前段の焼成工程と、後段の溶解工程とに分けてそれぞれ
説明する。
The present invention is characterized in that after the collector metal is fired, it is heated and dissolved while adding an oxidizing agent to hydrochloric acid. Hereinafter, the present invention will be described by dividing it into a pre-stage firing step and a post-stage melting step.

【0009】焼成工程 コレクターメタルはFeをベースとした複雑な酸化物、
塩化物、硫化物等の混合粉末で、示差熱分析によると、
850〜870℃付近に形態が変化していると思われる
ポイントがあった。このため、本発明者らは、この温度
付近で焼成することにより、コレクターメタルを溶解し
やすい形態に変化させることが可能と考えた。実際に焼
成することにより、後記する実施例より明らかなように
溶出率は87.5%と著しく向上する。
Firing step The collector metal is a complex oxide based on Fe,
According to the differential thermal analysis, it is a mixed powder of chloride, sulfide, etc.
There was a point around 850 to 870 ° C where the morphology seemed to have changed. Therefore, the present inventors considered that it is possible to change the collector metal into a form in which it is easily melted by firing at around this temperature. By actually firing, the elution rate is remarkably improved to 87.5% as will be apparent from the examples described later.

【0010】焼成する際の温度は700〜1000℃、
より好ましくは850〜900℃とし、焼成時間は2時
間〜12時間、好ましくは5時間〜7時間とする。な
お、焼成は好ましくは焼成炉内で密封状態で保持するよ
うにする。
The firing temperature is 700 to 1000 ° C.,
More preferably, the temperature is set to 850 to 900 ° C., and the firing time is set to 2 hours to 12 hours, preferably 5 hours to 7 hours. The firing is preferably held in a firing furnace in a sealed state.

【0011】溶解工程 使用する塩酸濃度は、コレクターメタル100gに対し
て35%濃度の塩酸700〜1200ml、より好まし
くは1000ml、酸化剤として35%H22、400
〜700ml、より好ましくは600mlを添加して溶
解する。塩酸およびH22の量は、コレクターメタルの
量に対して塩酸単独でコレクターメタル濃度100g/
lが最適である。塩酸量に対してなるべく多くのコレク
ターメタルを溶かしたいが、100g/lを越えると、
溶解後の濾過が悪化し、150g/lでは極端に悪化す
る。濃塩酸5に対しての酸化剤添加比は1〜4、好まし
くは3とする。H22の添加量は前述のように濃塩酸5
に対して3が最適条件であるが、それ以上添加しても溶
出率は改善されないし、入れすぎると溶解後の酸濃度が
低くなるのでよくない。H22の添加量は、塩酸5に対
して1程度でも溶出率を良くする効果が高いが、全く使
用しないと、溶出率は極端に悪くなる。実用上少なくと
も対塩酸添加比5:1以上とすべきである。
Dissolution step The concentration of hydrochloric acid used is 700 to 1200 ml of hydrochloric acid having a concentration of 35% with respect to 100 g of collector metal, more preferably 1000 ml, and 35% H 2 O 2 and 400 as oxidizers.
~ 700 ml, more preferably 600 ml is added and dissolved. The amount of hydrochloric acid and H 2 O 2 is 100 g / mol of collector metal with respect to the amount of collector metal.
l is optimal. I want to dissolve as much collector metal as possible against the amount of hydrochloric acid, but if it exceeds 100 g / l,
Filtration after dissolution is deteriorated, and at 150 g / l, it is extremely deteriorated. The addition ratio of the oxidizing agent to 5 of concentrated hydrochloric acid is 1 to 4, preferably 3. The amount of H 2 O 2 added is 5% concentrated hydrochloric acid as described above.
On the other hand, 3 is the optimum condition, but if it is added more than that, the elution rate is not improved, and if it is added too much, the acid concentration after dissolution becomes low, which is not preferable. Even if the amount of H 2 O 2 added is about 1 with respect to hydrochloric acid 5, the effect of improving the elution rate is high, but if not used at all, the elution rate becomes extremely poor. Practically, the ratio of addition of hydrochloric acid should be at least 5: 1.

【0012】溶解する際の温度は、60〜100℃、よ
り好ましくは80℃に保持し、2〜10時間、より好ま
しくは6時間撹拌保持すると良好な濾過速度が得られ
る。。
A good filtration rate can be obtained by maintaining the temperature at the time of dissolution at 60 to 100 ° C., more preferably at 80 ° C., and stirring for 2 to 10 hours, more preferably 6 hours. .

【0013】本発明における溶解工程を示せば、以下の
ようである。すなわち、H22は強い酸化力を持ち、H
Cl中に添加すると発泡して分解する。
The melting process in the present invention is as follows. That is, H 2 O 2 has a strong oxidizing power,
When added to Cl, it foams and decomposes.

【式1】 また、塩酸に作用して、(Equation 1) Also, by acting on hydrochloric acid,

【式2】 このときに、コレクターメタル中のPt,Pd,Rhの
溶出を補助する。同時に発生するH2Oが溶解後の酸濃
度を低くするので、必要最小な量を添加することが重要
である。
(Equation 2) At this time, it assists the elution of Pt, Pd, and Rh in the collector metal. Since H 2 O generated at the same time lowers the acid concentration after dissolution, it is important to add the necessary minimum amount.

【0014】[0014]

【実施例1】コレクターメタル600gを黒鉛坩堝に装
入し、蓋をのせて密封したものを電気炉中で870℃で
6時間焼成した。その後、ビーカーに装入し、35%塩
酸6リットル(対コレクターメタル濃度100g/l)
を加えて80℃まで昇温保持し、35%H22を対塩酸
添加比が5:3、5:1となるよう量を変えて添加しな
がら、H22の添加比が5:3のものは6時間、H22
の添加比が5:1のものは4時間撹拌しながら溶解し
た。溶解後は冷却し、濾過し分析を行った。同じ条件で
5バッチ処理し、Pt,Pd,Rhの平均溶出率を求め
たところ、それぞれ表2に示すような結果が得られた。
Example 1 600 g of collector metal was placed in a graphite crucible, and the one sealed with a lid was baked at 870 ° C. for 6 hours in an electric furnace. After that, load into a beaker and add 6 liters of 35% hydrochloric acid (concentration of collector metal to 100 g / l).
Was added and kept at a temperature of 80 ° C., and 35% H 2 O 2 was added while changing the amount so that the addition ratio to hydrochloric acid was 5: 3 and 5: 1, while the addition ratio of H 2 O 2 was 5%. : 3 hours for 6 hours, H 2 O 2
The addition ratio of 5: 1 was dissolved with stirring for 4 hours. After dissolution, it was cooled, filtered and analyzed. When the average dissolution rate of Pt, Pd, and Rh was obtained by treating 5 batches under the same conditions, the results shown in Table 2 were obtained.

【0015】[0015]

【実施例2】実施例1と同じ条件で焼成温度、焼成時間
を変えて試験した。すなわち、焼成条件は800℃で6
時間、870℃で1時間および500℃で6時間焼成し
た。その後の塩酸濃度およびH22の添加比は5:3と
なるようにして実施例1と同様にしてPt,Pd,Rh
の平均溶出率を求めた。それらの結果も表2に示す。
Example 2 A test was conducted under the same conditions as in Example 1, except that the firing temperature and firing time were changed. That is, the firing conditions are 800 ° C. and 6
Baking for 1 hour at 870 ° C. and 6 hours at 500 ° C. Thereafter, the hydrochloric acid concentration and the H 2 O 2 addition ratio were set to 5: 3, and Pt, Pd, and Rh were added in the same manner as in Example 1.
The average dissolution rate of The results are also shown in Table 2.

【0016】[0016]

【比較例1〜3】比較例として、実施例1と同様である
が、それぞれ、焼成を行わずに試験した例(比較例
1)、塩酸は加えたがH22を添加しなかった例(比較
例2)につきそれぞれ実施例1と同様にしてPt,P
d,Rhの平均溶出率を求めたところ、表2に示すよう
な結果が得られた。
[Comparative Examples 1 to 3] As comparative examples, the same as Example 1 except that each was tested without firing (Comparative Example 1), hydrochloric acid was added, but H 2 O 2 was not added. For each example (Comparative Example 2), Pt, P
When the average dissolution rates of d and Rh were determined, the results shown in Table 2 were obtained.

【0017】[0017]

【従来例】従来例として、王水で溶解した場合の焼成あ
りの場合と焼成なしの場合につきそれぞれ試験した。ま
た、濃塩酸単独使用した場合につき試験した。それらの
結果を表2に示す。
PRIOR ART As a conventional example, tests were carried out with and without calcination when dissolved in aqua regia. In addition, the test was performed using concentrated hydrochloric acid alone. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上のような本発明によれば、従来にお
ける王水のような特殊な試薬を使用せず、また複雑な方
法や繰返しによらずにワンパスでコレクターメタル中の
白金族金属を効率よく溶解することができる。
As described above, according to the present invention, the platinum group metal in the collector metal can be removed in one pass without using a special reagent such as conventional aqua regia and without using a complicated method or repetition. It can be dissolved efficiently.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 難溶解性廃触媒粉末(コレクターメタ
ル)を焼成した後、塩酸に酸化剤を添加しながら加熱溶
解することを特徴とするコレクターメタル中の白金族金
属の溶解方法。
1. A method for dissolving a platinum group metal in a collector metal, which comprises heating a hardly soluble waste catalyst powder (collector metal) and then heating and dissolving it while adding an oxidizing agent to hydrochloric acid.
JP20613694A 1994-08-09 1994-08-09 Dissolving method of platinum group metal in collector metal Pending JPH0853720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20613694A JPH0853720A (en) 1994-08-09 1994-08-09 Dissolving method of platinum group metal in collector metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20613694A JPH0853720A (en) 1994-08-09 1994-08-09 Dissolving method of platinum group metal in collector metal

Publications (1)

Publication Number Publication Date
JPH0853720A true JPH0853720A (en) 1996-02-27

Family

ID=16518385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20613694A Pending JPH0853720A (en) 1994-08-09 1994-08-09 Dissolving method of platinum group metal in collector metal

Country Status (1)

Country Link
JP (1) JPH0853720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027154A (en) * 2001-07-18 2003-01-29 Nikko Materials Co Ltd Method of recovering high-purity platinum and palladium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027154A (en) * 2001-07-18 2003-01-29 Nikko Materials Co Ltd Method of recovering high-purity platinum and palladium

Similar Documents

Publication Publication Date Title
CN112705727B (en) Preparation method of high-purity rhodium powder
EP4001443A1 (en) Pgm recovery method
JP6940089B2 (en) Precious metal recovery method
CN102251098A (en) Method for extracting rare noble metals
JPH0853720A (en) Dissolving method of platinum group metal in collector metal
CA1068116A (en) Process for the treatment of platinum group metals and gold
JP3663795B2 (en) Method for solubilizing poorly soluble platinum group elements
JP3741275B2 (en) Precious metal recovery method
CN111286626B (en) Method for purifying platinum-rhodium alloy
CN114317997A (en) Novel process for purifying high-purity platinum
JPH0765121B2 (en) How to reduce precious metals
JP2841410B2 (en) Ammonia decomposition catalyst
US3956187A (en) Catalyst support and method for preparing the same
JP2010275188A (en) Treated manganese ore
EP0475442B1 (en) Method for decomposition of chlorofluorocarbons
US2274237A (en) Process for the removal of metallic magnesium from mixtures of beryllium and magnesium
JP2005248280A (en) Method for recovering noble metal
JP2019127627A (en) Method for recovering noble metal
CN114107691B (en) Method for recovering platinum from waste catalyst containing platinum
CN111455191B (en) High-purity spongy platinum and preparation method and application thereof
EP0067537B1 (en) Process for the lowering of the oxidation state of metal salts
JPH0834619A (en) Recovering method of noble metal from metallic carrier catalyst
JPS6112846B2 (en)
JPH0313532A (en) Method for recovering platinum family metal
JP3874553B2 (en) Purification method of palladium