JPH0852471A - Water purifier and its production - Google Patents

Water purifier and its production

Info

Publication number
JPH0852471A
JPH0852471A JP7159451A JP15945195A JPH0852471A JP H0852471 A JPH0852471 A JP H0852471A JP 7159451 A JP7159451 A JP 7159451A JP 15945195 A JP15945195 A JP 15945195A JP H0852471 A JPH0852471 A JP H0852471A
Authority
JP
Japan
Prior art keywords
membrane
water
hydrophobic
hydrophilic component
water purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7159451A
Other languages
Japanese (ja)
Inventor
Yoshitada Sakai
良忠 酒井
Masaaki Shimagaki
昌明 島垣
Kazusane Tanaka
和実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7159451A priority Critical patent/JPH0852471A/en
Publication of JPH0852471A publication Critical patent/JPH0852471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide a water purifier using a hydrophobic film without accompanying eluting components. CONSTITUTION:This water purifier is produced by incorporating a hydrophilicity imparted film composed of a hydrophobic component and a physically insolubilized hydrophilic component, and a hydrophilicity imparted film obtained by introducing a hydrophilic component in the production process of a film using a hydrophobic polymer as a main base material and insolubilizing the hydrophilic component by radioactive rays and/or heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な浄水器およびそ
の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel water purifier and its manufacturing method.

【0002】[0002]

【従来の技術】従来、濾過処理や透析処理で用いられる
水処理用膜は、グリセリンなどの水溶性膜透過能維持
剤を用いた状態、膜素材として親水性高分子を用いた
状態、水を共存させた状態、などで供給されてきた。
しかし、では使用に先立って膜透過能維持剤を洗浄除
去する必要があり、即時使用ができないこと、では一
般にポアサイズが小さくなり、分子量数万以上の成分の
分離に使える膜ができにくいこと、では被処理液体が
血液である場合など、共存している水を予め被処理液体
に変質を与えない液体に置換する必要がある用途があ
り、即時使用できないことなど、それぞれに問題があ
る。
2. Description of the Related Art Conventionally, water treatment membranes used in filtration and dialysis treatments use a water-soluble membrane permeability maintaining agent such as glycerin, a hydrophilic polymer as a membrane material, and water. It has been supplied in a coexisting state.
However, with, it is necessary to wash and remove the membrane permeability maintaining agent before use, and it is not possible to use immediately, and with that, the pore size is generally small, and it is difficult to form a membrane that can be used for separating components having a molecular weight of tens of thousands or more. For example, when the liquid to be treated is blood, there are applications in which coexisting water needs to be replaced in advance with a liquid that does not deteriorate the liquid to be treated, and there are problems in that it cannot be used immediately.

【0003】一方、膜素材として、ポリエチレン、ポリ
プロピレン、ポリカーボネート、ポリアクリロニトリ
ル、ポリスルホン、ポリエステル、ポリ2弗化ビニリデ
ン、ポリ4弗化エチレン、ポリメチルメタクリレート、
セルローストリアセテートなどの疎水性高分子を主たる
素材とした膜が濾過膜や透析膜として提供されている
が、これらの疎水性膜ではやの状態にしておかない
と直ちには本来の透過能を発揮できず、したがって前記
のように即時使用できない問題は疎水性膜の宿命とされ
てきた。また、疎水性膜に対して親水性成分を導入し、
固着させることで即時使用を可能にするいう例(例え
ば、特開昭61−120602号,特開昭61−125
405号、特開昭61−125408号、特開昭61−
125409号、特開昭61−133102号、特開昭
61−133105号など)もみられるが、これらでは
親水性高分子の固着が不充分で、使用中に膜から親水性
成分が溶出してくるなどの問題がある。
On the other hand, as film materials, polyethylene, polypropylene, polycarbonate, polyacrylonitrile, polysulfone, polyester, poly (vinylidene difluoride), poly (tetrafluoroethylene), polymethylmethacrylate,
Membranes mainly composed of hydrophobic polymers such as cellulose triacetate are provided as filtration membranes and dialysis membranes, but these hydrophobic membranes can immediately exhibit their original permeability unless they are left in a bald state. Therefore, the problem that the hydrophobic membrane cannot be used immediately has been destined for the hydrophobic membrane. Also, by introducing a hydrophilic component into the hydrophobic membrane,
An example in which it can be used immediately by fixing (for example, JP-A-61-120602 and JP-A-61-125).
405, JP-A-61-125408, JP-A-61-
No. 125409, JP-A-61-133102, JP-A-61-133105, etc.), but the adhesion of the hydrophilic polymer is insufficient and hydrophilic components are eluted from the membrane during use. There are problems such as.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、かかる
状況に鑑み、溶出性成分を伴わずに疎水性膜を即時使え
るようにするには如何にすべきかにつき鋭意検討を重ね
たところ本発明に到達した。
In view of the above situation, the inventors of the present invention have made extensive studies as to how to immediately use the hydrophobic membrane without the eluting component. The invention was reached.

【0005】[0005]

【課題を解決するための手段】即ち、疎水性高分子を主
たる素材とした疎水性膜へ、該膜の製造工程中で放射線
または/および熱により水不溶化する親水性成分を導入
することにより、溶出性成分を伴わずに疎水性膜を即時
浄水器として使えるようにしうることを見出した。
[Means for Solving the Problems] That is, by introducing a hydrophilic component, which is insoluble in water by radiation or / and heat in the manufacturing process of the membrane, into a hydrophobic membrane mainly made of a hydrophobic polymer, It has been found that the hydrophobic membrane can be used as an instant water purifier without the elution component.

【0006】本手段を適用できる疎水性膜素材としては
特に限定するものではないが、ポリエチレン、ポリプロ
ピレン、ポリカーボネート、ポリアクリロニトリル、ポ
リスルホン、ポリエステル、ポリ2弗化ビニリデン、ポ
リ4弗化エチレン、ポリメチルメタクリレート、セルロ
ーストリアセテート、ポリスチレン、ポリエチルアクリ
レート、ポリ酢酸ビニル、ポリ塩化ビニルなど、および
これらの誘導体、あるいはこれら重合体の構成単量体間
の共重合体、さらにはこれらを主体とするが共重合成分
として親水性成分を少量含む重合体などが挙げられ、本
手段は平衡吸水率(20℃、相対湿度65%の雰囲気下
に1週間置いて測定した吸水率で、水重量/ポリマー重
量を%で表示した値)が5%以下、さらに望ましくは2
%以下の素材に適用できる。
The hydrophobic membrane material to which the present means can be applied is not particularly limited, but polyethylene, polypropylene, polycarbonate, polyacrylonitrile, polysulfone, polyester, poly (vinylidene difluoride), poly (tetrafluoroethylene), polymethylmethacrylate. , Cellulose triacetate, polystyrene, polyethyl acrylate, polyvinyl acetate, polyvinyl chloride, etc., and derivatives thereof, or copolymers between the constituent monomers of these polymers, and further mainly these copolymerization components. Examples of the polymer include a polymer containing a small amount of a hydrophilic component, and this means is a water absorption rate measured by leaving it at equilibrium water absorption rate (20 ° C., relative humidity 65% for 1 week, water weight / polymer weight%). The displayed value) is 5% or less, more preferably 2
Applicable to less than% material.

【0007】親水性高分子の水不溶化手段として放射線
を照射する方法と加熱する方法とがあるが、前者ではポ
リエチレン、ポリスルホン、ポリスチレン、ポリエステ
ル、ポリエチルアクリレート、ポリ酢酸ビニルなどを主
成分とする耐放射線性に優れた素材に対して、後者では
ポリカーボネート、ポリスルホン、ポリ2弗化ビニリデ
ン、ポリ4弗化エチレン、ポリエステルなどを主成分と
する耐熱性に優れた素材に対して好適に用いられる。ま
たさらに、ポリスルホン、ポリエステルなどのように耐
放射線性および耐熱性に共に優れた素材に対しては、両
手段を併用することも可能である。
There are a method of irradiating with radiation and a method of heating as a means for insolubilizing a hydrophilic polymer in water. In the former, the resistance mainly composed of polyethylene, polysulfone, polystyrene, polyester, polyethyl acrylate, polyvinyl acetate, etc. The latter is preferably used for materials having excellent radiation resistance, and the latter is preferably used for materials having excellent heat resistance mainly composed of polycarbonate, polysulfone, poly (vinylidene difluoride), poly (tetrafluoroethylene), polyester and the like. Furthermore, for materials having both excellent radiation resistance and heat resistance such as polysulfone and polyester, it is possible to use both means in combination.

【0008】放射線により水不溶化する親水性成分とし
ては、ビニルピロリドン、ヒドロキシエチルメタクリレ
ート、ビニルアルコール、エチレングリコール、メトキ
シポリエチレングリコールメタクリレートなど、および
これらの誘導体のモノマー、オリゴマー、ポリマーおよ
びこれらの間のコポリマー、あるいはペプタイド、アル
ブミン、コラーゲンなどの蛋白などが挙げられる。熱に
より水不溶化する親水性成分としては、ビニルピロリド
ン、ε−カプロラクタム、ビニルアルコール、エチレン
オキサイド、ヒドロキシエチルメタクリレートなど、お
よびこれらの誘導体のモノマー、オリゴマー、ポリマ
ー、およびこれらの間のコポリマー、あるいはペプタイ
ド、アルブミン、コラーゲンなどの蛋白などが挙げられ
る。
As the hydrophilic component which becomes insoluble in water by radiation, vinylpyrrolidone, hydroxyethyl methacrylate, vinyl alcohol, ethylene glycol, methoxy polyethylene glycol methacrylate and the like, and monomers, oligomers, polymers and copolymers of these derivatives, Alternatively, proteins such as peptide, albumin and collagen may be used. As the hydrophilic component which is insoluble in water by heat, vinylpyrrolidone, ε-caprolactam, vinyl alcohol, ethylene oxide, hydroxyethyl methacrylate and the like, and monomers, oligomers, polymers of these derivatives, and copolymers between them, or peptides, Examples thereof include proteins such as albumin and collagen.

【0009】水不溶化手段としての放射線としては、ガ
ンマー線、紫外線、電子線などが用いられるが、特にガ
ンマー線では浸透性が高いので単一膜だけでなく、膜集
合体や膜を組込んだモジュール状態でも親水性成分の水
不溶化処理が行なえるので好適に用いられる。水不溶化
手段としての加熱手段としては、乾熱、湿熱、温浴加熱
のいずれも用いることができる。加熱温度としては、疎
水性素材の軟化点や融点、親水性成分の熱分解温度など
を考慮する必要があるが、50℃以上200℃以下が好
ましい。また、加熱処理を親水性成分を水不溶化する手
段としてだけでなく、ポアサイズの調整手段も兼ね合せ
た手段として用いることも可能である。親水性成分を導
入する製膜段階としては、膜素材へのブロック共重合体
化、製膜原液への混入、疎水性膜製膜後の後処理など、
いずれの段階でも良いが、製膜原液への混入や後処理に
よる導入が大きな孔を確保しやすいという点、親水性成
分の使用量を削減できるという点などで有利である。ま
た、放射線照射や加熱処理を膜や膜を組込んだモジュー
ルの殺菌手段を兼ねたものとすることも可能である。
Gamma rays, ultraviolet rays, electron beams, etc. are used as the radiation as the water insolubilizing means. Especially, since the gamma rays have high penetrability, not only a single membrane but also a membrane aggregate or a membrane is incorporated. It is preferably used because the hydrophilic component can be treated to insolubilize water even in a module state. As the heating means as the water insolubilizing means, any of dry heat, wet heat and hot bath heating can be used. As the heating temperature, it is necessary to consider the softening point and melting point of the hydrophobic material, the thermal decomposition temperature of the hydrophilic component, and the like, but 50 ° C or higher and 200 ° C or lower are preferable. Further, the heat treatment can be used not only as a means for making the hydrophilic component insoluble in water, but also as a means that also serves as a means for adjusting the pore size. As the film-forming step of introducing the hydrophilic component, block copolymerization into the film material, mixing into the film-forming raw solution, post-treatment after forming the hydrophobic film, etc.
Although any stage may be used, it is advantageous in that it is easy to secure large pores by mixing in the stock solution for membrane formation or introduction by post-treatment, and it is possible to reduce the amount of the hydrophilic component used. Further, the irradiation of radiation and the heat treatment may also serve as a sterilizing means for the membrane or the module incorporating the membrane.

【0010】本発明でいう膜の形態は特に限定するもの
ではなく、例えばシート状、中空糸状、マイクロカプセ
ル状の膜などが挙げられる。
The form of the membrane in the present invention is not particularly limited, and examples thereof include a sheet-shaped, hollow fiber-shaped, and microcapsule-shaped membrane.

【0011】以下、本発明の有効性を実施例をもって説
明する。そこで用いた測定法は次の通りである。
The effectiveness of the present invention will be described below with reference to examples. The measuring method used there is as follows.

【0012】(1) 透水性 中空糸膜の場合は、両端に環流液用の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のポッティング
剤を用いて小型モジュールを作製し、37℃に保って中
空糸内側に水圧をかけ膜を通して外側へ透過する一定時
間の水の量と有効膜面積および膜間圧力差から算出する
方法で透水性能を測定した。
(1) Water-permeable In the case of a hollow fiber membrane, the hollow fiber membrane is inserted into a glass case having holes for reflux liquid at both ends, and a small module is prepared using a commercially available potting agent. The water permeation performance was measured by a method of applying water pressure to the inside of the hollow fiber while maintaining the temperature at 37 ° C., and calculating from the amount of water permeating to the outside through the membrane for a certain time, the effective membrane area, and the transmembrane pressure difference.

【0013】平膜の場合は、攪拌円筒セルを用いて同様
にして測定した。
In the case of a flat membrane, the same measurement was carried out using a stirring cylindrical cell.

【0014】(2) 溶出物 膜0.5gを70℃温水50ccで1時間加熱して試験液
を調製する。試験液の波長220〜350μmにおける
吸光度を測定する。なお、透析型人工腎臓装置承認基準
では、本条件での規格を0.1以下としている。
(2) Eluate A test solution is prepared by heating 0.5 g of the membrane with 50 cc of hot water at 70 ° C. for 1 hour. The absorbance of the test solution at a wavelength of 220 to 350 μm is measured. The dialysis-type artificial kidney device approval standard sets the standard under this condition to 0.1 or less.

【0015】[0015]

【実施例】【Example】

実施例1 ポリプロピレンからなる中空糸膜(透水性6700ml/
hr・mmHg・m2 、以下同一単位)に0.15%コラーゲ
ン水溶液を浸漬含浸させ、窒素雰囲気下10cmの距離
をおいて、2時間、15W殺菌灯を用いて紫外線照射し
た。該膜を乾燥後、透水性を測定したところ2500の
値を得た。
Example 1 A hollow fiber membrane made of polypropylene (water permeability 6700 ml /
An aqueous solution of 0.15% collagen was dipped and impregnated in hr · mmHg · m 2 (hereinafter the same unit), and UV irradiation was performed for 2 hours using a 15W sterilizing lamp at a distance of 10 cm in a nitrogen atmosphere. After the membrane was dried, the water permeability was measured and a value of 2500 was obtained.

【0016】実施例2 ポリエチレンからなる中空糸膜(透水性5000)にポ
リエチレングリコール(#20000)20%水溶液を
浸漬含浸させ、γ線を2.5Mrad照射した。該膜を乾燥
後、透水性を測定したところ3200の値を得た。
Example 2 A hollow fiber membrane made of polyethylene (water permeability of 5000) was dipped and impregnated with a 20% aqueous solution of polyethylene glycol (# 20000) and irradiated with γ-rays at 2.5 Mrad. When the water permeability was measured after drying the film, a value of 3200 was obtained.

【0017】実施例3 ポリアクリロニトリル(分子量15.8万)からなる平
膜(透水性2300)を実施例1と同様に浸漬含浸さ
せ、今度は片面1時間ずつ紫外線照射した。該膜を乾燥
後、透水性を測定したところ1850の値を得た。
Example 3 A flat membrane (water permeability 2300) made of polyacrylonitrile (molecular weight 158,000) was dipped and impregnated in the same manner as in Example 1, and this time, one surface was irradiated with ultraviolet rays for 1 hour each. When the water permeability was measured after drying the film, a value of 1850 was obtained.

【0018】比較例1〜3 紫外線またはγ線照射を省いた点を除いて、実施例1,
2,3をくり返し、乾燥後、透水性能の測定をしたとこ
ろ実質上ゼロであった。
Comparative Examples 1 to 3 Example 1, except that the irradiation of ultraviolet rays or γ rays was omitted.
After repeating steps 2 and 3 and drying, the water permeability was measured to be substantially zero.

【0019】実施例4 ポリスルホン(ユーデルポリサルホンP-3500)15部、
ポリビニルビロリドン(K-90)8部、ジメチルアセトア
ミド75部、水2部からなる原液から製膜した中空糸膜
を185℃、1.5時間乾熱処理し、ポリビニルビロリ
ドンの水不溶化処理を施した。この完全ドライ膜の透水
性を測定したところ15000の値を得た。この膜の表
面には0.2μm程度の孔があり、常圧で水濡れ性の良
いことから、浄水器用として利用できる。
Example 4 15 parts of polysulfone (Udel Polysulfone P-3500),
A hollow fiber membrane formed from an undiluted solution consisting of 8 parts of polyvinylpyrrolidone (K-90), 75 parts of dimethylacetamide and 2 parts of water is dry-heat treated at 185 ° C for 1.5 hours to insolubilize polyvinylpyrrolidone in water. Was applied. When the water permeability of this completely dry film was measured, a value of 15000 was obtained. Since the surface of this membrane has pores of about 0.2 μm and has good water wettability under normal pressure, it can be used as a water purifier.

【0020】実施例5 実施例4と同様にして製膜した中空糸膜をモジュール化
後、水を充填させ、2.5Mradγ線照射による後処理を
施した。この膜を乾燥後、透水性能を測定したところ1
1000の性能を得た。
Example 5 A hollow fiber membrane produced in the same manner as in Example 4 was modularized, filled with water, and post-treated with 2.5 Mrad γ-ray irradiation. After drying this membrane, the water permeability was measured to be 1
A performance of 1000 was obtained.

【0021】実施例6 実施例1〜5の中空糸膜の溶出物試験をしたところ、す
べて220nm〜350nmでの吸光度は0.1以下であっ
た。
Example 6 When the hollow fiber membranes of Examples 1 to 5 were subjected to an eluate test, the absorbances at 220 nm to 350 nm were all 0.1 or less.

【0022】[0022]

【発明の効果】本発明により、溶出性成分を伴わずに、
疎水性膜を用いた浄水器を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, without any elutable component,
A water purifier using a hydrophobic membrane can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08J 7/04 CEZ T // C08L 81:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C08J 7/04 CEZ T // C08L 81:06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】疎水性成分と物理的に不溶化した親水性成
分からなる親水化膜を内蔵したことを特徴とする浄水
器。
1. A water purifier comprising a hydrophilization film comprising a hydrophobic component and a hydrophilic component which is physically insolubilized.
【請求項2】疎水性高分子を主たる素材とした膜の製造
工程中で親水性成分を導入し該親水性成分を放射線また
は/および熱により水不溶化した親水化膜を内蔵するこ
とを特徴とする浄水器の製造法。
2. A hydrophilic membrane incorporated with a hydrophilic component in the process of producing a membrane mainly composed of a hydrophobic polymer, and the hydrophilic component being water-insolubilized by radiation or / and heat. Water purifier manufacturing method.
JP7159451A 1995-06-26 1995-06-26 Water purifier and its production Pending JPH0852471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159451A JPH0852471A (en) 1995-06-26 1995-06-26 Water purifier and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159451A JPH0852471A (en) 1995-06-26 1995-06-26 Water purifier and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61243372A Division JPH089668B2 (en) 1986-10-14 1986-10-14 Hydrophilized film and method for producing the same

Publications (1)

Publication Number Publication Date
JPH0852471A true JPH0852471A (en) 1996-02-27

Family

ID=15694052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159451A Pending JPH0852471A (en) 1995-06-26 1995-06-26 Water purifier and its production

Country Status (1)

Country Link
JP (1) JPH0852471A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007488A (en) * 2005-06-28 2007-01-18 Ebara Corp Water treatment method and apparatus using separation membrane
JP2012515075A (en) * 2009-01-16 2012-07-05 ザトーリウス ステディム ビオテーク ゲーエムベーハー Electron beam induced modification of films with polymers.
JP2015062870A (en) * 2013-09-25 2015-04-09 住友電気工業株式会社 Filtration membrane, filtration unit, filtration system and filtration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007488A (en) * 2005-06-28 2007-01-18 Ebara Corp Water treatment method and apparatus using separation membrane
JP4671784B2 (en) * 2005-06-28 2011-04-20 荏原エンジニアリングサービス株式会社 Water treatment method and apparatus using separation membrane
JP2012515075A (en) * 2009-01-16 2012-07-05 ザトーリウス ステディム ビオテーク ゲーエムベーハー Electron beam induced modification of films with polymers.
JP2015062870A (en) * 2013-09-25 2015-04-09 住友電気工業株式会社 Filtration membrane, filtration unit, filtration system and filtration method

Similar Documents

Publication Publication Date Title
JPS6397634A (en) Hydrophilic membrane and its production
EP1775016B1 (en) Ultrafiltration membranes rendered hydrophilic by hydroxyalkyl cellulose and method of making and use of such membranes
EP0750938B1 (en) Manufacture of a polysulfone hollow fiber semipermeable membrane
EP0352199B2 (en) Hydrophilic material and method of manufacturing the same
US6319404B1 (en) Process for the preparation of porous material and porous material
US4604208A (en) Liquid filtration using an anionic microporous membrane
EP0167594A4 (en) Cross-flow filtration related applications.
JPH10511708A (en) Permeable polymer composition and blood gas sensor overcoat
JP2003532746A (en) Film with negative charge
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP3617194B2 (en) Permselective separation membrane and method for producing the same
US6632361B2 (en) Shaped objects for pyrogen retention and processes for their manufacture
JP3132415B2 (en) Hydrophilic dialysis membrane
JPH053331B2 (en)
JPH0852331A (en) Plasma collecting membrane and production thereof
JPS6238205A (en) Semi-permeable membrane for separation
JP2519831B2 (en) Method for producing charged separation membrane
JPH0852471A (en) Water purifier and its production
WO1990009230A1 (en) Composite membranes and method of making the same
CA1249110A (en) Charge modified microporous hollow tubes
JP3684676B2 (en) Method for producing polysulfone-based hollow fiber artificial kidney and artificial kidney
JPH06228887A (en) Modified hollow fiber and its production
JP2021023928A (en) Separation membrane and method for manufacture thereof
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JP4214750B2 (en) Material and blood purification module using the same