JPH0851248A - Inner resonance surface light emitting shg laser - Google Patents

Inner resonance surface light emitting shg laser

Info

Publication number
JPH0851248A
JPH0851248A JP18701494A JP18701494A JPH0851248A JP H0851248 A JPH0851248 A JP H0851248A JP 18701494 A JP18701494 A JP 18701494A JP 18701494 A JP18701494 A JP 18701494A JP H0851248 A JPH0851248 A JP H0851248A
Authority
JP
Japan
Prior art keywords
laser
multilayer film
semiconductor substrate
gaas
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18701494A
Other languages
Japanese (ja)
Inventor
Akitomo Itou
顕知 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18701494A priority Critical patent/JPH0851248A/en
Publication of JPH0851248A publication Critical patent/JPH0851248A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0604Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising a non-linear region, e.g. generating harmonics of the laser frequency
    • H01S5/0605Self doubling, e.g. lasing and frequency doubling by the same active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/347Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIBVI compounds, e.g. ZnCdSe- laser

Abstract

PURPOSE:To obtain sharp and high efficiency by irradiating reflection light on a surface light emitting semiconductor laser and integrating multilayer films generating second harmonic wave light between two mirrors arranged to sandwich the laser. CONSTITUTION:When a current is injected into an electrode 7, laser oscillation is generated on the laser part 4 consisting of an MQW layer of ZnSSe/ZnCdSe. At this time, when a reflection factor of a multilayer film reflection mirror 2 of a dielectric and a multilayer film mirror 5 of a p-type ZnSe/ ZnSSe is made to have a high reflection factor (not less than about 99.9%) in a laser oscillation wavelength, a fundamental wave is confined inside a resonator formed by these mirror so as to have extremely high photopower density inside the resonator. Thereby, a short wavelength coherent light source is realized over an ultraviolet ray of a wavelength 250nm range and a visible violet ray of a wavelength 400nm, which is hard to oscillate by a normal semiconductor laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料を用いたS
HG(Second Harmonic Generation)素子、およびそれ
を用いた青色から紫外光発生光源に関する。
BACKGROUND OF THE INVENTION The present invention relates to S using a semiconductor material.
The present invention relates to an HG (Second Harmonic Generation) element and a blue to ultraviolet light source using the same.

【0002】[0002]

【従来の技術】近年、小型軽量の青色から紫外光を発生
可能なコヒーレント光源への需要は極めて大きいものが
ある。その理由は、例えば、前記光源が実用化される
と、従来の長波長光源を用いた光記録再生装置に対し
て、情報の記録密度を3から8倍高密度化できるからで
ある。
2. Description of the Related Art In recent years, there is a great demand for a compact and lightweight coherent light source capable of generating blue to ultraviolet light. The reason is that, for example, when the light source is put into practical use, the information recording density can be increased 3 to 8 times higher than that of the conventional optical recording / reproducing apparatus using a long wavelength light source.

【0003】これを実現する方法として、(1)II−VI
族の半導体を用いた半導体レーザ、(2)GaN,In
GaN,AlGaN系のワイドギャップのIII−V 族半
導体を用いた半導体レーザ、(3)強誘電体材料中に、
擬似位相整合を実現するための分極反転格子と光導波路
を形成したSHGレーザが研究されている。
As a method for realizing this, (1) II-VI
Laser using a group III semiconductor, (2) GaN, In
A semiconductor laser using a wide-gap III-V group semiconductor of GaN or AlGaN, (3) in a ferroelectric material,
Research has been conducted on SHG lasers having a polarization inversion grating and an optical waveguide for realizing quasi phase matching.

【0004】このうち、第1のII−VI族の半導体を用い
た半導体レーザでは、すでに490−520nmの波長
の室温連続発振が実現され、最も有望なアプローチであ
るが、寿命が数秒から数十秒の段階であり、実用化に至
るにはなお時間を要すると予想される。また、第2のア
プローチでは、現在、数mWの出力を有する発光ダイオ
ードが商品化されており、室温連続発振も時間の問題と
考えられているが、なお未知数である。第3のアプロー
チでは、既に半導体レーザを基本波として10mW以上
の青色光が得られており、実用化の一番手であるが、光
源が大型になることや、コストの面から、民生対応の光
情報記録再生装置に搭載することは難しいと考えられ
る。
Of these, the semiconductor laser using the first II-VI group semiconductor has already realized room temperature continuous oscillation at a wavelength of 490 to 520 nm, which is the most promising approach, but has a life span of several seconds to several tens. This is in seconds, and it is expected that it will take some time before it is put into practical use. Further, in the second approach, a light emitting diode having an output of several mW is currently commercialized, and room temperature continuous oscillation is considered to be a problem of time, but it is still unknown. In the third approach, blue light of 10 mW or more has already been obtained using a semiconductor laser as a fundamental wave, and it is the first practical application, but it is a light source for consumer use due to the large size of the light source and cost. It is considered difficult to mount it on an information recording / reproducing apparatus.

【0005】また、これらのアプローチでは、波長40
0nm以下の紫外光、なかんずく波長300nm以下の
紫外光を発生させることは極めて困難である。
In addition, in these approaches, a wavelength of 40
It is extremely difficult to generate ultraviolet light having a wavelength of 0 nm or less, especially ultraviolet light having a wavelength of 300 nm or less.

【0006】これらに対し、例えば、エレクトロニクス
・レターズ,26巻,25号の2088から2089頁(El
ectronics Letters, Vol. 26, No.25, pp.2088-2089, 1
990)に記載されているように、半導体を用いたSHG素
子が検討されている。この従来例では図2のように、G
aAs(100)基板1上に、Al0.9Ga0.1As/A
0.7Ga0.3Asの多層膜21を、AlGaAsバッフ
ァ層22を介して形成し、多層膜の両端から、波長1.
06μm の基本波23をファイバ24を用いて、対向
する方向へ伝搬させ、それらとは垂直な方向にSH波2
5を取り出す構造が提案された。
On the other hand, for example, Electronics Letters, Vol. 26, No. 25, pages 2088 to 2089 (El
ectronics Letters, Vol. 26, No.25, pp.2088-2089, 1
990), an SHG element using a semiconductor is being studied. In this conventional example, as shown in FIG.
Al 0.9 Ga 0.1 As / A on aAs (100) substrate 1
A multilayer film 21 of 0.7 Ga 0.3 As is formed via an AlGaAs buffer layer 22, and a wavelength of 1.
The fundamental wave 23 of 06 μm is propagated in the opposite direction using the fiber 24, and the SH wave 2 is propagated in the direction perpendicular to them.
A structure for taking out 5 was proposed.

【0007】この方法では、各多層膜の膜厚がSH波の
半波長となるような構造になっている。これは、基本
波,SH波両者に対し光導波路となっている多層膜に垂
直な方向には、基本波,SH波とも定在波になってお
り、これら定在波に対し、擬似位相整合を成立させ、S
H波を強めあい、取り出すことを目的としている。この
方式によれば、本来AlGaAs系の材料では伝搬しな
いはずの、波長530nmの光が発生する。
In this method, the film thickness of each multilayer film is half the wavelength of the SH wave. This is because both the fundamental wave and the SH wave are standing waves in the direction perpendicular to the multilayer film which is the optical waveguide for both the fundamental wave and the SH wave, and the quasi phase matching is performed for these standing waves. And S
The purpose is to strengthen the H waves and take them out. According to this method, light having a wavelength of 530 nm is generated, which should not propagate in an AlGaAs material.

【0008】さらに、1994年の春季応用物理学会学
術講演会28p−G−14において、上記方法を応用し
て、図3のような誘電体多層膜2、およびAlAs/G
aAsの多層膜ミラー31の中に、各多層膜の膜厚がSH
波の半波長となるような擬似位相整合用のAlAs/G
aAs多層膜32を形成し、波長490nmの青色光を
得る方式が提案されている。
Further, in the 1994 Spring Applied Physics Society Academic Lecture 28p-G-14, the above method was applied to apply the dielectric multilayer film 2 as shown in FIG. 3 and AlAs / G.
The film thickness of each multilayer film is SH in the multilayer film mirror 31 of aAs.
AlAs / G for quasi-phase matching that becomes half the wavelength of the wave
A method has been proposed in which the aAs multilayer film 32 is formed to obtain blue light having a wavelength of 490 nm.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記従来例に
は以下のような問題がある。すなわち、第1の従来例で
は、図2に示されているように、SH波が光導波路全面
から出射するため、光を集光することが難しいという問
題がある他、SH光を発生する光導波路部分の両端面を
コーティングする等の最適設計、および基本波を発生す
る半導体レーザを同一基板上に集積化する等の手段をこ
うじても、大幅な効率向上が望めないという問題があ
る。
However, the above-mentioned conventional example has the following problems. That is, in the first conventional example, as shown in FIG. 2, since the SH wave is emitted from the entire surface of the optical waveguide, there is a problem that it is difficult to collect the light, and in addition, an optical wave that generates the SH light is generated. Even if the optimal design such as coating both end surfaces of the waveguide portion and the means for integrating the semiconductor lasers that generate the fundamental wave on the same substrate are taken into consideration, there is a problem that a significant improvement in efficiency cannot be expected.

【0010】また第2の従来例では、擬似位相整合用多
層膜をはさむミラーの反射率を最適化すれば、規格化効
率が大幅に向上するというメリットがある。しかし、ミ
ラーの反射率が高いと、基本波を効率よく多層膜中へ取
り込むことが難しく、SHGの絶対効率が基本波パワー
に比例するため、結局、大幅な高効率化は難しい。
In the second conventional example, if the reflectance of the mirror sandwiching the quasi-phase matching multilayer film is optimized, the standardization efficiency is significantly improved. However, if the reflectance of the mirror is high, it is difficult to efficiently incorporate the fundamental wave into the multilayer film, and the absolute efficiency of the SHG is proportional to the fundamental wave power.

【0011】[0011]

【課題を解決するための手段】本発明では、以上の問題
を解決するため、以下の手段を採用した。
In order to solve the above problems, the present invention employs the following means.

【0012】まず、半導体基板上に、面発光型の半導体
レーザと、前記面発光型の半導体レーザヘ反射光を照射
し、かつ前記面発光型レーザをはさむように配置された
ミラーと、前記ミラーの間にSH(第2高調波)光を発
生させしめる多層膜を集積化する。さらに、前記内部共
振型面発光SHGレーザにおいて、前記SH光を発生さ
せる多層膜が、SH光の波長周期で形成する。
First, on a semiconductor substrate, a surface-emitting type semiconductor laser, a mirror arranged so as to irradiate the surface-emitting type semiconductor laser with reflected light and sandwiching the surface-emitting type laser, and the mirror In between, a multi-layer film that generates SH (second harmonic) light is integrated. Further, in the internal cavity surface emitting SHG laser, the multilayer film for generating the SH light is formed with the wavelength cycle of the SH light.

【0013】また、前記SHGレーザの半導体基板をG
aAs、前記レーザ部を形成する材料をGaAsまたは
GaAlAs、かつ前記第2高調波を発生させる多層膜
が、GaAsとAlAsの多層膜とする。あるいはま
た、前記SHGレーザの半導体基板をGaAs、前記レ
ーザ部を形成する材料をGaAsまたはGaAlAs、
かつ前記第2高調波を発生させる多層膜をGaAsとA
lAs、ないしGaAsとGaAlAs、ないしGaA
lAsとAlAsの多層膜とする。あるいはまた前記S
HGレーザの半導体基板をGaAs、前記レーザ部を形
成する材料をGaAsまたはGaAlAs、かつ前記第2高
調波を発生させる多層膜を、ZnSe,ZnS,ZnT
e,CdTe,CdS,CdSeの複数、あるいはそれ
らの互いに組成の異なる複数の混晶からなる多層膜とす
る。あるいはまた、前記SHGレーザの半導体基板をG
aAs、前記レーザ部を形成する材料をZnSe,Zn
S,ZnTe,CdTe,CdS,CdSeないし混
晶、かつ前記第2高調波を発生させる多層膜を、ZnS
e,ZnS,ZnTe,CdTe,CdS,CdSeの
複数、あるいはそれらの互いに組成の異なる複数の混晶
からなる多層膜とする。
The semiconductor substrate of the SHG laser is G
aAs, the material forming the laser portion is GaAs or GaAlAs, and the multilayer film for generating the second harmonic is a multilayer film of GaAs and AlAs. Alternatively, the semiconductor substrate of the SHG laser is GaAs, the material forming the laser portion is GaAs or GaAlAs,
In addition, the multi-layer film for generating the second harmonic is formed of GaAs and A
lAs, or GaAs and GaAlAs, or GaA
It is a multilayer film of 1As and AlAs. Alternatively, the above S
The semiconductor substrate of the HG laser is GaAs, the material forming the laser portion is GaAs or GaAlAs, and the multilayer film for generating the second harmonic is ZnSe, ZnS, ZnT.
e, CdTe, CdS, CdSe, or a multi-layered film composed of a plurality of mixed crystals having different compositions from each other. Alternatively, the semiconductor substrate of the SHG laser is
aAs, the material forming the laser portion is ZnSe, Zn
S, ZnTe, CdTe, CdS, CdSe or a mixed crystal, and a multi-layered film for generating the second harmonic is formed of ZnS.
e, ZnS, ZnTe, CdTe, CdS, CdSe, or a multi-layer film composed of a plurality of mixed crystals having different compositions from each other.

【0014】[0014]

【作用】まず半導体基板上に、面発光型の半導体レーザ
と、面発光型の半導体レーザヘ反射光を供給せしめ、か
つ面発光型レーザをはさむように配置されたミラーと、
ミラーの間にSH(第2高調波)光を発生させしめる多
層膜を集積化し、さらに、内部共振型面発光SHGレー
ザにおいて、SH光を発生せしめる多層膜が、SH光の
波長周期で形成することにより、基本波は共振器内に閉
じ込められ、かつすべてSHG過程に利用可能となり、
高効率のSHGレーザが実現できる。
First, on the semiconductor substrate, a surface-emitting type semiconductor laser, a mirror for supplying reflected light to the surface-emitting type semiconductor laser, and a mirror arranged so as to sandwich the surface-emitting type laser,
A multilayer film for generating SH (second harmonic) light is integrated between the mirrors, and further, in the internal cavity surface emitting SHG laser, the multilayer film for generating SH light is formed with the wavelength cycle of SH light. As a result, the fundamental wave is confined in the resonator and can be used for the SHG process.
A highly efficient SHG laser can be realized.

【0015】また、SHGレーザの半導体基板をGaA
s、レーザ部を形成する材料をGaAsまたはGaAlA
s、かつ第2高調波を発生させる多層膜が、GaAsと
AlAsの多層膜とする、あるいは、SHGレーザの半導
体基板をGaAs、レーザ部を形成する材料をGaAs
またはGaAlAs、かつ第2高調波を発生させる多層
膜をGaAsとAlAs、ないしGaAsとGaAlA
s、ないしGaAlAsとAlAsの多層膜とすること
により、特に波長400−500nmのSH光を、効率
よく発生できる。
Further, the semiconductor substrate of the SHG laser is made of GaA.
s, the material forming the laser section is GaAs or GaAlA
s and the multilayer film for generating the second harmonic is a multilayer film of GaAs and AlAs, or the semiconductor substrate of the SHG laser is GaAs and the material forming the laser portion is GaAs.
Alternatively, GaAlAs and a multilayer film for generating the second harmonic are formed of GaAs and AlAs, or GaAs and GaAlA.
By using s or a multi-layer film of GaAlAs and AlAs, SH light with a wavelength of 400 to 500 nm can be efficiently generated.

【0016】またSHGレーザの半導体基板をGaA
s、レーザ部を形成する材料をGaAsまたはGaAlA
s、かつ第2高調波を発生させる多層膜を、ZnSe,
ZnS,ZnTe,CdTe,CdS,CdSeの複
数、あるいはそれらの互いに組成の異なる複数の混晶か
らなる多層膜とすることにより、さらにSH光の吸収を
低減して、一層の高効率化を図ることができる。
Further, the semiconductor substrate of the SHG laser is made of GaA.
s, the material forming the laser portion is GaAs or GaAlA
s and a multilayer film that generates the second harmonic is
By making a multilayer film composed of a plurality of ZnS, ZnTe, CdTe, CdS, CdSe or a plurality of mixed crystals having different compositions from each other, further reducing SH light absorption and further improving efficiency. You can

【0017】あるいはまた、SHGレーザの半導体基板
をGaAs、レーザ部を形成する材料をZnSe,Zn
S,ZnTe,CdTe,CdS,CdSeないし混
晶、かつ第2高調波を発生させる多層膜を、ZnSe,
ZnS,ZnTe,CdTe,CdS,CdSeの複
数、あるいはそれらの互いに組成の異なる複数の混晶か
らなる多層膜とすることにより、波長250nm前後の
紫外光が、効率よく発生できる。
Alternatively, the semiconductor substrate of the SHG laser is GaAs, and the material forming the laser portion is ZnSe, Zn.
S, ZnTe, CdTe, CdS, CdSe or a mixed crystal, and a multilayer film for generating a second harmonic are
By using a multilayer film composed of a plurality of ZnS, ZnTe, CdTe, CdS, and CdSe or a plurality of mixed crystals having different compositions, ultraviolet light with a wavelength of about 250 nm can be efficiently generated.

【0018】[0018]

【実施例】図1は、本発明の一実施例を示す断面図であ
る。1は(311)ないし(211)面など、(100)面
から傾いたGaAs基板、2は誘電体の多層膜反射ミラ
ー、3はn型のZnSe/ZnSSeの多層膜からなる
擬似位相整合SHG部、4はZnSSe/ZnCdSe
のMQW層から成るレーザ発振部、5はp型のZnSe/Z
nSSeの多層膜ミラー、6はコンタクト層、7はオー
ミック電極である。
1 is a sectional view showing an embodiment of the present invention. Reference numeral 1 is a GaAs substrate inclined from the (100) plane such as the (311) to (211) planes, 2 is a multilayer reflective mirror of a dielectric, and 3 is a quasi-phase matching SHG portion composed of a multilayer film of n-type ZnSe / ZnSSe. 4 is ZnSSe / ZnCdSe
Laser oscillation part consisting of MQW layer of 5 is p-type ZnSe / Z
nSSe multilayer mirror, 6 is a contact layer, and 7 is an ohmic electrode.

【0019】本内部共振型面発光SHGレーザは、以下
のように動作する。電極7に電流を注入すると、ZnS
Se/ZnCdSeのMQW層からなるレーザ部分4で
レーザ発振が起こる。このとき、誘電体の多層膜反射ミ
ラー2、およびp型のZnSe/ZnSSeの多層膜ミラ
ー5の反射率を、レーザ発振波長において高反射率(ほ
ぼ99.9% 以上)となるように作製すれば、基本波は
これらのミラーで形成された共振器内に閉じ込められ、
共振器内はきわめて高い光パワー密度となる。
The internal cavity surface emitting SHG laser of the present invention operates as follows. When a current is injected into the electrode 7, ZnS
Laser oscillation occurs in the laser portion 4 composed of the MQW layer of Se / ZnCdSe. At this time, the reflectance of the dielectric multilayer reflection mirror 2 and the p-type ZnSe / ZnSSe multilayer mirror 5 should be made so as to be a high reflectance (approximately 99.9% or more) at the laser oscillation wavelength. For example, the fundamental wave is confined in the resonator formed by these mirrors,
The optical power density in the resonator is extremely high.

【0020】発振波長はZnSSe/ZnCdSeの組
成にもよるが、ほぼ490−530nmである。従っ
て、SH光の波長は245−265nmとなる。この波
長域におけるZnSe,ZnSSeの吸収率は、10
4(/cm)にも達するが、本実施例では、擬似位相整合S
HG部を構成する多層膜のトータルの膜厚を1μm以下
とすることにより、SH光の損失を抑圧する。このとき
のZnSeおよびZnSSeの膜厚は、SH光の波長の半
分に設定されている。
The oscillation wavelength is about 490-530 nm, though it depends on the composition of ZnSSe / ZnCdSe. Therefore, the wavelength of SH light is 245-265 nm. The absorption rate of ZnSe and ZnSSe in this wavelength range is 10
Although it reaches 4 (/ cm), in this embodiment, the quasi phase matching S
The loss of SH light is suppressed by setting the total film thickness of the multilayer film forming the HG portion to 1 μm or less. The film thicknesses of ZnSe and ZnSSe at this time are set to half the wavelength of SH light.

【0021】なお、第2高調波を発生させる多層膜、お
よびレーザ部を構成する材料は、ZnSe,ZnS,Z
nTe,CdTe,CdS,CdSeの複数、あるいは
それらの互いに組成の異なる複数の混晶からなる多層膜
であってもよい。
The materials constituting the multilayer film for generating the second harmonic and the laser portion are ZnSe, ZnS, Z.
It may be a multilayer film composed of a plurality of nTe, CdTe, CdS, and CdSe, or a plurality of mixed crystals having different compositions from each other.

【0022】図1のような構成で、以下のような材料選
択も可能である。すなわち、基板1としてn型のGaA
s基板、3の擬似位相整合SHG用多層膜としてGaA
sとAlAsの多層膜、4のレーザ部としてGaAs/
GaAlAsのMQW、5の多層膜ミラーとしてp型の
GaAs/AlAs多層膜を用いる。この場合の発振波
長はほぼ780−850nmが可能であり、出力SH光
の波長は、390−430nmの可視紫色領域となる。
With the structure shown in FIG. 1, the following materials can be selected. That is, as the substrate 1, n-type GaA is used.
GaS as a multilayer film for quasi phase matching SHG of s substrate 3
s / AlAs multilayer film, GaAs / as the laser part of 4
A p-type GaAs / AlAs multilayer film is used as the GaAlAs MQW, 5 multilayer film mirror. The oscillation wavelength in this case can be approximately 780 to 850 nm, and the wavelength of the output SH light is in the visible purple region of 390 to 430 nm.

【0023】あるいは、擬似位相整合SHG用多層膜3
として、ZnSe/ZnSSe多層膜、あるいはZnS
e,ZnS,ZnTe,CdTe,CdS,CdSeの
複数、あるいはそれらの互いに組成の異なる複数の混晶
からなる多層膜を用いることも可能である。
Alternatively, the quasi-phase matching SHG multilayer film 3
As a ZnSe / ZnSSe multilayer film or ZnS
It is also possible to use a multilayer film composed of a plurality of e, ZnS, ZnTe, CdTe, CdS, and CdSe, or a plurality of mixed crystals having different compositions from each other.

【0024】図4は、本発明の第2の実施例である。1
はn型のGaAs基板、3は擬似位相整合SHG用のn
型ZnSe/ZnSSe多層膜、41は基本波のみ透過
し、SH波を反射するZnSe/ZnSSeの多層膜ミ
ラー、42はn型GaAsクラッド層、43はGaAs
/GaAlAsのMQWレーザ部、44はp型のGaAs/
AlAs多層膜ミラーである。
FIG. 4 shows a second embodiment of the present invention. 1
Is an n-type GaAs substrate, 3 is n for quasi phase matching SHG
Type ZnSe / ZnSSe multilayer film, 41 is a ZnSe / ZnSSe multilayer film mirror that transmits only the fundamental wave and reflects SH waves, 42 is an n-type GaAs cladding layer, and 43 is GaAs
/ GaAlAs MQW laser part, 44 is p-type GaAs /
It is an AlAs multilayer mirror.

【0025】この場合、SH光はミラー41で反射され
るため、吸収率の大きいGaAs層を透過することがな
く、効率をさらに高めることができる。出力SH光の波
長は、390−430nmの可視紫色領域となる。な
お、第2高調波を発生させる多層膜は、ZnSe,Zn
S,ZnTe,CdTe,CdS,CdSeの複数、あ
るいはそれらの互いに組成の異なる複数の混晶からなる
多層膜であってもよい。
In this case, since the SH light is reflected by the mirror 41, it does not pass through the GaAs layer having a high absorptance, and the efficiency can be further enhanced. The wavelength of the output SH light is in the visible purple region of 390 to 430 nm. The multilayer film that generates the second harmonic is made of ZnSe, Zn
It may be a multi-layer film composed of a plurality of S, ZnTe, CdTe, CdS, and CdSe, or a plurality of mixed crystals having different compositions.

【0026】[0026]

【発明の効果】本発明によれば、小型でかつ半導体基板
上のレーザとモノリシックに集積化されたSHG素子を
構成でき、かつ通常の半導体レーザでは発振の困難な波
長250nm帯の紫外光から波長400nmの可視紫光
の、短波長コヒーレント光源が実現できる。
According to the present invention, it is possible to construct a compact SHG element monolithically integrated with a laser on a semiconductor substrate, and it is difficult to oscillate with an ordinary semiconductor laser. A short-wavelength coherent light source of 400 nm visible violet light can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】従来の表面放射型SHG素子を示す説明図。FIG. 2 is an explanatory view showing a conventional surface emitting SHG element.

【図3】従来の多層膜共振型SHG素子を示す断面図。FIG. 3 is a sectional view showing a conventional multilayer resonant SHG element.

【図4】本発明の第2の実施例を示す断面図。FIG. 4 is a sectional view showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…GaAs基板、2…誘電体多層膜ミラー、3…擬似
位相整合SHG部、4…MQWレーザ部、5…多層膜ミ
ラー、6…コンタクト層、7…オーミック電極、8…基
本波、9…SH波。
DESCRIPTION OF SYMBOLS 1 ... GaAs substrate, 2 ... Dielectric multilayer mirror, 3 ... Quasi phase matching SHG part, 4 ... MQW laser part, 5 ... Multilayer film mirror, 6 ... Contact layer, 7 ... Ohmic electrode, 8 ... Fundamental wave, 9 ... SH wave.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、前記半導体基板上に形成さ
れた面発光型の半導体レーザと、前記半導体レーザヘ反
射光を照射し、前記半導体レーザをはさむように配置さ
れたミラーとからなるレーザ装置において、前記ミラー
の間に第2高調波光を発生させる多層膜が形成されてい
ることを特徴とする内部共振型面発光SHGレーザ。
1. A laser device comprising a semiconductor substrate, a surface-emitting semiconductor laser formed on the semiconductor substrate, and a mirror arranged so as to sandwich the semiconductor laser by irradiating the semiconductor laser with reflected light. 2. An internal cavity surface emitting SHG laser, wherein a multilayer film for generating second harmonic light is formed between the mirrors.
【請求項2】請求項1において、前記第2高調波光を発
生させる多層膜が、前記第2高調波光の波長周期で形成
されている内部共振型面発光SHGレーザ。
2. The internal cavity surface emitting SHG laser according to claim 1, wherein the multilayer film for generating the second harmonic light is formed with a wavelength cycle of the second harmonic light.
【請求項3】請求項1または2において、前記半導体基
板がGaAsであり、前記レーザ部を形成する材料がG
aAsまたはGaAlAsであり、前記第2高調波を発
生させる多層膜が、GaAsとAlAsからなる内部共
振型面発光SHGレーザ。
3. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is GaAs, and the material forming the laser portion is G.
An internal resonance surface emitting SHG laser which is aAs or GaAlAs and in which the multilayer film for generating the second harmonic is made of GaAs and AlAs.
【請求項4】請求項1または2において、前記半導体基
板がGaAsであり、前記レーザ部を形成する材料がG
aAsまたはGaAlAsであり、前記第2高調波を発
生させる多層膜が、GaAsとAlAs、ないしGaA
sとGaAlAs、ないしGaAlAsとAlAsから
なる内部共振型面発光SHGレーザ。
4. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is GaAs, and the material forming the laser portion is G.
The multilayer film that is aAs or GaAlAs and that generates the second harmonic is GaAs and AlAs or GaA.
An internal cavity surface emitting SHG laser comprising s and GaAlAs or GaAlAs and AlAs.
【請求項5】請求項1または2において、前記半導体基
板がGaAsであり、前記レーザ部を形成する材料がG
aAsまたはGaAlAsであり、前記第2高調波を発
生させる多層膜が、ZnSe,ZnS,ZnTe,Cd
Te,CdS,CdSeの複数、あるいはそれらの互い
に組成の異なる複数の混晶からなる多層膜である内部共
振型面発光SHGレーザ。
5. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is GaAs, and the material forming the laser portion is G.
The multilayer film which is aAs or GaAlAs and generates the second harmonic is ZnSe, ZnS, ZnTe, Cd.
An internal cavity surface emitting SHG laser which is a multilayer film made of a plurality of Te, CdS, CdSe or a plurality of mixed crystals having different compositions.
【請求項6】請求項1または2において、前記半導体基
板がGaAsであり、前記レーザ部を形成する材料がZ
nSe,ZnS,ZnTe,CdTe,CdS,CdS
eないし混晶からなり、前記第2高調波を発生させる多
層膜が、ZnSe,ZnS,ZnTe,CdTe,Cd
S,CdSeの複数、あるいはそれらの互いに組成の異
なる複数の混晶からなる多層膜である内部共振型面発光
SHGレーザ。
6. The semiconductor substrate according to claim 1, wherein the semiconductor substrate is GaAs, and the material forming the laser portion is Z.
nSe, ZnS, ZnTe, CdTe, CdS, CdS
The multilayer film made of e or a mixed crystal and generating the second harmonic is made of ZnSe, ZnS, ZnTe, CdTe, Cd.
An internal cavity surface emitting SHG laser, which is a multilayer film made of a plurality of S and CdSe or a plurality of mixed crystals having different compositions.
JP18701494A 1994-08-09 1994-08-09 Inner resonance surface light emitting shg laser Pending JPH0851248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18701494A JPH0851248A (en) 1994-08-09 1994-08-09 Inner resonance surface light emitting shg laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18701494A JPH0851248A (en) 1994-08-09 1994-08-09 Inner resonance surface light emitting shg laser

Publications (1)

Publication Number Publication Date
JPH0851248A true JPH0851248A (en) 1996-02-20

Family

ID=16198699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18701494A Pending JPH0851248A (en) 1994-08-09 1994-08-09 Inner resonance surface light emitting shg laser

Country Status (1)

Country Link
JP (1) JPH0851248A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002944A1 (en) * 1996-07-17 1998-01-22 W.L. Gore & Associates, Inc. A vertical cavity surface emitting laser with enhanced second harmonic generation and method of making same
US5956362A (en) * 1996-02-27 1999-09-21 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method of etching
US6986693B2 (en) 2003-03-26 2006-01-17 Lucent Technologies Inc. Group III-nitride layers with patterned surfaces
US7099073B2 (en) 2002-09-27 2006-08-29 Lucent Technologies Inc. Optical frequency-converters based on group III-nitrides
EP1798991A1 (en) * 2005-12-13 2007-06-20 Seiko Epson Corporation Laser light source device and projector including said device
US7266257B1 (en) 2006-07-12 2007-09-04 Lucent Technologies Inc. Reducing crosstalk in free-space optical communications
US7315425B2 (en) 2004-04-06 2008-01-01 Canon Kabushiki Kaisha Zoom lens and image projection apparatus having the same
JP2008130666A (en) * 2006-11-17 2008-06-05 Sony Corp Semiconductor light-emitting device
US7733936B2 (en) 2005-04-28 2010-06-08 Canon Kabushiki Kaisha Surface emitting laser
US7952109B2 (en) 2006-07-10 2011-05-31 Alcatel-Lucent Usa Inc. Light-emitting crystal structures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956362A (en) * 1996-02-27 1999-09-21 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method of etching
WO1998002944A1 (en) * 1996-07-17 1998-01-22 W.L. Gore & Associates, Inc. A vertical cavity surface emitting laser with enhanced second harmonic generation and method of making same
US5918108A (en) * 1996-07-17 1999-06-29 W. L. Gore & Associates, Inc Vertical cavity surface emitting laser with enhanced second harmonic generation and method of making same
US7099073B2 (en) 2002-09-27 2006-08-29 Lucent Technologies Inc. Optical frequency-converters based on group III-nitrides
US6986693B2 (en) 2003-03-26 2006-01-17 Lucent Technologies Inc. Group III-nitride layers with patterned surfaces
US7084563B2 (en) 2003-03-26 2006-08-01 Lucent Technologies Inc. Group III-nitride layers with patterned surfaces
USRE47767E1 (en) 2003-03-26 2019-12-17 Nokia Of America Corporation Group III-nitride layers with patterned surfaces
US8070966B2 (en) 2003-03-26 2011-12-06 Alcatel Lucent Group III-nitride layers with patterned surfaces
US7315425B2 (en) 2004-04-06 2008-01-01 Canon Kabushiki Kaisha Zoom lens and image projection apparatus having the same
US7397610B2 (en) 2004-04-06 2008-07-08 Canon Kabushiki Kaisha Zoom lens and image projection apparatus having the same
US7733936B2 (en) 2005-04-28 2010-06-08 Canon Kabushiki Kaisha Surface emitting laser
US7796672B2 (en) 2005-12-13 2010-09-14 Seiko Epson Corporation Light source device and projector including light source device
EP1798991A1 (en) * 2005-12-13 2007-06-20 Seiko Epson Corporation Laser light source device and projector including said device
US7952109B2 (en) 2006-07-10 2011-05-31 Alcatel-Lucent Usa Inc. Light-emitting crystal structures
US7266257B1 (en) 2006-07-12 2007-09-04 Lucent Technologies Inc. Reducing crosstalk in free-space optical communications
JP2008130666A (en) * 2006-11-17 2008-06-05 Sony Corp Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US5390210A (en) Semiconductor laser that generates second harmonic light with attached nonlinear crystal
KR100209829B1 (en) Surface emitting second harmonic generating device
US5436920A (en) Laser device
US6597721B1 (en) Micro-laser
US5617435A (en) Lasing system with wavelength-conversion waveguide
US5363390A (en) Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity
EP0137037A1 (en) Nonlinear optical apparatus
JP4874768B2 (en) Wavelength conversion element
US6680956B2 (en) External frequency conversion of surface-emitting diode lasers
JPH0851248A (en) Inner resonance surface light emitting shg laser
JP3329066B2 (en) Laser device
JP2000162656A (en) Semiconductor device
Pellegrini et al. Resonant second harmonic generation in ZnSe bulk microcavity
JP3146505B2 (en) Integrated semiconductor laser device
Vakhshoori Analysis of visible surface‐emitting second‐harmonic generators
US5408110A (en) Second-harmonic generation in semiconductor heterostructures
Chen et al. Cavity length dependence of the wavelength of strained‐layer InGaAs/GaAs lasers
JP2751656B2 (en) Surface-emitting type optical second harmonic device
JPH0730181A (en) Surface luminous second harmonic generating device
JP3264080B2 (en) Short wavelength light generator
JP2006186348A (en) Light-emitting device and light source apparatus provided therewith
JP2757615B2 (en) Semiconductor optical second harmonic light emitting device
JPH0722705A (en) Semiconductor light emitting device
JPH09275242A (en) Semiconductor shg laser device
JP2738155B2 (en) Waveguide type wavelength conversion element