JPH085110A - Heat exchanger for heat accumulation - Google Patents

Heat exchanger for heat accumulation

Info

Publication number
JPH085110A
JPH085110A JP13588994A JP13588994A JPH085110A JP H085110 A JPH085110 A JP H085110A JP 13588994 A JP13588994 A JP 13588994A JP 13588994 A JP13588994 A JP 13588994A JP H085110 A JPH085110 A JP H085110A
Authority
JP
Japan
Prior art keywords
heat
ice
transfer tube
heat transfer
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13588994A
Other languages
Japanese (ja)
Other versions
JP3511675B2 (en
Inventor
Takeshi Yoshida
武司 吉田
Masami Imanishi
正美 今西
Hideaki Tagashira
秀明 田頭
Yasufumi Hatamura
康文 畑村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13588994A priority Critical patent/JP3511675B2/en
Publication of JPH085110A publication Critical patent/JPH085110A/en
Application granted granted Critical
Publication of JP3511675B2 publication Critical patent/JP3511675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To obtain a heat exchanger for heat accumulation which dispenses with control of the amount of cold storage and shows a high fill rate of ice, by preventing unfrozen water from being sealed up in ice at the time of an additional cold storage operation and by minimizing an energy loss being incidental to elimination of the sealed state of the unfrozen water. CONSTITUTION:In this heat exchanger for heat accumulation, sealed water 3 formed of ice melting on the surface of a heat transfer tube 1 and sealed up in the surrounding ice 17 after a cold release operation, for instance, is frozen to be the ice 17 at the time of another cold storage operation, and a pressure rise is caused by the volume expansion of the ice 17 at this time. Since a thick-wall heat insulating body 16 being a nonconductor of heat is so provided as to project more in the direction of a tube diameter than the thickness of the ice 17 at the time when the maximum amount of cold storage is reached, in this case, the ice 17 is absent at the position of disposition of the thick-wall heat insulating body 16 and the ice 17 is divided into upper and lower portions at this position. Accordingly, the sealed water 3 of which the pressure rises flows out into water 3a outside the ice along the surface of the thick-wall heat insulating body 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば蓄熱式空気調
和装置に適用されるスタティック形の蓄熱用熱交換装置
に係り、特に、製氷を行う蓄熱槽の伝熱管部分の構造及
び蓄冷熱制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static heat exchanger for heat storage applied to, for example, a heat storage type air conditioner, and more particularly to a structure of a heat transfer tube portion of a heat storage tank for ice making and cold heat control. It is a thing.

【0002】[0002]

【従来の技術】図10は、例えば実開平2−44624
号公報に開示され、蓄冷可能な蓄熱材を収容した蓄熱槽
を有する蓄熱材循環式の蓄熱式空気調和機のシステム図
である。図において、1は蓄熱用熱交換装置の熱交換部
分に配備される蓄熱用伝熱管(以下、伝熱管と称する)
である。この伝熱管1は、蓄熱槽2に満たされた蓄熱材
としての水3aの中に浸されていて、冷却装置4ととも
に、蓄冷用回路5(例えば、冷媒循環路)を構成してい
る。また、利用側熱交換器6と循環ポンプ7とともに、
冷却された水3aを循環させて利用側の冷房を行なう冷
房用回路8を構成している。
2. Description of the Related Art FIG.
FIG. 1 is a system diagram of a heat storage material circulation type heat storage type air conditioner that has a heat storage tank that stores a heat storage material capable of storing heat and is disclosed in Japanese Patent Publication No. In the figure, reference numeral 1 denotes a heat storage heat transfer tube provided in a heat exchange part of the heat storage heat exchange device (hereinafter referred to as a heat transfer tube).
Is. The heat transfer tube 1 is immersed in water 3a as a heat storage material filled in the heat storage tank 2, and constitutes a cool storage circuit 5 (for example, a refrigerant circulation path) together with the cooling device 4. Also, together with the use side heat exchanger 6 and the circulation pump 7,
A cooling circuit 8 is configured to circulate the cooled water 3a to cool the user side.

【0003】また、蓄熱槽2は、上部開放部分9を有
し、水3aの液面10は液面検知装置11によって水位
検知が可能となっている。かかる蓄熱式空気調和機を運
転させる際、未氷結部分である水3aを循環させつつ、
蓄冷(製氷)運転時には、水3aから氷への相変化に伴
った体積膨張による液面10の上昇を、液面検知装置1
1にて検知させ、蓄冷運転限界(所定の氷充填率)に達
しない範囲内で蓄冷運転を停止させることによって、氷
の体積膨張による伝熱管1のつぶれ(管外圧による圧
縮)を未然に防止するようになっている。
Further, the heat storage tank 2 has an upper open portion 9, and the liquid level 10 of the water 3a can be detected by a liquid level detecting device 11. When operating such a heat storage type air conditioner, while circulating the water 3a which is an unfrozen part,
During the cold storage (ice making) operation, the rise of the liquid level 10 due to the volume expansion accompanying the phase change from the water 3a to the ice is detected by the liquid level detection device 1
1 to prevent the collapse of the heat transfer tube 1 (compression due to external pressure) due to volume expansion of ice by stopping the cold storage operation within the range where the cold storage operation limit (predetermined ice filling rate) is not reached. It is supposed to do.

【0004】この蓄熱式空気調和機の製氷方式は、伝熱
管1に氷を付着させるスタティック方式に依っており、
蓄熱槽2内における未氷結部分の水3aが氷結部分と伝
熱管1との間で閉塞状態となって残ることがあり、その
後の蓄冷運転の再開によって未氷結部分の氷結が進んだ
場合に、当該部分で凍った氷の体積膨張により伝熱管1
のつぶれを引き起こす危険性を有している。そこで、こ
の蓄熱式空気調和機によれば、所定の製氷量に達すると
追加の蓄冷運転を停止させるようにしてあるので、伝熱
管つぶれ対策としては有効であるが、液面検知装置11
の設置によるコストアップや、蓄熱槽2の容積を十分に
活用して蓄冷を行えないことに起因する蓄冷量不足等の
問題を有することから、あまり効果的な方式とはいいが
たい。
The ice making method of this heat storage type air conditioner relies on the static method of adhering ice to the heat transfer tube 1.
In some cases, the water 3a in the unfrozen part in the heat storage tank 2 may remain in a blocked state between the freezing part and the heat transfer tube 1, and when the unfrozen part is frozen due to the restart of the subsequent cold storage operation, Heat transfer tube 1 due to volume expansion of ice frozen in the part
There is a risk of crushing. Therefore, according to this heat storage type air conditioner, the additional cold storage operation is stopped when the predetermined amount of ice making is reached, which is effective as a countermeasure against the heat transfer tube collapse, but the liquid level detection device 11
It is difficult to say that this is a very effective method because it has problems such as an increase in cost due to the installation of a heat storage tank and a shortage of cold storage due to the inability to store cold by fully utilizing the volume of the heat storage tank 2.

【0005】また、図11は特開平5−264077号
公報に開示された、冷媒を使用する直膨形の蓄熱式空気
調和機の冷媒回路図であり、圧縮機12、非利用側(室
外側)熱交換器13、絞り装置14、および伝熱管1を
含む蓄熱槽2の各構成機器に図中の実線矢印の順路で冷
媒を循環させたときの蓄冷運転回路と、冷媒ポンプ7
a、伝熱管1を含む蓄熱槽2、絞り装置14a、利用側
熱交換器6の各構成機器に、図中の破線矢印の順路で冷
媒を循環させたときの放冷(融氷)運転回路とをそれぞ
れ表している。上記各回路の場合、伝熱管1を介した熱
交換による、水3aの製氷および融氷は常に伝熱管1近
傍から遠方に向けて行われる。そのうえ、放冷運転時の
融氷は伝熱管1直近の氷から順次水へと相変化していく
ため、所定時間に満たない比較的短時間の放冷(融氷)
運転後に蓄冷運転を再開すると、伝熱管1直近で水3a
が閉塞状態となり易い。このような蓄熱式空気調和機に
おいて、放冷運転を行った後に蓄冷運転を再開して、水
の閉塞状態を生じ易い場合には、更なる追加の蓄冷運転
を行わせないように、蓄冷運転禁止に係る制御領域を設
定しておく等の蓄冷量コントロールが必要である。その
ため、所要量の氷を蓄えるだけの蓄冷運転が不可能な制
御領域が常に存在するので、放冷運転中に蓄冷量不足と
なるケースもあった。
FIG. 11 is a refrigerant circuit diagram of a direct expansion heat storage type air conditioner using a refrigerant, which is disclosed in Japanese Unexamined Patent Publication No. 5-264077. The compressor 12, the non-use side (outdoor side) ) A cold storage operation circuit when the refrigerant is circulated through the components of the heat storage tank 2 including the heat exchanger 13, the expansion device 14, and the heat transfer tube 1 in the route indicated by the solid line arrow in the figure, and the refrigerant pump 7.
a, the heat storage tank 2 including the heat transfer tube 1, the expansion device 14a, and the constituent devices of the heat exchanger 6 on the use side, the cooling (melting ice) operation circuit when the refrigerant is circulated in the route indicated by the broken line arrow in the figure. And, respectively. In the case of each of the circuits described above, ice making and melting of the water 3a by heat exchange through the heat transfer tube 1 are always performed from the vicinity of the heat transfer tube 1 toward the distance. In addition, since the ice melt during the cooling operation changes phase from the ice near the heat transfer tube 1 to water in sequence, cooling is performed for a relatively short time (melting ice) that is less than the specified time.
When the cold storage operation is restarted after the operation, the water 3a is immediately near the heat transfer tube 1.
Is likely to become blocked. In such a heat storage type air conditioner, when the cold storage operation is restarted after the cold discharge operation is performed and water is likely to be blocked, the cold storage operation is performed so as not to perform the additional cold storage operation. It is necessary to control the amount of cold storage such as setting a control area related to prohibition. For this reason, there is always a control area in which the cold storage operation for storing the required amount of ice is impossible, and there is a case where the cold storage amount becomes insufficient during the cold discharge operation.

【0006】そして、図12は、特願平5−32041
号に示され、図11の冷媒回路に示したと同様の伝熱管
の構成態様を示した図である。図において、コイル状に
形成された伝熱管1は、ハンガー15によって上下両端
を支持された状態で、蓄熱槽内の水3a中に浸漬される
ように構成されている。この構成によれば、製氷時に、
伝熱管1周囲に氷が付着し成長するが、上記他の従来例
で示したと同様に、過度の蓄冷運転が行われたときに
は、隣合った伝熱管1間の水3aが一部閉塞状態となり
得るため、上記で示したような蓄冷量のコントロールが
不可欠であった。
FIG. 12 shows a Japanese Patent Application No. 5-32041.
FIG. 12 is a view showing a configuration mode of a heat transfer tube similar to that shown in the refrigerant circuit of FIG. In the figure, the heat transfer tube 1 formed in a coil shape is configured to be immersed in the water 3a in the heat storage tank in a state where the upper and lower ends are supported by the hanger 15. According to this configuration, during ice making,
Although ice adheres to and grows around the heat transfer tubes 1, when excessive cold storage operation is performed, the water 3a between the adjacent heat transfer tubes 1 is partially blocked as in the case of the other conventional example. In order to obtain it, it was essential to control the amount of cold storage as shown above.

【0007】[0007]

【発明が解決しようとする課題】従来の蓄熱式空気調和
機における蓄熱用熱交換装置は、以上のように構成され
ているので、比較的短時間だけ放冷運転を行ったのち蓄
冷運転を再開するときに、製氷量限度を設定した運転コ
ントロールや、追加の蓄冷運転禁止に係る制御領域を設
定しなければならない等の蓄冷量コントロールを必要と
していた。また、蓄熱槽の氷充填率は比較的低く、これ
を一定以上にすることができなかった。そのため、蓄熱
槽の総容量を十分に生かした蓄冷運転を行えないことに
よる蓄冷量不足等の問題が生じることがあった。また、
液面等を検知する検知装置の設置に要するコストアップ
を免れない等のデメリットもあった。
Since the heat storage heat exchange device in the conventional heat storage type air conditioner is constructed as described above, the cold storage operation is restarted after performing the cooling operation for a relatively short time. In doing so, it was necessary to control the amount of cold storage such as the operation control that set the ice making amount limit and the control area related to the additional cold storage operation prohibition. In addition, the ice filling rate of the heat storage tank was relatively low, and it was not possible to keep it above a certain level. Therefore, problems such as insufficient amount of cold storage may occur due to the inability to perform cold storage operation making full use of the total capacity of the heat storage tank. Also,
There is also a demerit that the cost required to install the detection device for detecting the liquid level and the like is unavoidable.

【0008】この発明は、上記のような問題点を解消す
るためになされたもので、蓄冷運転再開時に未氷結水を
氷内に閉塞状態とすることなく、また、未氷結水の閉塞
状態を解消するときに付随するエネルギーロスを最小限
とすることにより、蓄冷量コントロールを不要とし、か
つ、氷充填率の高い蓄熱用熱交換装置の提供を目的とす
るものである。
The present invention has been made in order to solve the above-mentioned problems, and does not block the unfrozen water inside the ice when the cold storage operation is restarted. It is an object of the present invention to provide a heat storage device for heat storage that does not require control of the amount of stored cold and has a high ice filling rate by minimizing the energy loss that accompanies the elimination.

【0009】[0009]

【課題を解決するための手段】この発明に係る蓄熱用熱
交換装置は、水を収容した蓄熱槽内に水との間で熱交換
を行う伝熱管が配列されてなる蓄熱用熱交換装置におい
て、伝熱管の一部に当該伝熱管より小さな熱伝導率の熱
不良導体を少なくとも近接して配設し、熱不良導体の配
設位置に凍結する氷を伝熱管の他部よりも薄く又は無く
すようにしたものである。
A heat storage heat exchange device according to the present invention is a heat storage heat exchange device in which heat transfer tubes for exchanging heat with water are arranged in a heat storage tank containing water. , A heat-defective conductor having a smaller thermal conductivity than that of the heat-transfer pipe is arranged at least in close proximity to a part of the heat-transfer pipe, and ice to be frozen at the position where the heat-defective conductor is arranged is thinner or lost than other parts of the heat-transfer pipe. It was done like this.

【0010】また、熱不良導体は、伝熱管表面からの管
径方向の長さが最大蓄冷量到達時の氷厚以上に形成され
た厚肉断熱体であるものである。
The poor heat conductor is a thick-walled heat insulator whose length in the radial direction from the surface of the heat transfer tube is equal to or larger than the ice thickness when the maximum amount of cold storage is reached.

【0011】更に、熱不良導体は、伝熱管表面からの管
径方向の長さが最大蓄冷量到達時の氷厚未満の所定長に
形成された薄肉断熱体であるものである。
Further, the heat-defective conductor is a thin-walled heat insulator whose length in the radial direction from the surface of the heat transfer pipe is less than the ice thickness when the maximum amount of cold storage is reached.

【0012】一方、水を収容した蓄熱槽内に水との間で
熱交換を行う伝熱管が配列されてなる蓄熱用熱交換装置
において、伝熱管に少なくとも近接して発熱体を配設
し、発熱体からの熱により発熱体の周囲に凍結している
氷を融解して伝熱管の表面と氷の外方とを連通する水流
通経路を形成するようにしたものである。
On the other hand, in a heat storage heat exchange device in which heat transfer tubes for exchanging heat with water are arranged in a heat storage tank containing water, a heating element is disposed at least near the heat transfer tube, The heat from the heating element melts the frozen ice around the heating element to form a water flow path that connects the surface of the heat transfer tube and the outside of the ice.

【0013】また、発熱体は、伝熱管表面からの管径方
向の長さが最大蓄冷量到達時の氷厚以上に形成されると
ともに、伝熱管を挟持する支持構造に構成されてなるも
のである。
Further, the heating element is formed such that its length from the surface of the heat transfer tube in the tube radial direction is equal to or more than the ice thickness when the maximum amount of cold storage is reached and the support structure holds the heat transfer tube. is there.

【0014】更に、発熱体は、電熱線で構成されてなる
ものである。
Further, the heating element is composed of a heating wire.

【0015】また、予め設定された発熱体の所定発熱時
間を記憶する発熱時間記憶手段と、蓄冷運転開始時から
記憶されている所定発熱時間だけ発熱体を発熱させる第
1の制御手段とを設けたものである。
Further, a heating time storage means for storing a preset heating time of the heating element and a first control means for heating the heating element for a predetermined heating time stored from the start of the cold storage operation are provided. It is a thing.

【0016】更に、蓄冷熱利用運転時には蓄冷熱利用運
転時間を計時し積算する計時手段と、蓄冷運転時には積
算された蓄冷熱利用運転時間に基づいた時間だけ発熱体
を発熱させる第2の制御手段とを設けたものである。
Further, during the cold storage heat utilization operation, a time counting means for measuring and integrating the cold storage heat utilization operation time, and a second control means for causing the heating element to generate heat for a time based on the accumulated cold storage heat utilization operation time during the cold storage operation. And are provided.

【0017】そして、以上の各構成において、伝熱管
が、当該長手方向を略鉛直に向けて配列されてなるもの
である。
In each of the above constructions, the heat transfer tubes are arranged with the longitudinal direction thereof oriented substantially vertically.

【0018】[0018]

【作用】この発明に係る蓄熱用熱交換装置においては、
例えば蓄冷熱利用運転後に伝熱管の表面で解けて周囲の
氷内に閉塞されている水は、再度の蓄冷運転時に凍結し
て氷にされるが、この氷の体積膨張により圧力上昇す
る。この場合、熱不良導体の存在により熱不良導体の配
設位置には氷が凍結しないか、或いは氷が凍結したとし
ても他の部分よりも薄い厚みに形成される。従って、圧
力上昇した水は、厚みの薄い氷の部分を打ち破って氷外
に流出したり、或いは氷の無い部分の熱不良導体の表面
に沿って氷外に流出する。
In the heat storage device for heat storage according to the present invention,
For example, water that is thawed on the surface of the heat transfer tube after the cold heat utilization operation and is clogged in the surrounding ice is frozen and turned into ice during the cold energy storage operation again, but the pressure increases due to the volume expansion of this ice. In this case, due to the presence of the heat-defective conductor, the ice is not frozen at the position where the heat-defective conductor is arranged, or even if the ice is frozen, the ice is formed to have a smaller thickness than other portions. Therefore, the water whose pressure has increased breaks down the thin ice portion and flows out of the ice, or flows out of the ice along the surface of the heat-defective conductor in the portion where there is no ice.

【0019】また、熱不良導体としての厚肉断熱体は、
最大蓄冷量到達時の氷よりも管径方向に突出している。
従って、この厚肉断熱体の配設位置に氷は無く、厚肉断
熱体により分断されている。そのため、氷内に閉塞され
て圧力上昇した水は厚肉断熱体の表面に沿って氷外に流
出する。
Further, the thick heat insulator as the heat-defective conductor is
It protrudes in the pipe diameter direction more than the ice when the maximum amount of cold storage is reached.
Therefore, there is no ice at the position where the thick heat insulator is arranged, and the thick heat insulator is divided. Therefore, the water that is blocked in the ice and has increased in pressure flows out of the ice along the surface of the thick heat insulator.

【0020】更に、熱不良導体としての薄肉断熱体は、
最大蓄冷量到達時に氷内に埋もれている。しかしなが
ら、この薄肉断熱体の配設位置で凍結した氷は他部と比
べて薄肉厚みに形成される。従って、氷内に閉塞されて
圧力上昇した水は厚みの薄い部分の氷を破断しこの破断
部分から氷外に流出する。
Further, the thin-walled heat insulator as a heat-defective conductor is
It is buried in ice when the maximum amount of cold storage is reached. However, the ice frozen at the position where the thin heat insulator is arranged is formed to have a thinner thickness than that of the other portions. Therefore, the water, which is blocked in the ice and whose pressure is increased, breaks the ice in the thin portion and flows out of the ice from the broken portion.

【0021】一方、伝熱管に少なくとも近接して配設さ
れた発熱体は、発熱体周囲の氷を発熱により融解する。
これにより、伝熱管の表面と氷の外方とを連通する水流
通経路が形成される。従って、氷内で水が圧力上昇して
も、この水は水流通経路を通って氷外に流出する。
On the other hand, the heating element arranged at least near the heat transfer tube melts the ice around the heating element by heat generation.
As a result, a water flow path that connects the surface of the heat transfer tube and the outside of the ice is formed. Therefore, even if the pressure of water rises in the ice, the water flows out of the ice through the water circulation path.

【0022】また、発熱体は、最大蓄冷量到達時の氷よ
りも管径方向に突出している場合、発熱体の配設位置
に、氷は形成されない。加えて、発熱体は周囲の氷を解
かす。従って、氷内に閉塞されて圧力上昇した水も発熱
体に沿って極めて容易に氷外に流出する。また、発熱体
は伝熱管を挟持するので、伝熱管支持用の構造部材とな
る。
If the heating element projects more in the tube radial direction than the ice when the maximum amount of cold storage is reached, no ice is formed at the location where the heating element is arranged. In addition, the heating element melts the surrounding ice. Therefore, the water that has been blocked in the ice and the pressure of which has risen easily flows out of the ice along the heating element. Further, since the heat generating body sandwiches the heat transfer tube, it becomes a structural member for supporting the heat transfer tube.

【0023】更に、発熱体としての電熱線は、通電によ
り周囲の氷を解かす。従って、氷内に閉塞されて圧力上
昇した水は電熱線に沿って極めて容易に氷外に流出す
る。
Further, the heating wire as a heating element melts the surrounding ice by energizing. Therefore, the water that is blocked in the ice and the pressure of which rises can easily flow out of the ice along the heating wire.

【0024】また、第1の制御手段は、蓄冷運転開始時
から発熱時間記憶手段に予め記憶されている所定発熱時
間だけ発熱体を発熱させる。従って、伝熱管つぶれ防止
のためとはいえ、通常の蓄冷運転時に得た折角の氷を必
要以上に解かさない。
Further, the first control means causes the heating element to generate heat for a predetermined heat generation time stored in advance in the heat generation time storage means from the start of the cold storage operation. Therefore, even though the heat transfer tubes are prevented from being crushed, the ice cubes obtained during the normal cold storage operation are not unnecessarily thawed.

【0025】更に、計時手段は、蓄冷熱利用運転時に蓄
冷熱利用運転時間を計時し積算する。そして、第2の制
御手段は、計時手段により積算されている蓄冷熱利用運
転時間だけ蓄冷運転時において発熱体を発熱させる。そ
の一方で、第2の制御手段は、氷が全量解氷され得る通
常放冷運転時の蓄冷熱利用運転時やその他の運転時に、
伝熱管つぶれ防止のための運転を実行させない。
Further, the time measuring means measures and integrates the cold storage heat utilization operation time during the cold storage heat utilization operation. Then, the second control means causes the heating element to generate heat during the cold storage operation for the cold storage heat utilization operation time accumulated by the timing means. On the other hand, the second control means, during the normal cold-cooling operation that can completely thaw the ice, during the cold heat utilization operation or other operation,
Do not execute the operation to prevent the heat transfer tubes from collapsing.

【0026】そして、長手方向を略鉛直に向けて配列さ
れた伝熱管は、解氷時における伝熱管周囲の水をその比
重変化により自然対流を引き起こして氷外との間に水流
通経路を形成しやすくする。従って、水を氷内に閉塞し
にくくする。
The heat transfer tubes arranged with their longitudinal directions oriented substantially vertically cause natural convection of the water around the heat transfer tubes during the thawing of the ice due to a change in specific gravity thereof to form a water flow path with the outside of the ice. Make it easier. Therefore, it is difficult to block water in ice.

【0027】[0027]

【実施例】以下、この発明の実施例につき添付図面に基
づいて説明する。 実施例1.図1は請求項1及び請求項2の一実施例を示
す蓄熱用熱交換装置の部分斜視図である。図において、
1は蓄熱槽内の蓄熱材(ここでは水)に浸された蓄熱用
熱交換装置の伝熱管、16は伝熱管1に上下所定の間隔
で取り付けられた円盤状の厚肉断熱体である。また、図
2は、図1における伝熱管1周囲に氷17が付着して成
長し、かつ比較的短時間の放冷(融氷)運転により、伝
熱管1周囲の氷17が少し解けた状態を部分断面に表し
たものである。図において、17は氷、3は伝熱管1周
囲の融氷により生じ氷17内に閉塞されている閉塞水、
3aは氷になっていない蓄熱槽内の水を示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Example 1. FIG. 1 is a partial perspective view of a heat storage heat exchange device showing one embodiment of claims 1 and 2. In the figure,
Reference numeral 1 is a heat transfer tube of a heat storage heat exchange device immersed in a heat storage material (here, water) in a heat storage tank, and 16 is a disk-shaped thick heat insulator attached to the heat transfer tube 1 at predetermined vertical intervals. In addition, FIG. 2 shows a state in which ice 17 adheres to and grows around the heat transfer tube 1 in FIG. 1, and the ice 17 around the heat transfer tube 1 is slightly melted by a relatively short-time cooling (melting ice) operation. Is a partial cross section. In the figure, 17 is ice, 3 is closed water generated by melting ice around the heat transfer tube 1 and closed in the ice 17,
3a shows water in the heat storage tank which is not iced.

【0028】そして、厚肉断熱体16の取り付けられた
部分では、氷17が分断されており、この部分に氷が成
長することのない厚肉断熱体16を、伝熱管1半径方向
の厚さが最大蓄冷量到達時の氷厚以上となるように形成
しておけば、氷17がかなり成長しても厚肉断熱体16
による分断状態は変わらない。そこで、この閉塞水3が
存在している状態から更に追加の蓄冷運転を行うと、閉
塞水3が氷へと相変化する際に体積膨張する。このと
き、氷17が厚肉断熱体16により分断されていること
により、新たな氷の体積膨張に伴って圧迫された未氷結
の閉塞水3は、氷17と厚肉断熱体16の隙間を通って
蓄熱槽内の水3aの部分へ排出される。このため、厚肉
断熱体16を設けていなかった従来装置のように、氷の
体積膨張により閉塞水3を介して伝熱管1にかかる応力
集中に起因した伝熱管つぶれを引き起こしたりすること
がなく、予め最大の氷厚が判っていれば、いかなる氷厚
の氷に対しても伝熱管つぶれを確実に防止することがで
きる。
At the portion where the thick-walled heat insulator 16 is attached, the ice 17 is divided, and the thick-walled heat insulator 16 where ice does not grow in this portion is thickened in the radial direction of the heat transfer tube 1. If it is formed to have a thickness equal to or more than the ice thickness when the maximum amount of cold storage is reached, even if the ice 17 grows considerably, the thick-walled heat insulator 16
The state of division by does not change. Therefore, when an additional cold storage operation is performed from the state in which the closed water 3 exists, the closed water 3 expands in volume when it changes into ice. At this time, since the ice 17 is divided by the thick-walled heat insulator 16, the unfrozen closed water 3 which is compressed due to the new volume expansion of the ice fills the gap between the ice 17 and the thick-walled heat insulator 16. It passes through and is discharged to the part of water 3a in the heat storage tank. Therefore, unlike the conventional device in which the thick heat insulator 16 is not provided, the heat transfer tube is not crushed due to the stress concentration applied to the heat transfer tube 1 through the closed water 3 due to the volume expansion of ice. If the maximum ice thickness is known in advance, it is possible to reliably prevent the heat transfer tube from being crushed for any ice thickness.

【0029】尚、閉塞水3の発生箇所や分布状態は限定
できないため、厚肉断熱体16は氷17の最大成長可能
直径の数倍程度の間隔で伝熱管1に取り付けられるのが
望ましい。また、厚肉断熱体16は、伝熱管1(例え
ば、銅製)よりも小さな熱伝導率の材質よりなる熱不良
導体であればよい。また、厚肉断熱体16は、閉塞水3
の体積膨張により影響を受ける閉塞水3部分の外径(氷
17の内径)よりも小さな内径を有するリング状に形成
されたものを伝熱管1に遊嵌状に配設したり、或いは伝
熱管1の外径とほぼ同径の内径を有して形成されたもの
を伝熱管1に密着して固定してもよい。尚、その形状
は、上記のような円盤状に限定されない。但し、厚肉断
熱体16の最大外径は、氷充填率が100%に設定され
ることは蓄熱式空気調和機の実運転制御上考えられない
ため、氷充填率が最大に設定された範囲内で、そのとき
の最大氷厚外径に決定すれば十分である。一方、最大氷
充填率が従来より高く設定されても、厚肉断熱体16の
最大外径をそのときの最大氷厚外径に設定すればよいの
で、蓄熱槽の容積を十分に活用できる。尚、この実施例
のように、厚肉断熱体は伝熱管1毎に独立して設けられ
るものでなくてもよく、上記氷充填率の範囲内であれ
ば、例えば隣接する伝熱管間に架け渡される共通の長方
形状板体であっても構わない。
Since the location and distribution of the closed water 3 cannot be limited, it is desirable that the thick heat insulator 16 be attached to the heat transfer tube 1 at intervals of several times the maximum growth diameter of the ice 17. The thick heat insulator 16 may be a heat-defective conductor made of a material having a smaller thermal conductivity than the heat transfer tube 1 (made of copper, for example). In addition, the thick-walled heat insulator 16 is used for the closed water 3
A ring-shaped member having an inner diameter smaller than the outer diameter (inner diameter of the ice 17) of the closed water 3 portion affected by the volume expansion of the heat transfer tube 1, or the heat transfer tube 1. The heat transfer tube 1 may be formed in such a manner that it has an inner diameter substantially equal to the outer diameter of the heat transfer tube 1. The shape is not limited to the disc shape described above. However, the maximum outer diameter of the thick-walled heat insulator 16 is set within the range in which the ice filling rate is set to 100% because it is not considered in actual operation control of the heat storage air conditioner that the ice filling rate is set to 100%. It is sufficient to determine the maximum ice thickness outer diameter at that time. On the other hand, even if the maximum ice filling rate is set higher than in the conventional case, the maximum outer diameter of the thick-walled heat insulator 16 may be set to the maximum ice thickness outer diameter at that time, so that the volume of the heat storage tank can be fully utilized. It should be noted that, as in this embodiment, the thick-walled heat insulator does not have to be provided independently for each heat transfer tube 1, but may be provided between adjacent heat transfer tubes as long as it is within the above ice filling rate. It may be a common rectangular plate to be passed.

【0030】実施例2.図3は請求項1及び請求項3に
よる一実施例を示す蓄熱用熱交換装置の部分斜視図であ
る。図において、16aは伝熱管1の外周面に上下所定
の間隔で取り付けられた被膜(薄肉断熱体の一例)であ
る。この被膜16aは、伝熱管1表面からの管径方向の
厚みが最大蓄冷量到達時の氷厚未満の厚みに形成されて
おり、その材質は伝熱管1の熱伝導率よりも小さなもの
であれば、特に限定されない。例えば、断熱テープ等を
用いて上下所定の間隔で卷いたものであっても構わな
い。
Example 2. FIG. 3 is a partial perspective view of the heat exchange device for heat storage showing an embodiment according to claims 1 and 3. In the figure, 16a is a coating (an example of a thin heat insulator) attached to the outer peripheral surface of the heat transfer tube 1 at a predetermined upper and lower intervals. The coating 16a is formed so that the thickness from the surface of the heat transfer tube 1 in the tube radial direction is less than the ice thickness when the maximum amount of cold storage is reached, and the material thereof may be smaller than the thermal conductivity of the heat transfer tube 1. However, it is not particularly limited. For example, it may be wound up and down at a predetermined interval using a heat insulating tape or the like.

【0031】図4は、図3における伝熱管周囲に蓄冷運
転により氷が凍結した状態を部分断面に示したものであ
り、伝熱管1周囲に氷17が付着した様子を表してい
る。図において、被膜16aの取付による氷17の成長
状況は、取り付け部分と非取り付け部分との熱伝導の差
により、氷17の断面直径に相違を生じる。このため、
実施例1で示したような伝熱管1周囲への水の閉塞状態
が生じた場合、氷17の成長が小さい範囲に限定すれ
ば、再氷結時の体積膨張による応力が氷17の直径の小
さい部分(薄氷部分)に打ち勝って破氷し、圧迫されて
いた水を破氷による水流通経路を通して氷外の水3a中
に流出させる。従って、本実施例によれば比較的安価
で、かつ、取り付け手間の少ない構成であって、伝熱管
つぶれを防止することが可能である。尚、上記被膜16
aは、水の閉塞による影響を受け易い直管部分に用いれ
ば効果的であるが、それ以外の部分、例えば管肉厚の小
さい部分に設けてもよい。
FIG. 4 is a partial cross-sectional view showing a state where ice is frozen around the heat transfer tube in FIG. 3 due to the cold storage operation, and shows a state in which ice 17 is attached around the heat transfer tube 1. In the figure, the growth state of the ice 17 due to the attachment of the coating film 16a is different in the cross-sectional diameter of the ice 17 due to the difference in heat conduction between the attached portion and the non-attached portion. For this reason,
When the water clogging condition around the heat transfer tube 1 as shown in Example 1 occurs, if the growth of the ice 17 is limited to a small range, the stress due to the volume expansion at the time of refreezing has a small diameter of the ice 17. The portion (thin ice portion) is overcome to break the ice, and the compressed water is caused to flow into the water 3a outside the ice through the water circulation path by the breaking ice. Therefore, according to the present embodiment, the heat transfer tube can be prevented from being crushed with a structure that is relatively inexpensive and has a small amount of mounting work. Incidentally, the film 16
Although a is effective when used in a straight pipe portion that is easily affected by water blockage, it may be provided in other portions, for example, in portions where the pipe wall thickness is small.

【0032】実施例3.図5は、請求項4及び請求項5
の一実施例を示す蓄熱用熱交換装置の部分斜視図であ
る。図中、18は伝熱管1を複数位置で両側から挟み込
むように取り付けられた発熱体であり、電熱線等を備え
て構成され通電による発熱を利用したものである。この
発熱体18は、管径方向の厚みが最大蓄冷量到達時の氷
厚以上に形成されているうえ、上記伝熱管1を挟持する
支持構造に構成されている。本実施例の蓄熱用熱交換装
置によれば、上記に示した実施例1と同様の無氷結部分
の形成効果と、発熱体18の融氷効果とを併せ持つこと
ができ、伝熱管つぶれ防止対策としての信頼性が高く、
かつ、伝熱管支持用の構造部材としても供することが可
能であり、費用対効果が極めて大きいものである。
Example 3. FIG. 5 shows claims 4 and 5.
It is a partial perspective view of the heat exchange device for heat storage showing one embodiment. In the figure, reference numeral 18 denotes a heating element attached so as to sandwich the heat transfer tube 1 at a plurality of positions from both sides, and is configured by including a heating wire or the like and utilizes heat generated by energization. The heating element 18 is formed to have a thickness in the radial direction of the pipe that is equal to or larger than the ice thickness when the maximum amount of cold storage is reached, and has a support structure that holds the heat transfer pipe 1 therebetween. According to the heat exchange device for heat storage of the present embodiment, it is possible to have both the effect of forming an ice-free portion similar to that of the above-described Embodiment 1 and the effect of melting the heat of the heat generating element 18, thus preventing the heat transfer tube from collapsing. High reliability,
In addition, it can be used as a structural member for supporting the heat transfer tube, which is extremely cost-effective.

【0033】実施例4.図6は、請求項4及び請求項6
の一実施例を示す蓄熱用熱交換装置の部分斜視図であ
る。図において、18aは伝熱管1に接触あるいは近接
させるように設置され電熱線よりなる発熱線である。こ
の発熱線18aは通電により発熱する。このとき、発熱
線18a近傍の氷が部分的に解けて、伝熱管1直近の閉
塞水と未氷結の水3aとの間を連通させることができ、
上記に示したような閉塞水の水流通経路を形成すること
ができるので、伝熱管1のつぶれを防止できる。本実施
例の蓄熱用熱交換装置によれば、実施例3における装置
のような、構造支持体としての効果は奏しないが、当該
装置を製作する上で、簡易に、かつ安価に構成できる利
点を有する。
Example 4. FIG. 6 shows claims 4 and 6.
It is a partial perspective view of the heat exchange device for heat storage showing one embodiment. In the figure, reference numeral 18a is a heating wire which is installed so as to be in contact with or close to the heat transfer tube 1 and which is a heating wire. The heating wire 18a generates heat when energized. At this time, the ice near the heating wire 18a is partially melted, and the closed water in the immediate vicinity of the heat transfer tube 1 and the unfrozen water 3a can be communicated with each other.
Since the water flow path of the blocked water as described above can be formed, the heat transfer tube 1 can be prevented from being crushed. According to the heat storage device for heat storage of the present embodiment, the effect as a structural support, unlike the device in the third embodiment, is not exhibited, but it is advantageous in that the device can be easily and inexpensively constructed. Have.

【0034】実施例5.図7は、請求項4及び請求項7
に関し、発熱体(あるいは発熱線)への通電時間(発熱
時間)の制御方法を示したグラフであり、横軸の時間経
過に従い、冷房(融氷)運転又は冷房運転停止後に蓄冷
運転が再開され、このとき蓄冷運転開始とともに所定発
熱時間だけ発熱体(例えば実施例3の発熱体18、又は
実施例4の発熱線18a)に通電することを規定したも
のである。ここで、所定発熱時間とは、発熱体への通電
ののち、発熱体周囲の氷結部分が部分的に解ける時間、
又は、伝熱管周囲の閉塞水が蓄熱槽内の未氷結の水中へ
追加蓄冷運転時における体積膨張により放出され得る時
間である。この実施例に係る蓄熱用熱交換装置では、図
6に示したように、予め設定された発熱体(ここでは、
発熱線18a)の所定発熱時間を記憶するメモリ19
(発熱時間記憶手段の一例)と、蓄冷運転開始時から上
記記憶されている所定発熱時間だけ上記発熱体に通電し
て発熱させる制御装置20(第1の制御手段の一例)が
設けられている。これらのメモリ19及び制御装置20
により、所定発熱時間を蓄冷運転開始直後に限定して設
定することにより、通常の蓄冷運転にて得た折角の氷を
不必要に解かしたりせず、更に通電にかかる電力も節減
して、エネルギーロスを最小限に抑えることができる。
Example 5. FIG. 7 shows claims 4 and 7.
2 is a graph showing a method of controlling the energization time (heating time) to the heating element (or the heating wire), and the cold storage operation is restarted after the cooling (melting ice) operation or the cooling operation is stopped according to the passage of time on the horizontal axis. At this time, it is specified that the heating element (for example, the heating element 18 of the third embodiment or the heating wire 18a of the fourth embodiment) is energized for a predetermined heating time at the start of the cold storage operation. Here, the predetermined heat generation time is the time during which the frozen portion around the heat generating element is partially thawed after the heat generating element is energized,
Alternatively, it is a time period in which the blocked water around the heat transfer tube can be released into the unfrozen water in the heat storage tank by the volume expansion during the additional cold storage operation. In the heat storage device for heat storage according to this embodiment, as shown in FIG. 6, a preset heating element (here,
Memory 19 for storing the predetermined heat generation time of heat generation line 18a)
(Example of heat generation time storage means), and a control device 20 (an example of first control means) that energizes the heating element to generate heat for a predetermined heating time stored from the start of the cold storage operation. . These memory 19 and control device 20
Therefore, by setting the predetermined heat generation time only immediately after the cold storage operation is started, it does not unnecessarily unravel the ice cubes obtained in the normal cold storage operation, and the electric power required for energization is also saved to save energy. Loss can be minimized.

【0035】実施例6.図8は請求項4及び請求項8に
関し、冷房(放冷・融氷)運転の積算時間に応じた、発
熱体への通電時間を規定したグラフであり、ある一定の
放冷運転積算時間以下のみグラフ中のIあるいはIIに
より通電時間を設定するようにしたものである。この実
施例に係る蓄熱用熱交換装置では、図6に示したよう
に、蓄冷熱利用運転(放冷運転等)時にその蓄冷熱利用
運転時間を計時し積算して保持するタイマー21(計時
手段の一例)と、蓄冷運転時にタイマー21により積算
された蓄冷熱利用運転時間に基づいた通電時間だけ発熱
体(ここでは、発熱線18a)に通電して発熱させる制
御装置20(第2の制御手段の一例)が設けられてい
る。これらの制御装置20及びタイマー21により、伝
熱管1周囲への水閉塞が生じ易いほどに、短かい放冷運
転時間のみ伝熱管つぶれを防止する制御を行うことがで
き、氷を全量解氷し得る通常の放冷運転や蓄冷運転等を
除いた、追加の蓄冷運転時のみに通電を限定することに
よって、通常の蓄冷運転時には不必要である融氷動作や
通電といったエネルギーロスをカットすることができる
のである。
Example 6. FIG. 8 is a graph that defines the energization time to the heating element according to the cumulative time of the cooling (cooling / melting) operation with respect to claims 4 and 8, and is below a certain constant cooling operation cumulative time. Only, the energization time is set by I or II in the graph. In the heat exchange device for heat storage according to this embodiment, as shown in FIG. 6, a timer 21 (timer means for measuring, accumulating and holding the operation time for use of cold storage heat during cold storage use operation (cooling operation etc.) Control unit 20 (second control means) that energizes the heating element (here, the heating wire 18a) to generate heat for an energization time based on the cold storage heat utilization operation time accumulated by the timer 21 during the cold storage operation. Is provided). The control device 20 and the timer 21 can perform control to prevent the heat transfer tube from being crushed only for a short cooling operation time so that water is easily blocked around the heat transfer tube 1, and the entire amount of ice is thawed. By limiting the energization only during additional cold storage operation, excluding the normal cold storage operation and cold storage operation, it is possible to cut energy loss such as melting ice operation and energization that are unnecessary during normal cold storage operation. You can do it.

【0036】実施例7.図9は請求項9に係り、請求項
1及び請求項4で示した伝熱管つぶれ防止効果を更に高
めるために、上記構成に加えて伝熱管を蓄熱槽内で鉛直
配列に設け、このときの融氷の状態を部分断面に示す状
態説明図である。図示のように、伝熱管1は、その長手
方向を鉛直に向けて配列して構成されている。これによ
り、融氷時に伝熱管1周囲の水の比重変化により自然対
流水3bが生じ、伝熱効果が高められる。従って、氷外
との間の水流通経路が形成されるため、水が氷内に閉塞
されることもない。更に、本実施例の構成と上記した水
閉塞状態解消に係る構成とを組み合わせることで、伝熱
管つぶれ防止効果を促進させ一層確実にすることができ
る。
Example 7. FIG. 9 relates to claim 9, and in order to further enhance the heat transfer tube collapse prevention effect shown in claim 1 and claim 4, in addition to the above configuration, heat transfer tubes are provided in a vertical arrangement in a heat storage tank. It is a state explanatory view showing a state of melting ice in a partial section. As shown in the figure, the heat transfer tubes 1 are arranged with their longitudinal directions oriented vertically. As a result, the natural convection water 3b is generated due to the change in the specific gravity of the water around the heat transfer tube 1 during ice melting, and the heat transfer effect is enhanced. Therefore, a water flow path is formed between the outside of the ice and the ice, so that the water is not blocked inside the ice. Furthermore, by combining the configuration of the present embodiment with the above-described configuration for eliminating the water blocking state, the heat transfer tube collapse prevention effect can be promoted and made more reliable.

【0037】[0037]

【発明の効果】以上述べたように、この発明によれば、
例えば蓄冷熱利用運転後に伝熱管の表面で解けて周囲の
氷内に閉塞された水が、再度の蓄冷運転時に凍結する際
に体積膨張を生じて圧力上昇した場合でも、熱不良導体
の配設位置には凍結した氷が薄いか又は無いので、圧力
上昇した水は厚みの薄い氷の部分を打ち破って氷外に流
出したり、或いは氷の無い部分の熱不良導体の表面に沿
って氷外に流出する。従って、氷内に閉塞された水の体
積膨張による伝熱管への応力集中を生じることがなく、
伝熱管つぶれを引き起こさない。
As described above, according to the present invention,
For example, even if the water that melts on the surface of the heat transfer tube after the cold heat utilization operation and is clogged in the surrounding ice causes volume expansion when freezing during the cold energy storage operation again and the pressure rises, the placement of the heat-defective conductor Since the frozen ice is thin or absent at the position, the water with increased pressure breaks through the thin ice portion and flows out of the ice, or the ice along the surface of the heat-defective conductor in the ice-free portion Spill to. Therefore, stress concentration on the heat transfer tube due to volume expansion of water blocked in ice does not occur,
Does not cause heat transfer tube crush.

【0038】また、請求項1の発明に係る構成におい
て、熱不良導体を、伝熱管表面からの管径方向の長さが
最大蓄冷量到達時の氷厚以上に形成してある厚肉断熱体
とした場合、熱不良導体の配設位置に氷は無いので、氷
内に閉塞されて圧力上昇した水は熱不良導体の表面に沿
って氷外に流出できる。従って、伝熱管つぶれを防止す
ることが可能である。しかも、この厚肉断熱体は、比較
的安価でかつ少ない取付手間で済む。
Further, in the structure according to the invention of claim 1, the heat-insulating conductor is formed such that the length in the radial direction from the surface of the heat transfer tube is equal to or larger than the ice thickness when the maximum amount of cold storage is reached. In such a case, since there is no ice at the position where the heat-defective conductor is disposed, water that has been blocked in the ice and has increased in pressure can flow out of the ice along the surface of the heat-defective conductor. Therefore, it is possible to prevent the heat transfer tube from collapsing. Moreover, this thick-walled heat insulator is relatively inexpensive and requires a small amount of mounting work.

【0039】更に、請求項1の発明に係る構成におい
て、熱不良導体を、伝熱管表面からの管径方向の長さが
最大蓄冷量到達時の氷厚未満の所定長に形成してある薄
肉断熱体とした場合、熱不良導体の配設位置で凍結した
氷は薄い厚みに形成されるので、氷内に閉塞されて圧力
上昇した水は厚みの薄い部分の氷を破断しこの破断部分
から氷外に流出する。従って、伝熱管つぶれを防止する
ことができる。加えて、この薄肉断熱体も、比較的安価
でかつ少ない取付手間で済む。
Further, in the structure according to the first aspect of the invention, the heat-defective conductor is formed to have a predetermined length such that the length from the surface of the heat transfer tube in the pipe radial direction is less than the ice thickness when the maximum amount of cold storage is reached. When a heat insulator is used, the ice frozen at the location where the heat-defective conductor is placed has a thin thickness, so water that has been blocked inside the ice and has increased in pressure breaks the thin portion of the ice, Runs out of ice. Therefore, it is possible to prevent the heat transfer tube from collapsing. In addition, this thin heat insulator is also relatively inexpensive and requires a small amount of mounting work.

【0040】一方、伝熱管に少なくとも近接して配設さ
れた発熱体からの熱により、発熱体の周りに凍結してい
る氷を融解して伝熱管の表面と氷の外方とを連通する水
流通経路を形成するようにしたので、氷内に閉塞されて
圧力上昇した水は水流通経路を通って氷外に流出する。
従って、伝熱管つぶれを防止することが可能であり、こ
の発熱体を比較的簡単に設けることができる。
On the other hand, the heat from the heating element arranged at least near the heat transfer tube melts the ice frozen around the heating element to connect the surface of the heat transfer tube to the outside of the ice. Since the water flow path is formed, the water that has been blocked in the ice and has increased in pressure flows out of the ice through the water flow path.
Therefore, it is possible to prevent the heat transfer tube from being crushed, and the heating element can be provided relatively easily.

【0041】また、請求項4の発明に係る構成におい
て、発熱体を、伝熱管表面からの管径方向の長さが最大
蓄冷量到達時の氷厚以上に形成した場合、発熱体の配設
位置に氷は無く、併せて発熱体からの熱により周囲の氷
が解かされる。従って、氷内に閉塞されて圧力上昇した
水は発熱体に沿って極めて容易に氷外に流出する。その
結果、伝熱管つぶれを信頼性よく防止することができ
る。その上、発熱体を伝熱管を挟持する支持構造に構成
したので、伝熱管支持用の構造部材としても兼用するこ
とができるため、費用対効果が大きいものを実現でき
る。
Further, in the structure according to the invention of claim 4, when the heating element is formed such that the length from the surface of the heat transfer tube in the pipe radial direction is equal to or more than the ice thickness when the maximum amount of cold storage is reached, the heating element is arranged. There is no ice at the position, and the heat from the heating element also melts the surrounding ice. Therefore, the water, which has been blocked in the ice and whose pressure has risen, can very easily flow out of the ice along the heating element. As a result, it is possible to reliably prevent the heat transfer tube from collapsing. In addition, since the heating element is configured as a support structure for sandwiching the heat transfer tube, it can also be used as a structural member for supporting the heat transfer tube, so that a cost-effective one can be realized.

【0042】更に、請求項4の発明に係る構成におい
て、発熱体を電熱線で構成した場合、電熱線からの熱に
より周囲の氷が解かされる。従って、氷内に閉塞されて
圧力上昇した水は電熱線に沿って極めて容易に氷外に流
出する。その結果、伝熱管つぶれを防止することができ
る。即ち、この構成によれば、支持用の構造部材として
の効果は奏しない反面、簡易かつ安価に蓄熱用熱交換装
置を製作できる利点を有する。
Further, in the structure according to the invention of claim 4, when the heating element is constituted by the heating wire, the surrounding ice is thawed by the heat from the heating wire. Therefore, the water that is blocked in the ice and the pressure of which rises can easily flow out of the ice along the heating wire. As a result, it is possible to prevent the heat transfer tube from collapsing. That is, according to this structure, the effect as a supporting structural member is not exhibited, but on the other hand, there is an advantage that the heat storage device for heat storage can be manufactured easily and inexpensively.

【0043】また、第1の制御手段が、蓄冷運転開始時
から発熱時間記憶手段に予め記憶されている所定発熱時
間だけ発熱体を発熱させるようにしたので、伝熱管つぶ
れ防止のためとはいえ、蓄冷運転時に得た折角の氷を必
要以上に解かしたりしない。従って、エネルギーロスを
最小限に抑えることができる。
Further, since the first control means causes the heating element to generate heat for a predetermined heat generation time stored in advance in the heat generation time storage means from the start of the cold storage operation, it can be said that the heat transfer tube is prevented from collapsing. , Do not thaw the ice cubes you got during cold storage operation more than necessary. Therefore, energy loss can be minimized.

【0044】更に、第2の制御手段が、計時手段により
積算されている蓄冷熱利用運転時間だけ蓄冷運転時にお
いて発熱体を発熱させるようにしたので、伝熱管表面で
氷解して得た水が周囲の氷内に閉塞され易いほどに比較
的短い蓄冷熱利用運転を実行した時間だけ、伝熱管つぶ
れ防止のための運転を実行させることができる。一方、
氷が全量解氷され得る通常放冷運転等の蓄冷熱利用運転
時やその他の運転時には、伝熱管つぶれ防止のための運
転を実行させないのである。従って、通常の蓄冷運転時
における必要以上の解氷や発熱体の消費する電力量とい
ったエネルギーロスを削減することができる。
Further, since the second control means is configured to heat the heating element during the cold storage operation for the cold storage heat utilization operation time accumulated by the time counting means, the water obtained by thawing on the surface of the heat transfer tube is The operation for preventing collapse of the heat transfer tubes can be executed only during the time when the relatively low heat storage utilization operation is executed so that the ice is easily blocked in the surrounding ice. on the other hand,
The operation for preventing the heat transfer tubes from collapsing is not executed during the cold storage heat utilization operation such as the normal cooling operation in which the entire amount of ice can be thawed and other operations. Therefore, it is possible to reduce energy loss such as unnecessarily thawed ice during the normal cold storage operation and the amount of power consumed by the heating element.

【0045】そして、これまで述べた構成において、伝
熱管を、当該長手方向を略鉛直に向けて配列するように
したので、解氷時における伝熱管周囲の水の比重変化に
より自然対流を引き起こしやすくなり、かつ、水が氷内
に閉塞されることもない。従って、伝熱管つぶれ防止効
果を増進させ一層確実にすることができる。
Since the heat transfer tubes are arranged so that their longitudinal directions are substantially vertical in the above-described structure, natural convection is likely to occur due to a change in the specific gravity of water around the heat transfer tubes at the time of thawing. And the water is not blocked in the ice. Therefore, the effect of preventing the heat transfer tube from being crushed can be enhanced and further ensured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1及び請求項2の発明による一実施例
に係る蓄熱用熱交換装置を示す部分斜視図である。
FIG. 1 is a partial perspective view showing a heat exchange device for heat storage according to an embodiment of the invention of claims 1 and 2. FIG.

【図2】 図1の蓄熱用熱交換装置の伝熱管周囲が蓄冷
運転再開により氷結している状態を部分断面に示す状態
説明図である。
FIG. 2 is a state explanatory view showing, in a partial cross section, a state in which the periphery of the heat transfer tube of the heat storage device for heat storage of FIG. 1 is frozen due to restart of the cold storage operation.

【図3】 請求項1及び請求項3の発明による一実施例
に係る蓄熱用熱交換装置を示す部分斜視図である。
FIG. 3 is a partial perspective view showing a heat storage heat exchange device according to an embodiment of the present invention.

【図4】 図3の蓄熱用熱交換装置の伝熱管周囲が蓄冷
運転再開により氷結している状態を部分断面に示す状態
説明図である。
FIG. 4 is a state explanatory view showing, in a partial cross-section, a state in which the periphery of the heat transfer tube of the heat storage device for heat storage of FIG. 3 is frozen due to restart of the cold storage operation.

【図5】 請求項4及び請求項5の発明による一実施例
に係る蓄熱用熱交換装置を示す部分斜視図である。
FIG. 5 is a partial perspective view showing a heat exchange device for heat storage according to an embodiment of the inventions of claims 4 and 5.

【図6】 請求項4及び請求項6の発明による一実施例
に係る蓄熱用熱交換装置を示す部分側面図である。
FIG. 6 is a partial side view showing a heat storage device for heat storage according to one embodiment of the inventions of claims 4 and 6.

【図7】 請求項4及び請求項7の発明による一実施例
に係る蓄熱用熱交換装置における発熱体への通電時間の
制御手法を示したグラフである。
FIG. 7 is a graph showing a method of controlling the energization time to the heating element in the heat storage heat exchange device according to one embodiment of the inventions of claims 4 and 7.

【図8】 請求項4及び請求項8の発明による一実施例
に係る蓄熱用熱交換装置における冷房運転積算時間に応
じた発熱体への通電時間を規定したグラフである。
FIG. 8 is a graph that defines an energization time to a heating element according to a cooling operation integrated time in the heat storage heat exchange device according to one embodiment of the inventions of claims 4 and 8.

【図9】 請求項9の発明による一実施例に係る蓄熱用
熱交換装置における伝熱管周囲が蓄冷運転再開により氷
結している状態を部分断面に示す状態説明図である。
FIG. 9 is a partial cross-sectional view illustrating a state in which the periphery of the heat transfer tubes in the heat storage device for heat storage according to the ninth embodiment of the present invention is frozen due to restart of the cold storage operation.

【図10】 本発明の背景の一例となる従来の蓄熱式空
気調和機のシステム図である。
FIG. 10 is a system diagram of a conventional heat storage type air conditioner as an example of the background of the present invention.

【図11】 本発明の背景の別例となる従来の蓄熱式空
気調和機の冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram of a conventional heat storage type air conditioner as another example of the background of the present invention.

【図12】 本発明の背景の更なる別例となる従来の蓄
熱式空気調和機の伝熱管構成態様を示す部分斜視図であ
る。
FIG. 12 is a partial perspective view showing a heat transfer tube configuration aspect of a conventional heat storage type air conditioner, which is still another example of the background of the present invention.

【符号の説明】 1 伝熱管、2 蓄熱槽、3 閉塞水、3a 水、3b
自然対流水、16厚肉断熱体、16a 被膜、17
氷、18 発熱体、18a 発熱線、19メモリ、20
制御装置、21 タイマー。
[Explanation of Codes] 1 heat transfer tube, 2 heat storage tank, 3 closed water, 3a water, 3b
Natural convection water, 16 thick wall insulation, 16a coating, 17
Ice, 18 heating element, 18a heating wire, 19 memory, 20
Controller, 21 timer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑村 康文 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasufumi Hatamura 6-5-6 Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水を収容した蓄熱槽内に上記水との間で
熱交換を行う伝熱管が配列されてなる蓄熱用熱交換装置
において、上記伝熱管の一部に当該伝熱管より小さな熱
伝導率の熱不良導体を少なくとも近接して配設し、上記
熱不良導体の配設位置に凍結する氷を上記伝熱管の他部
よりも薄く又は無くすようにしたことを特徴とする蓄熱
用熱交換装置。
1. A heat exchange device for heat storage, wherein a heat transfer tube for exchanging heat with water is arranged in a heat storage tank containing water, wherein a part of the heat transfer tube has a smaller heat than the heat transfer tube. Heat storage heat characterized by disposing heat-defective conductors having a conductivity at least close to each other so that ice that freezes at the position where the heat-defective conductors are arranged is thinner or eliminated than other portions of the heat transfer tube. Exchange device.
【請求項2】 熱不良導体は、伝熱管表面からの管径方
向の長さが最大蓄冷量到達時の氷厚以上に形成された厚
肉断熱体であることを特徴とする請求項1記載の蓄熱用
熱交換装置。
2. The heat-insulating conductor is a thick heat insulator whose length in the radial direction from the surface of the heat transfer tube is equal to or more than the ice thickness when the maximum amount of cold storage is reached. Heat storage device for heat storage.
【請求項3】 熱不良導体は、伝熱管表面からの管径方
向の長さが最大蓄冷量到達時の氷厚未満の所定長に形成
された薄肉断熱体であることを特徴とする請求項1記載
の蓄熱用熱交換装置。
3. The heat-insulating conductor is a thin-walled heat insulator having a length in the pipe radial direction from the surface of the heat transfer pipe that is less than the ice thickness when the maximum amount of cold storage is reached. The heat exchange device for heat storage according to 1.
【請求項4】 水を収容した蓄熱槽内に上記水との間で
熱交換を行う伝熱管が配列されてなる蓄熱用熱交換装置
において、上記伝熱管に少なくとも近接して発熱体を配
設し、上記発熱体からの熱により上記発熱体の周囲に凍
結している氷を融解して上記伝熱管の表面と上記氷の外
方とを連通する水流通経路を形成するようにしたことを
特徴とする蓄熱用熱交換装置。
4. A heat storage heat exchange device in which a heat transfer tube for exchanging heat with water is arranged in a heat storage tank containing water, wherein a heating element is disposed at least near the heat transfer tube. Then, the heat from the heating element is used to melt the ice frozen around the heating element to form a water flow path that connects the surface of the heat transfer tube and the outside of the ice. Characteristic heat exchange device for heat storage.
【請求項5】 発熱体は、伝熱管表面からの管径方向の
長さが最大蓄冷量到達時の氷厚以上に形成されるととも
に、上記伝熱管を挟持する支持構造に構成されてなるこ
とを特徴とする請求項4記載の蓄熱用熱交換装置。
5. The heating element is formed such that the length in the tube radial direction from the surface of the heat transfer tube is equal to or more than the ice thickness when the maximum amount of cold storage is reached, and is configured to support the heat transfer tube. The heat exchange device for heat storage according to claim 4.
【請求項6】 発熱体は、電熱線で構成されてなること
を特徴とする請求項4記載の蓄熱用熱交換装置。
6. The heat exchange device for heat storage according to claim 4, wherein the heating element is composed of a heating wire.
【請求項7】 予め設定された発熱体の所定発熱時間を
記憶する発熱時間記憶手段と、蓄冷運転開始時から上記
記憶されている所定発熱時間だけ上記発熱体を発熱させ
る第1の制御手段とを設けたことを特徴とする請求項4
乃至請求項6のいずれかに記載の蓄熱用熱交換装置。
7. A heat generation time storage means for storing a predetermined heat generation time of a preset heat generation element, and a first control means for causing the heat generation element to generate heat for the predetermined heat generation time stored from the start of the cold storage operation. 5. The method according to claim 4, further comprising:
A heat exchange device for heat storage according to claim 6.
【請求項8】 蓄冷熱利用運転時には蓄冷熱利用運転時
間を計時し積算する計時手段と、蓄冷運転時には上記積
算された蓄冷熱利用運転時間に基づいた時間だけ発熱体
を発熱させる第2の制御手段とを設けたことを特徴とす
る請求項4乃至請求項6のいずれかに記載の蓄熱用熱交
換装置。
8. A time control means for measuring and integrating a cold storage heat utilization operation time during the cold storage heat utilization operation, and a second control for causing the heating element to generate heat for a time based on the accumulated cold storage heat utilization operation time during the cold storage operation. The heat exchange device for heat storage according to any one of claims 4 to 6, further comprising means.
【請求項9】 伝熱管が、当該長手方向を略鉛直に向け
て配列されてなることを特徴とする請求項1記載乃至請
求項8のいずれかに記載の蓄熱用熱交換装置。
9. The heat exchange device for heat storage according to claim 1, wherein the heat transfer tubes are arranged with their longitudinal directions oriented substantially vertically.
JP13588994A 1994-06-17 1994-06-17 Heat exchange device for heat storage Expired - Lifetime JP3511675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13588994A JP3511675B2 (en) 1994-06-17 1994-06-17 Heat exchange device for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13588994A JP3511675B2 (en) 1994-06-17 1994-06-17 Heat exchange device for heat storage

Publications (2)

Publication Number Publication Date
JPH085110A true JPH085110A (en) 1996-01-12
JP3511675B2 JP3511675B2 (en) 2004-03-29

Family

ID=15162171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13588994A Expired - Lifetime JP3511675B2 (en) 1994-06-17 1994-06-17 Heat exchange device for heat storage

Country Status (1)

Country Link
JP (1) JP3511675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017060A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Evaporator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017060A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Evaporator
JP2014020761A (en) * 2012-07-23 2014-02-03 Denso Corp Evaporator
CN104487787A (en) * 2012-07-23 2015-04-01 株式会社电装 Evaporator
CN104487787B (en) * 2012-07-23 2017-03-08 株式会社电装 Vaporizer
US9927160B2 (en) 2012-07-23 2018-03-27 Denso Corporation Evaporator

Also Published As

Publication number Publication date
JP3511675B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
WO1979001051A1 (en) Improved refrigeration means and methods
KR20020011409A (en) Refrigerator and defrosting heater
US5339644A (en) Defrost system for refrigeration apparatus
JP4327936B2 (en) Heat pump refrigeration system
JP3511675B2 (en) Heat exchange device for heat storage
US4462216A (en) Non-freeze drain assembly
JP2004183998A (en) Refrigerator
JP4347200B2 (en) refrigerator
JPH09126593A (en) Antifreezing structure of heat exchanger for supercooling water
KR20020006564A (en) Freezer Storage Tank
JPH05133693A (en) Water cooling device
KR100377771B1 (en) Operating structure of a pipe heater for auto ice maker in refrigerator
JPH11351715A (en) Auger-type ice-making machine
JPS6028943Y2 (en) Water circulation ice making device
JP3361617B2 (en) Ice storage device
JP2001124372A (en) Ice storage device
JP2585376Y2 (en) Auger ice machine
JP3000907B2 (en) Operation control method of ice storage type chiller
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JP2004211960A (en) Ice storage type chilled water device
JPH10253210A (en) Ice-making device, ice storage cold water making device and method for controller them
JP2005299944A (en) Snow cooling system
JPH05288441A (en) Controller of ice making machine
JPH09152149A (en) Anti-freezing system in ice accumulative type cold water device
JPH0933090A (en) Heat storage device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130116

EXPY Cancellation because of completion of term