JPH0850923A - Nonaqueous electrolytic lithium secondary cell - Google Patents

Nonaqueous electrolytic lithium secondary cell

Info

Publication number
JPH0850923A
JPH0850923A JP6183462A JP18346294A JPH0850923A JP H0850923 A JPH0850923 A JP H0850923A JP 6183462 A JP6183462 A JP 6183462A JP 18346294 A JP18346294 A JP 18346294A JP H0850923 A JPH0850923 A JP H0850923A
Authority
JP
Japan
Prior art keywords
carbonate
lithium secondary
secondary battery
electrolytic solution
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6183462A
Other languages
Japanese (ja)
Inventor
Taketsugu Yamamoto
武継 山本
Kenji Nakane
堅次 中根
Tomoari Sato
朋有 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6183462A priority Critical patent/JPH0850923A/en
Priority to TW084104412A priority patent/TW284922B/zh
Priority to DE69511321T priority patent/DE69511321T2/en
Priority to EP95106761A priority patent/EP0682377B1/en
Priority to CA002148860A priority patent/CA2148860A1/en
Priority to US08/438,654 priority patent/US5595842A/en
Priority to KR1019950011341A priority patent/KR100337721B1/en
Priority to CN95105793A priority patent/CN1076884C/en
Publication of JPH0850923A publication Critical patent/JPH0850923A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a cell excellent in discharging characteristics at low temperatures by employing carbonate in a specified composition as organic solvent in electrolytic solution where LiPF6, is dissolved in organic solution. CONSTITUTION:Let ethylene carbonate, dimethyl carbonate and ethylene methyl carbonate be included in organic solvent used for electrolytic solution. When each ratio of ethylene carbonate, dimethyl, carbonate and ethylene methyl carbonate to the sum of ethylene carbonate, dimethyl carbonate and ethylene methyl carnonate is x, y and z, they shall be 10<=x<=35, 10<=y<=-85, and 5<=z<=80. By this constitution, a cell excellent in discharging characteristics at low temperatures can thereby be obtained without degrading charging/discharging efficiency at room temperature, high amperage current discharging characteristics and cyclic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液を用いるリチ
ウム二次電池に関する。
FIELD OF THE INVENTION The present invention relates to a lithium secondary battery using a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】α−NaFeO2 型構造を母体とする層
状リチウム複合酸化物またはスピネル型構造を母体とす
る遷移金属酸化物を活物質として含む正極と、リチウム
をドープ・脱ドープできる炭素材料を活物質として含む
負極を用いたリチウムイオン二次電池は、体積当たりと
重量当たりのエネルギー密度が高く、小型化・軽量化が
容易であり、かつ充放電サイクル性および安全性に優れ
ているため、携帯電話や携帯式ビデオカメラなどポータ
ブル電気機器用の二次電池または電気自動車用途の二次
電池として大きな注目を浴びている。
2. Description of the Related Art A positive electrode containing, as an active material, a layered lithium composite oxide having an α-NaFeO 2 type structure as a matrix or a transition metal oxide having a spinel type structure as a matrix, and a carbon material capable of being doped and dedoped with lithium. A lithium ion secondary battery using a negative electrode containing an active material has a high energy density per volume and weight, is easily miniaturized and lightweight, and is excellent in charge / discharge cycle property and safety, It has received a great deal of attention as a secondary battery for portable electric devices such as mobile phones and portable video cameras or a secondary battery for electric vehicles.

【0003】上記の電極活物質を用いる場合、正極活物
質、負極活物質ともに電気化学的にきわめて活性である
ため、これらの物質に対して電気化学的に安定な電解液
を用いる必要がある。このように高い耐酸化性、耐還元
性を持つ電解液用の非水溶媒としては、一般に非プロト
ン性の非水溶媒が適している。
When the above-mentioned electrode active material is used, both the positive electrode active material and the negative electrode active material are extremely electrochemically active, so that it is necessary to use an electrolytic solution which is electrochemically stable to these materials. An aprotic non-aqueous solvent is generally suitable as a non-aqueous solvent for an electrolytic solution having such high oxidation resistance and reduction resistance.

【0004】リチウム電池の非水電解液用非プロトン性
溶媒としては、環状カーボネートと非環状カーボネート
との混合溶媒にリチウム塩を溶解させた電解液が提案さ
れている(特開平2−172162号公報、特開平2−
172163号公報、特開平4−171674号公
報)。
As an aprotic solvent for a non-aqueous electrolytic solution of a lithium battery, an electrolytic solution in which a lithium salt is dissolved in a mixed solvent of a cyclic carbonate and an acyclic carbonate has been proposed (JP-A-2-172162). , JP-A-2-
172163, Japanese Patent Laid-Open No. 4-171674).

【0005】一方で、さらに電池の容量特性を改善する
ために電池活物質自体の検討も広く行なわれており、特
に負極の炭素材料の場合、単位重量あたりの充放電容量
が大きく、充放電中の平均電位が低くエネルギー密度が
大きいという点で、黒鉛系材料が優れた材料であること
が指摘されている(特開昭57−208079号公報、
特開平5−13088号公報)。しかしながら、負極の
炭素材料として黒鉛系材料を用いた場合、従来のプロピ
レンカーボネート、ブチレンカーボネート等を用いた電
解液(特開平2−10666号公報、特開平4−184
872号公報)では負極で分解するため、負極材料に黒
鉛系炭素材料を用いた場合に初期および保存後の放電特
性のいずれにも優れ、かつ、サイクル特性にも優れた非
水系電解液であり、さらに常温下大電流放電特性および
低温放電特性のいずれにも優れるものとして、エチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネートの3成分の混合溶媒を含有する電解液が提案され
た(特開平5−13088号公報)。
On the other hand, in order to further improve the capacity characteristics of the battery, the battery active material itself has been widely studied. Particularly, in the case of the carbon material of the negative electrode, the charging / discharging capacity per unit weight is large and the charging / discharging process is not performed. It has been pointed out that the graphite-based material is an excellent material in that it has a low average potential and a large energy density (JP-A-57-208079).
JP-A-5-13088). However, when a graphite-based material is used as the carbon material of the negative electrode, a conventional electrolytic solution using propylene carbonate, butylene carbonate, or the like (Japanese Patent Laid-Open Nos. 2-10666 and 4-184).
No. 872) decomposes at the negative electrode, and thus is a non-aqueous electrolyte solution that is excellent in both discharge characteristics after initial use and after storage and also excellent in cycle characteristics when a graphite-based carbon material is used as the negative electrode material. Further, an electrolytic solution containing a mixed solvent of three components of ethylene carbonate, dimethyl carbonate and diethyl carbonate has been proposed as being excellent in both a large current discharge characteristic at room temperature and a low temperature discharge characteristic (Japanese Patent Laid-Open No. 13088/1993). Gazette).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来提
案されていた組成の電解液を検討した結果、−20℃で
の電導度から期待される放電容量より低い放電容量しか
得られず、低温放電特性が十分でないことがわかった。
本発明の目的は、負極炭素材料に黒鉛系の材料を用いた
リチウム二次電池において、室温での充放電の効率、大
電流放電特性およびサイクル特性を損なうことなく、低
温放電特性に優れたリチウム二次電池を提供することに
ある。
However, as a result of studying an electrolytic solution having a composition proposed hitherto, a discharge capacity lower than that expected from the electric conductivity at -20 ° C. was obtained, and the low temperature discharge characteristics were obtained. Turned out not to be enough.
An object of the present invention is to provide a lithium secondary battery using a graphite-based material as a negative electrode carbon material, which is excellent in low temperature discharge characteristics without impairing charge / discharge efficiency at room temperature, large current discharge characteristics and cycle characteristics. To provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】このような事情をみて、
本発明者らは鋭意検討を行った結果、電解液の有機溶媒
であるエチレンカーボネート、ジメチルカーボネート、
エチルメチルカーボネートの3成分が特定の組成範囲内
にあるときに、前記課題を解決できることを見いだし、
本発明を完成するに至った。
[Means for Solving the Problems] In view of such circumstances,
As a result of intensive investigations by the present inventors, ethylene carbonate, dimethyl carbonate, which are organic solvents of the electrolytic solution,
It was found that the above problems can be solved when the three components of ethylmethyl carbonate are within a specific composition range,
The present invention has been completed.

【0008】すなわち、本発明は、次に記す発明であ
る。 (1)遷移金属を少なくとも1種含むリチウム複合酸化
物を活物質として含む正極と、黒鉛を主として含む炭素
材料を活物質として含む負極と、電解質として少なくと
もLiPF6 を有機溶媒に溶解した電解液と、セパレー
ターとを備えた非水電解液リチウム二次電池において、
該有機溶媒がエチレンカーボネートとジメチルカーボネ
ートとエチルメチルカーボネートとを含み、その組成比
率が、エチレンカーボネート、ジメチルカーボネート、
エチルメチルカーボネートの総和に対するエチレンカー
ボネート、ジメチルカーボネート、エチルメチルカーボ
ネートの割合をそれぞれx、y、z(単位体積%)と表
したとき、10≦x≦35、10≦y≦85かつ5≦z
≦80であることを特徴とする非水電解液リチウム二次
電池。
That is, the present invention is the invention described below. (1) A positive electrode containing a lithium composite oxide containing at least one transition metal as an active material, a negative electrode containing a carbon material mainly containing graphite as an active material, and an electrolyte solution in which at least LiPF 6 is dissolved in an organic solvent as an electrolyte. , A non-aqueous electrolyte lithium secondary battery comprising a separator,
The organic solvent contains ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, the composition ratio of ethylene carbonate, dimethyl carbonate,
When the ratios of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to the total amount of ethyl methyl carbonate are expressed as x, y, and z (unit volume%), 10 ≦ x ≦ 35, 10 ≦ y ≦ 85, and 5 ≦ z
A non-aqueous electrolyte lithium secondary battery characterized in that ≦ 80.

【0009】(2)電解液中のLiPF6 の濃度範囲が
0.5〜1.5モル/リットルであることを特徴とする
(1)記載の非水電解液リチウム二次電池。
(2) The non-aqueous electrolyte lithium secondary battery according to (1), wherein the concentration range of LiPF 6 in the electrolyte is 0.5 to 1.5 mol / liter.

【0010】次に、本発明を詳細に説明する。本発明の
非水電解液リチウム二次電池は、遷移金属を少なくとも
一つ含むリチウム複合酸化物を活物質として含む正極
と、黒鉛を主として含む炭素材料を活物質として含む負
極と、電解質として少なくともLiPF6 を有機溶媒に
溶解した電解液と、セパレーターとを備える。本発明の
非水電解液リチウム二次電池において、電解液に用いる
有機溶媒は、エチレンカーボネートとジメチルカーボネ
ートとエチルメチルカーボネートとを含み、その組成比
率が、エチレンカーボネート、ジメチルカーボネート、
エチルメチルカーボネートの総和に対するエチレンカー
ボネート、ジメチルカーボネート、エチルメチルカーボ
ネートの割合をそれぞれx、y、z(単位体積%)と表
したとき、10≦x≦35、10≦y≦85かつ5≦z
≦80であることを特徴とする。該割合は好ましくは1
5≦x≦35、15≦y≦70、10≦z≦70であ
り、さらに好ましくは20≦x≦35、20≦y≦6
0、10≦z≦60である。
Next, the present invention will be described in detail. The non-aqueous electrolyte lithium secondary battery of the present invention includes a positive electrode containing a lithium composite oxide containing at least one transition metal as an active material, a negative electrode containing a carbon material mainly containing graphite as an active material, and at least LiPF 6 as an electrolyte. An electrolytic solution in which 6 is dissolved in an organic solvent and a separator are provided. In the non-aqueous electrolytic solution lithium secondary battery of the present invention, the organic solvent used for the electrolytic solution contains ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, the composition ratio is ethylene carbonate, dimethyl carbonate,
When the ratios of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to the total amount of ethyl methyl carbonate are expressed as x, y, and z (unit volume%), 10 ≦ x ≦ 35, 10 ≦ y ≦ 85, and 5 ≦ z
It is characterized in that ≦ 80. The ratio is preferably 1
5 ≦ x ≦ 35, 15 ≦ y ≦ 70, 10 ≦ z ≦ 70, and more preferably 20 ≦ x ≦ 35, 20 ≦ y ≦ 6.
0 and 10 ≦ z ≦ 60.

【0011】電解液に用いる有機溶媒として、エチレン
カーボネートの体積分率が10体積%未満の場合は、サ
イクル毎の放電容量劣化が大きいため好ましくない。サ
イクル毎の放電容量劣化が大きくなる原因については未
だ明らかではないが、エチレンカーボネートが電極表面
での不可逆的な電気化学的反応を抑制する作用があると
考えられる。また、エチレンカーボネートが35体積%
を越える場合は、ジメチルカーボネート、エチルメチル
カーボネートの混合比率に関わらず低温(−20℃)で
の放電容量が著しく悪くなるので好ましくない。この原
因については未だ明らかではないが、電池のように直流
電流を流す場合には電極近傍でのイオンの濃度不均一が
生じやすく、濃度分極の影響が相対的に大きくなったた
めと考えられる。
When the volume fraction of ethylene carbonate is less than 10% by volume as the organic solvent used for the electrolytic solution, the discharge capacity deteriorates greatly in each cycle, which is not preferable. Although the cause of the large deterioration of the discharge capacity in each cycle has not been clarified yet, it is considered that ethylene carbonate has an action of suppressing an irreversible electrochemical reaction on the electrode surface. In addition, ethylene carbonate is 35% by volume
When it exceeds, the discharge capacity at a low temperature (-20 ° C) is significantly deteriorated regardless of the mixing ratio of dimethyl carbonate and ethyl methyl carbonate, which is not preferable. The reason for this is not yet clear, but it is considered that when a direct current is applied as in a battery, non-uniform ion concentration is likely to occur near the electrodes, and the influence of concentration polarization is relatively large.

【0012】電解液に用いる有機溶媒として、ジメチル
カーボネートの体積分率が10体積%未満の場合は、サ
イクル特性が悪化するため好ましくない。また、ジメチ
ルカーボネートが85体積%を越える場合は、低温で電
解液が凝固し放電できなくなるため好ましくない。
When the volume fraction of dimethyl carbonate is less than 10% by volume as the organic solvent used in the electrolytic solution, cycle characteristics are deteriorated, which is not preferable. On the other hand, when the content of dimethyl carbonate exceeds 85% by volume, the electrolytic solution is solidified at a low temperature and discharge becomes impossible, which is not preferable.

【0013】電解液に用いる有機溶媒として、エチルメ
チルカーボネートの体積分率が5体積%未満の場合は、
−20℃での放電容量が小さいため好ましくない。これ
はエチレンカーボネート、ジメチルカーボネート両者と
も凝固点が34℃、0℃と高いため、溶質を1モル/リ
ットル程度溶解しても電解液が凝固するためと考えられ
る。また、エチルメチルカーボネートが80体積%を越
える場合は、サイクル特性が悪化するため好ましくな
い。
As the organic solvent used in the electrolytic solution, when the volume fraction of ethyl methyl carbonate is less than 5% by volume,
It is not preferable because the discharge capacity at -20 ° C is small. It is considered that this is because both ethylene carbonate and dimethyl carbonate have high freezing points of 34 ° C. and 0 ° C., and therefore the electrolytic solution is solidified even if the solute is dissolved at about 1 mol / liter. Further, when the content of ethylmethyl carbonate exceeds 80% by volume, cycle characteristics are deteriorated, which is not preferable.

【0014】該有機溶媒中のジメチルカーボネート、エ
チルメチルカーボネートの総和に対するジメチルカーボ
ネートの割合をwと表したとき、低温放電容量および大
電流放電容量の点で、0.15<w<4であることが好
ましい。
When the ratio of dimethyl carbonate to the total of dimethyl carbonate and ethyl methyl carbonate in the organic solvent is represented by w, 0.15 <w <4 in terms of low temperature discharge capacity and large current discharge capacity. Is preferred.

【0015】本発明の非水電解液リチウム二次電池にお
ける正極は、活物質として遷移金属を少なくとも一種含
むリチウム複合酸化物を用いる。具体的には該正極とし
て、該リチウム複合酸化物の活物質粉末、補助導電剤粉
末、これら粉末同士を決着するためのバインダーなどと
を均一に混合した後加圧成形するか、または溶媒等を用
いてペースト化し集電体上に塗布乾燥後プレスするなど
して、集電体シートに固着した構成のものが挙げられ
る。
The positive electrode in the non-aqueous electrolyte lithium secondary battery of the present invention uses a lithium composite oxide containing at least one transition metal as an active material. Specifically, as the positive electrode, an active material powder of the lithium composite oxide, an auxiliary conductive agent powder, a binder for fixing these powders, and the like are uniformly mixed and then pressure-molded, or a solvent or the like is used. An example is a composition in which it is made into a paste and applied on a current collector, dried, and pressed, and then fixed to a current collector sheet.

【0016】該正極における、遷移金属を少なくとも一
種含むリチウム複合酸化物としては、バナジウム、マン
ガン、鉄、コバルト、ニッケル等の遷移金属を少なくと
も一種含むリチウム複合酸化物が挙げられる。中でも好
ましくは、平均放電電位が高いという点で、コバルト、
ニッケル等のα−NaFeO2 型構造を母体とする層状
リチウム複合酸化物、またはマンガン等のスピネル型構
造を母体とするリチウム複合酸化物が挙げられる。中で
も好ましくはサイクル特性が優れているという点で、リ
チウム・ニッケル複合酸化物を主体とする層状リチウム
複合酸化物が好ましい。
Examples of the lithium composite oxide containing at least one transition metal in the positive electrode include lithium composite oxide containing at least one transition metal such as vanadium, manganese, iron, cobalt and nickel. Of these, cobalt is preferable in that the average discharge potential is high.
Examples thereof include a layered lithium composite oxide having an α-NaFeO 2 type structure such as nickel as a base material, or a lithium composite oxide having a spinel type structure such as manganese as a base material. Among them, the layered lithium composite oxide mainly composed of the lithium-nickel composite oxide is preferable in terms of excellent cycle characteristics.

【0017】該正極に用いる補助導電材粉末としては、
導電効果があり、使用する非水電解液に対する耐性や、
正極での電気化学反応に対する耐性を有するものであれ
ばよく、例えば黒鉛粉末、カーボンブラック、コークス
粉末、導電性高分子などが挙げられる。該補助導電材の
量は、使用する活物質粉末100重量部に対して1〜2
0重量部程度とすることが好ましい。
As the auxiliary conductive material powder used for the positive electrode,
Has a conductive effect, resistance to the non-aqueous electrolyte used,
Any material having resistance to the electrochemical reaction at the positive electrode may be used, and examples thereof include graphite powder, carbon black, coke powder, and conductive polymers. The amount of the auxiliary conductive material is 1 to 2 with respect to 100 parts by weight of the active material powder used.
It is preferably about 0 parts by weight.

【0018】本発明の非水電解液リチウム二次電池にお
ける負極は、活物質として黒鉛を主として含む炭素材料
を用いる。該炭素材料中の黒鉛の割合は、70重量%以
上が好ましく、90重量%以上がさらに好ましい。黒鉛
以外の炭素材料としては、カーボンブラック、コークス
などが挙げられる。本発明における負極として、具体的
には黒鉛を主として含む炭素材料粉末と、さらにこれら
粉末同士を決着するためのバインダーなどとを均一に混
合した後、加圧成形するか、または溶媒等を用いてペー
スト化し集電体上に塗布乾燥後プレスするなどして、集
電体シートに固着した構成のものが挙げられる。
The negative electrode in the non-aqueous electrolyte lithium secondary battery of the present invention uses a carbon material mainly containing graphite as an active material. The proportion of graphite in the carbon material is preferably 70% by weight or more, more preferably 90% by weight or more. Examples of carbon materials other than graphite include carbon black and coke. As the negative electrode in the present invention, specifically, a carbon material powder mainly containing graphite, and a binder or the like for further binding the powder to each other are uniformly mixed, and then pressure-molded, or a solvent or the like is used. An example is a structure in which it is fixed to a current collector sheet by making it a paste, coating it on a current collector, drying it, and pressing it.

【0019】該黒鉛として天然黒鉛や人造黒鉛が挙げら
れる。該黒鉛として、具体的には、X線回折における格
子面間隔(d002 )が3.37Å以下であり、真比重が
2.23以上のものが好ましい。さらに好ましくはX線
回折における格子面間隔(d 002 )が3.36Å以下で
あり、真比重が2.24以上のものである。ここで格子
面間隔(d002 )とは、X線としてCuKα線を用い、
高純度シリコンを標準物質とするX線回折法[大谷杉
郎、炭素繊維、733〜742頁(1986)近代編集
社]によって測定された値のことを意味する。
Examples of the graphite include natural graphite and artificial graphite.
Be done. As the graphite, specifically, a case in X-ray diffraction
Facet spacing (d002) Is less than 3.37Å and the true specific gravity is
2.23 or more is preferable. More preferably X-ray
Lattice plane spacing in diffraction (d 002) Is less than 3.36Å
Yes, the true specific gravity is 2.24 or more. Grid here
Surface spacing (d002) Means that CuKα rays are used as X-rays,
X-ray diffraction method using high-purity silicon as standard material [Otani cedar
Ruro, Carbon Fiber, pp. 733-742 (1986), modern edit
Company].

【0020】本発明において用いる黒鉛の灰分は好まし
くは0.5重量%以下、より好ましくは0.1重量%以
下である。天然黒鉛の場合は産地によっても異なるが、
含有する灰分が数重量%以上と大きいため、好ましくは
2500℃以上、さらに好ましくは2800℃以上の高
温度で処理して、灰分を好ましくは0.5重量%以下、
より好ましくは0.1重量%以下にしたものがよい。こ
こで灰分はJISM8812による値を意味する。
The ash content of the graphite used in the present invention is preferably 0.5% by weight or less, more preferably 0.1% by weight or less. In the case of natural graphite, it depends on the production area,
Since the contained ash content is as large as several wt% or more, it is preferably treated at a high temperature of 2500 ° C. or higher, more preferably 2800 ° C. or higher, and the ash content is preferably 0.5 wt% or lower,
More preferably, it is 0.1 wt% or less. Here, ash means a value according to JIS M8812.

【0021】本発明において用いる人造黒鉛は、例えば
鱗片状黒鉛(SEC社製、商品名SGP5、SGP1
5、SGO5、SGX5;LONZA社製、商品名SF
G6、SFG15、KS6、KS15)、球状黒鉛(大
阪ガス社製、商品名MCMB6−28、MCMB20−
28)、繊維状黒鉛(大阪ガス社製、商品名SG24
1、F500)などが例示できる。本発明において用い
る黒鉛系炭素材料の粒度は特に制限されないが、平均粒
径が1〜50μm程度のものが好ましい。さらに好まし
くは、2〜20μmである。
The artificial graphite used in the present invention is, for example, flake graphite (trade name SGP5, SGP1 manufactured by SEC).
5, SGO5, SGX5; manufactured by LONZA, trade name SF
G6, SFG15, KS6, KS15), spherical graphite (Osaka Gas Co., Ltd., trade name MCMB6-28, MCMB20-
28), fibrous graphite (trade name SG24, manufactured by Osaka Gas Co., Ltd.)
1, F500) and the like. The particle size of the graphite-based carbon material used in the present invention is not particularly limited, but an average particle size of about 1 to 50 μm is preferable. More preferably, it is 2 to 20 μm.

【0022】本発明における黒鉛以外の炭素材料として
は、カーボンブラックやコークス、さらにはカーボンブ
ラックを約1500〜3000℃の温度で熱処理するこ
とにより得られる、いわゆる擬黒鉛性カーボンブラック
などが挙げられる。
Examples of carbon materials other than graphite in the present invention include carbon black and coke, and so-called pseudo-graphitic carbon black obtained by heat-treating carbon black at a temperature of about 1500 to 3000 ° C.

【0023】前記の正極や負極に用いるバインダーとし
ては、結着効果があり、使用する非水電解液に対する耐
性や、正極や負極での電気化学反応に対する耐性を有す
るものであればよく、例えばポリテトラフルオロエチレ
ン(以下、PTFEということがある。)、ポリフッ化
ビニリデン(以下、PVdFということがある。)等の
フッ素樹脂やポリエチレン、ポロプロピレンなどが挙げ
られる。該バインダーの量は、使用する活物質粉末10
0重量部に対して1〜20重量部程度とすることが好ま
しい。
As the binder used for the positive electrode and the negative electrode, any binder may be used as long as it has a binding effect and has resistance to the non-aqueous electrolyte used and electrochemical reaction at the positive electrode and the negative electrode. Examples thereof include fluororesins such as tetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polyethylene, polypropylene and the like. The amount of the binder is the active material powder 10 used.
It is preferably about 1 to 20 parts by weight with respect to 0 parts by weight.

【0024】前記の正極や負極に用いる集電体として
は、使用する非水電解液に対する耐性や、正極や負極で
の電気化学反応に対する耐性を有するものであればよ
く、例えば、ニッケル、チタン、ステンレス鋼、銅、ア
ルミニウムなどが挙げられる。該集電体の厚みは、電池
としての体積エネルギー密度が上がるという点で、強度
が保たれる限り薄いほど好ましく、5〜100μm程度
が好ましい。該正極の集電体として、薄膜に加工しやす
く、安価であるという点でアルミニウム箔が好ましい。
該負極の集電体として、リチウムと合金を作りにくく、
かつ薄膜に加工しやすいと言う点で銅箔が好ましい。
The current collector used for the positive electrode and the negative electrode may be one having resistance to the non-aqueous electrolyte used and resistance to the electrochemical reaction at the positive electrode and the negative electrode, and examples thereof include nickel and titanium. Examples include stainless steel, copper and aluminum. The thickness of the current collector is preferably as thin as possible so long as the strength is maintained, from the viewpoint of increasing the volume energy density of the battery, and is preferably about 5 to 100 μm. As the current collector for the positive electrode, aluminum foil is preferable because it can be easily processed into a thin film and is inexpensive.
As a current collector for the negative electrode, it is difficult to form an alloy with lithium,
A copper foil is preferable because it can be easily processed into a thin film.

【0025】本発明の非水電解液リチウム二次電池にお
いて、セパレーターとしては、両極の接触を防止し絶縁
性を持ち、かつ非水電解液を保持し、リチウムイオンが
透過できる機能を有し、使用する非水電解液に対する耐
性や、正極や負極での電気化学反応に対する耐性を有す
るものであればよく、例えばフッ素系樹脂、ポリエチレ
ン、ポリプロピレンなどオレフィン系樹脂、ナイロンな
どの不織布、織布が例示できる。該セパレーターの厚み
は電池としての体積エネルギー密度が上がり、内部抵抗
が小さくなると言う点で機械的な強度が保たれる限り薄
いほどよく、10〜200μm程度が好ましい。
In the non-aqueous electrolyte lithium secondary battery of the present invention, the separator has a function of preventing contact between both electrodes and having an insulating property, holding the non-aqueous electrolyte and allowing lithium ions to permeate. Any material may be used as long as it has resistance to the non-aqueous electrolyte used and electrochemical resistance at the positive electrode and the negative electrode, and examples thereof include fluorinated resins, polyethylene, olefin resins such as polypropylene, nonwoven fabrics such as nylon, and woven cloth. it can. The thickness of the separator is preferably as thin as possible so that the volume energy density as a battery increases and the internal resistance decreases, so long as the mechanical strength is maintained, and preferably about 10 to 200 μm.

【0026】[0026]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらによって何ら限定されるもの
ではない。 (I)試験に供したリチウム二次電池の仕様 正極として、硝酸リチウムと炭酸ニッケルを混合し酸素
気流中において700℃で15時間焼成して得られたニ
ッケル酸リチウム粉末と、人造黒鉛粉末と、ポリフッ化
ビニリデン(呉羽化学社製)を重量比で87:10:3
とした混合粉末を、2−メチルピロリドン溶液に分散さ
せてスラリーとし、アルミ箔上に塗布後真空乾燥し、プ
レスして作製したシート状電極を1.5cm×2.0c
mの大きさに切り出したものを用いた。上記ニッケル酸
リチウム粉末のX線回折測定を行ったところ、α−Na
FeO2 型構造を有することが確認された。
EXAMPLES The present invention will now be described in more detail by way of examples, which should not be construed as limiting the invention thereto. (I) Specifications of Lithium Secondary Battery Subjected to Test As a positive electrode, lithium nickel oxide powder obtained by mixing lithium nitrate and nickel carbonate and firing at 700 ° C. for 15 hours in an oxygen stream, and artificial graphite powder, Polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) in a weight ratio of 87: 10: 3
The mixed powder prepared as above was dispersed in a 2-methylpyrrolidone solution to form a slurry, which was applied onto an aluminum foil, vacuum-dried, and pressed to obtain a sheet-shaped electrode having a size of 1.5 cm × 2.0 c.
A piece cut out to a size of m was used. When X-ray diffraction measurement of the lithium nickelate powder was performed, α-Na
It was confirmed to have a FeO 2 type structure.

【0027】負極として、3000℃で処理したマダガ
スカル産の鱗片状天然黒鉛粉末と、3800℃で処理し
たカーボンブラック(東海カーボン社製)と、ポリフッ
化ビニリデン(呉羽化学社製)を重量比で86:4:1
0とした混合粉末を2−メチルピロリドン溶液に分散さ
せてスラリーとし、銅箔上に塗布後乾燥し、プレスして
作製したシート状電極を1.5cm×2cmの大きさに
切り出したものを用いた。セパレーターとしてはポリプ
ロピレン多孔質フィルム(ダイセル化学社製、商品名セ
ルガード#2240)を用いた。
As the negative electrode, scaly natural graphite powder from Madagascar treated at 3000 ° C., carbon black treated at 3800 ° C. (manufactured by Tokai Carbon Co.) and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) were used in a weight ratio of 86. : 4: 1
The mixed powder of 0 was dispersed in a 2-methylpyrrolidone solution to form a slurry, which was applied on a copper foil, dried, and pressed to prepare a sheet-shaped electrode cut into a size of 1.5 cm × 2 cm. I was there. A polypropylene porous film (manufactured by Daicel Chemical Co., Ltd., trade name Celgard # 2240) was used as the separator.

【0028】(II)充放電試験 (1)充電:充電は常に20℃で充電最大電圧Vmax =
4.1V、6mA、3時間の定電流定電圧充電を実施し
た。 (2)放電 (i)常温放電試験:20℃において、カットオフ電圧
2.75V、1.2mAの定電流で放電試験を実施し
た。これは0.2Cの放電条件に相当する。 (ii)低温放電試験:−20℃において、カットオフ
電圧2.75V、1.2mAの定電流で放電試験を実施
した。これは0.2Cの放電条件に相当する。 (iii)大電流放電試験:20℃において、カットオ
フ電圧2.75V、6mAの定電流で放電試験を実施し
た。これは1C放電条件に相当する。 (3)サイクル試験 試験は室温(25℃)でおこなった。充電は20℃で充
電最大電圧Vmax =4.1V、6mA、3時間の定電流
定電圧充電を行い、0.5時間の休止の後、放電は、カ
ットオフ電圧2.75V、1.2mAの定電流で放電試
験を行ない、再び0.5時間休止した。これは1C充
電、0.2C放電に相当する。この充放電サイクルを2
0回繰り返した。1回目の放電容量に対する20回目の
容量の割合を容量保持率として示す。
(II) Charge / Discharge Test (1) Charging: Charging is always performed at 20 ° C. Maximum charging voltage Vmax =
4.1V, 6mA, constant current constant voltage charging for 3 hours was carried out. (2) Discharge (i) Room temperature discharge test: A discharge test was performed at 20 ° C. with a cutoff voltage of 2.75 V and a constant current of 1.2 mA. This corresponds to a discharge condition of 0.2C. (Ii) Low temperature discharge test: A discharge test was carried out at −20 ° C. with a cutoff voltage of 2.75 V and a constant current of 1.2 mA. This corresponds to a discharge condition of 0.2C. (Iii) Large current discharge test: A discharge test was carried out at 20 ° C. with a cutoff voltage of 2.75 V and a constant current of 6 mA. This corresponds to the 1C discharge condition. (3) Cycle test The test was conducted at room temperature (25 ° C). Charging was performed at 20 ° C. with a maximum charging voltage Vmax of 4.1 V, 6 mA, constant current and constant voltage charging for 3 hours, and after 0.5 hour rest, discharge was performed at a cutoff voltage of 2.75 V and 1.2 mA. A discharge test was performed at a constant current, and the test was rested for 0.5 hour. This corresponds to 1C charge and 0.2C discharge. This charge / discharge cycle is 2
Repeated 0 times. The ratio of the 20th capacity to the 1st discharge capacity is shown as the capacity retention rate.

【0029】実施例1 電解液として、表1および表2に示す組成のエチレンカ
ーボネート(EC)、ジメチルカーボネート(DM
C)、エチルメチルカーボネート(EMC)混合溶媒の
いずれも電解質としてLiPF6 を1モル/リットルと
なるように調製したもの用い、上記のようにして得た正
極、負極をセパレーターを介して対向させ、ステンレス
製の容器に収納し、電池A1〜A11を作製した。得ら
れた電池の放電容量は約6mAhであった。作製した電
池の電解液組成比と、各種放電条件での放電容量を表1
および表2に示した。
Example 1 As an electrolytic solution, ethylene carbonate (EC) and dimethyl carbonate (DM) having the compositions shown in Tables 1 and 2 were used.
Both C) and ethyl methyl carbonate (EMC) mixed solvent were prepared by using LiPF 6 as an electrolyte so as to be 1 mol / liter, and the positive electrode and the negative electrode obtained as described above were opposed to each other through a separator, The batteries A1 to A11 were manufactured by accommodating them in a stainless steel container. The discharge capacity of the obtained battery was about 6 mAh. Table 1 shows the composition ratio of the electrolyte solution of the prepared battery and the discharge capacity under various discharge conditions.
And shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】比較例1 電解液として、表3および表4に示す組成比を持つエチ
レンカーボネート(EC)、ジメチルカーボネート(D
MC)、エチルメチルカーボネート(EMC)混合溶媒
を調製し、そのいずれも電解質としてLiPF6 を1モ
ル/リットルとなるように調製したもの用いた他は実施
例1と同様にして電池R1〜R12を作製した。充放電
試験は実施例1と同様に行ない、作製した電池の電解液
組成比と、放電容量とを表3および表4に示す。
Comparative Example 1 As an electrolytic solution, ethylene carbonate (EC) and dimethyl carbonate (D) having the composition ratios shown in Tables 3 and 4 were used.
MC), ethylmethyl carbonate (EMC) mixed solvent was prepared, and batteries R1 to R12 were prepared in the same manner as in Example 1 except that LiPF 6 was used as an electrolyte so that the amount thereof was 1 mol / liter. It was made. The charge / discharge test was performed in the same manner as in Example 1, and the electrolytic solution composition ratios of the manufactured batteries and the discharge capacities are shown in Tables 3 and 4.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】比較例2 電解液としてエチレンカーボネート(EC):ジメチル
カーボネート(DMC):エチルメチルカーボネート
(EMC)=30:67:3(体積%)の混合溶媒を調
製し、電解質としてLiPF6 を1モル/リットルとな
るように調製した。この電解液は−20℃で凝固したの
で、二次電池用電解液として不適切であった。
Comparative Example 2 A mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 30: 67: 3 (volume%) was prepared as an electrolytic solution, and 1 LiPF 6 was used as an electrolyte. It was prepared to be mol / liter. Since this electrolytic solution solidified at -20 ° C, it was unsuitable as an electrolytic solution for a secondary battery.

【0036】本発明品である電池A1〜A11は、エチ
レンカーボネートの組成比xが40体積%以上の電池R
1〜R6と比較して、特に低温での放電容量に格段に優
れることがわかる。本発明品である電池A1〜A11
は、エチレンカーボネートを含有しない電池R9〜R1
2と比較して、サイクル特性の点で優れることがわか
る。本発明品である電池A1〜A11は、ジメチルカー
ボネートの含有量が5体積%未満の電池R7、R8と比
較してサイクル特性に優れることがわかる。
The batteries A1 to A11, which are the products of the present invention, are batteries R having a composition ratio x of ethylene carbonate of 40% by volume or more.
It can be seen that the discharge capacity is remarkably excellent especially at low temperatures as compared with 1 to R6. Batteries A1 to A11 that are products of the present invention
Are batteries R9 to R1 not containing ethylene carbonate
It can be seen that the cycle characteristics are superior to those of No. 2. It is understood that the batteries A1 to A11, which are the products of the present invention, have excellent cycle characteristics as compared with the batteries R7 and R8 in which the content of dimethyl carbonate is less than 5% by volume.

【0037】実施例2 電解液として、エチレンカーボネート(EC):ジメチ
ルカーボネート(DMC):エチルメチルカーボネート
(EMC)=30:35:35(体積%)の混合溶媒を
調製し、電解質としてLiPF6 を1モル/リットルと
なるように調製したものを用いた以外は実施例1と同様
にして電池B1を作製した。充電試験は実施例1と同様
に行ない、−20℃〜80℃の使用温度範囲での放電特
性を測定した。結果を表5に示す。
Example 2 A mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 30: 35: 35 (volume%) was prepared as an electrolytic solution, and LiPF 6 was used as an electrolyte. A battery B1 was produced in the same manner as in Example 1 except that the one prepared to be 1 mol / liter was used. The charging test was performed in the same manner as in Example 1 to measure the discharge characteristics in the operating temperature range of -20 ° C to 80 ° C. The results are shown in Table 5.

【0038】[0038]

【表5】 −20℃〜80℃という広い温度範囲で動作することが
示された。
[Table 5] It was shown to operate in a wide temperature range of -20 ° C to 80 ° C.

【0039】[0039]

【発明の効果】本発明の非水電解液リチウム二次電池
は、負極炭素材料に黒鉛系の材料を用いたリチウム二次
電池でありながら、室温での充放電の効率、大きなエネ
ルギー密度、サイクル特性といった好ましい特性を損な
うことなく、−20℃という低温でも大きな放電容量を
維持し、かつ1C以上の大電流放電時にも放電容量の極
端な低下がもたらされない。さらには80℃という高温
でも動作するため、野外などで使用する携帯電子機器ま
たは電気自動車等の輸送機器用途として工業的価値が大
きい。
INDUSTRIAL APPLICABILITY Although the non-aqueous electrolyte lithium secondary battery of the present invention is a lithium secondary battery using a graphite-based material as the negative electrode carbon material, the charge / discharge efficiency at room temperature, large energy density, and cycle A large discharge capacity is maintained even at a low temperature of −20 ° C. without deteriorating preferable characteristics such as characteristics, and an extreme reduction in discharge capacity is not brought about even when discharging a large current of 1 C or more. Furthermore, since it operates even at a high temperature of 80 ° C., it has great industrial value as a portable electronic device used outdoors or as a transportation device such as an electric vehicle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】遷移金属を少なくとも1種含むリチウム複
合酸化物を活物質として含む正極と、黒鉛を主として含
む炭素材料を活物質として含む負極と、電解質として少
なくともLiPF6 を有機溶媒に溶解した電解液と、セ
パレーターとを備えた非水電解液リチウム二次電池にお
いて、該有機溶媒がエチレンカーボネートとジメチルカ
ーボネートとエチルメチルカーボネートとを含み、その
組成比率が、エチレンカーボネート、ジメチルカーボネ
ート、エチルメチルカーボネートの総和に対するエチレ
ンカーボネート、ジメチルカーボネート、エチルメチル
カーボネートの割合をそれぞれx、y、z(単位体積
%)と表したとき、10≦x≦35、10≦y≦85か
つ5≦z≦80であることを特徴とする非水電解液リチ
ウム二次電池。
1. A positive electrode containing a lithium composite oxide containing at least one transition metal as an active material, a negative electrode containing a carbon material mainly containing graphite as an active material, and an electrolyte in which at least LiPF 6 is dissolved as an electrolyte in an organic solvent. Liquid, in a non-aqueous electrolyte lithium secondary battery comprising a separator, the organic solvent contains ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, the composition ratio of ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate When the ratios of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to the total are expressed as x, y, and z (unit volume%), 10 ≦ x ≦ 35, 10 ≦ y ≦ 85, and 5 ≦ z ≦ 80. A non-aqueous electrolyte lithium secondary battery characterized by:
【請求項2】電解液中のLiPF6 の濃度範囲が0.5
〜1.5モル/リットルであることを特徴とする請求項
1記載の非水電解液リチウム二次電池。
2. The concentration range of LiPF 6 in the electrolytic solution is 0.5.
The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the lithium secondary battery is about 1.5 mol / liter.
JP6183462A 1994-05-10 1994-08-04 Nonaqueous electrolytic lithium secondary cell Pending JPH0850923A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6183462A JPH0850923A (en) 1994-08-04 1994-08-04 Nonaqueous electrolytic lithium secondary cell
TW084104412A TW284922B (en) 1994-05-10 1995-05-03
DE69511321T DE69511321T2 (en) 1994-05-10 1995-05-04 Lithium secondary battery
EP95106761A EP0682377B1 (en) 1994-05-10 1995-05-04 Lithium secondary battery
CA002148860A CA2148860A1 (en) 1994-05-10 1995-05-08 Lithium secondary battery
US08/438,654 US5595842A (en) 1994-05-10 1995-05-09 Lithium secondary battery having a cathode containing galliam
KR1019950011341A KR100337721B1 (en) 1994-05-10 1995-05-10 Lithium secondary battery
CN95105793A CN1076884C (en) 1994-05-10 1995-05-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183462A JPH0850923A (en) 1994-08-04 1994-08-04 Nonaqueous electrolytic lithium secondary cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004228955A Division JP2004342626A (en) 2004-08-05 2004-08-05 Method for enhancing low temperature discharge characteristics of nonaqueous electrolyte lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0850923A true JPH0850923A (en) 1996-02-20

Family

ID=16136209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183462A Pending JPH0850923A (en) 1994-05-10 1994-08-04 Nonaqueous electrolytic lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH0850923A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148258A (en) * 1999-11-19 2001-05-29 Sumitomo Chem Co Ltd Non-aqueous electrolytic solution and lithium secondary battery
WO2005064735A1 (en) * 2003-12-25 2005-07-14 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007052964A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution secondary battery
JP2007149656A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery using the same
JP2009059712A (en) * 2008-11-11 2009-03-19 Hitachi Maxell Ltd Lithium-ion secondary battery
JP2009129769A (en) * 2007-11-26 2009-06-11 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP2011086630A (en) * 2003-04-18 2011-04-28 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
JP2014082220A (en) * 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148258A (en) * 1999-11-19 2001-05-29 Sumitomo Chem Co Ltd Non-aqueous electrolytic solution and lithium secondary battery
JP2011086630A (en) * 2003-04-18 2011-04-28 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
WO2005064735A1 (en) * 2003-12-25 2005-07-14 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US9593016B2 (en) 2005-06-20 2017-03-14 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
JP2007052964A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic solution secondary battery
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007149656A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery using the same
JP2014082220A (en) * 2005-10-28 2014-05-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018092957A (en) * 2005-10-28 2018-06-14 三菱ケミカル株式会社 Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009129769A (en) * 2007-11-26 2009-06-11 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP4526044B2 (en) * 2008-11-11 2010-08-18 日立マクセル株式会社 Lithium ion secondary battery
JP2009059712A (en) * 2008-11-11 2009-03-19 Hitachi Maxell Ltd Lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
US6534218B1 (en) Electrode for nonaqueous electrolyte battery
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
US20050266316A1 (en) Non-aqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP3218982B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
US20120321955A1 (en) Lithium-ion secondary battery
US10586983B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP6000243B2 (en) Lithium electrochemical accumulator with bipolar structure operating based on a pair of lithium sulfur compound electrodes
JPH0850923A (en) Nonaqueous electrolytic lithium secondary cell
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP5668667B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2004342626A (en) Method for enhancing low temperature discharge characteristics of nonaqueous electrolyte lithium secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP2003168427A (en) Nonaqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP3713066B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040930

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041105