JPH0850515A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPH0850515A
JPH0850515A JP20426694A JP20426694A JPH0850515A JP H0850515 A JPH0850515 A JP H0850515A JP 20426694 A JP20426694 A JP 20426694A JP 20426694 A JP20426694 A JP 20426694A JP H0850515 A JPH0850515 A JP H0850515A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
permanent magnets
pair
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20426694A
Other languages
Japanese (ja)
Other versions
JP3359157B2 (en
Inventor
Kazuhiro Noguchi
和宏 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20426694A priority Critical patent/JP3359157B2/en
Publication of JPH0850515A publication Critical patent/JPH0850515A/en
Application granted granted Critical
Publication of JP3359157B2 publication Critical patent/JP3359157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To enable exact positioning control by extending the range, in which the magnetic field intensity in the direction perpendicular to the routes of the relative movement of two members is practically linearly changed, at the positioning device for controlling the relative positions of two members. CONSTITUTION:The device is provided with a magnetic field generating means 3 equipped with a part, where the magnetic field intensity leaving to the direction of a weak polar value is practically linearly changed, for generating the magnetic field distribution of inverse polarities for which the absolute polar values of magnetic field intensity perpendicular to the route of relative movement are different, magnetic field coil 6 arranged in the magnetic field and undergoes the force with interaction with a magnetic field by electrification, and magnetism detecting means 7 arranged at the center of a part where the magnetic field intensity is linearly changed and corresponding to a target position signal and the output signal of the magnetism detecting means 7, feedback control means 8 and 9 controls a voltage to be impressed to the magnetic field coil 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2つの部材の相対位置を
制御する位置決め装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning device for controlling the relative positions of two members.

【0002】[0002]

【従来の技術】従来、位置決め装置は特開昭59−88
602号公報に記載されているように、永久磁石と界磁
コイルと磁気センサより構成されている。この位置決め
装置において、隣接して配置された着磁強度が等しく、
逆極性の1対の永久磁石よりなる磁界発生手段が発生す
る磁界分布は2つの部材の相対移動の経路に対して垂直
方向には、磁束密度Φが実質的に直線変化する絶対値が
図14に示すように1対の永久磁石の接合部を中心に左
右、対称な分布をしており、この磁界分布の直線部分を
磁気センサで位置信号として検出し、界磁コイルに印加
する電圧を制御して位置決め制御を行っている。
2. Description of the Related Art A conventional positioning device is disclosed in Japanese Patent Laid-Open No. 59-88.
As described in Japanese Patent No. 602, it is composed of a permanent magnet, a field coil, and a magnetic sensor. In this positioning device, the adjacent magnetizing strengths are equal,
The magnetic field distribution generated by the magnetic field generating means composed of a pair of permanent magnets of opposite polarities has an absolute value in which the magnetic flux density Φ changes substantially linearly in the direction perpendicular to the path of relative movement of the two members. As shown in Fig. 2, the distribution is symmetrical to the left and right around the junction of a pair of permanent magnets. The linear portion of this magnetic field distribution is detected by a magnetic sensor as a position signal, and the voltage applied to the field coil is controlled. To perform positioning control.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記従来例では1対の逆極性の永久磁石を当接して配置し
ており、2つの部材の相対移動の経路に対して垂直方向
の磁束密度の実質的に直線変化をする範囲がきわめて狭
いという問題点があった。
However, in the above-mentioned conventional example, a pair of permanent magnets of opposite polarities are disposed in contact with each other, and the magnetic flux density in the direction perpendicular to the relative movement path of the two members is substantially reduced. However, there is a problem that the range of linear change is extremely narrow.

【0004】そこで、1対の永久磁石を少し離して配置
することによって、図15に示す様に図14より広い直
線範囲を得られるが、あまり1対の永久磁石の間隔を広
くすると、図16に示すように、中心部分の磁束密度の
傾きが小さくなるという現象を生じ、このときの磁力線
の分布図は図17に示すように、磁界発生手段の中央部
で磁力線が広い範囲で平らになるという問題点があっ
た。
Therefore, by arranging the pair of permanent magnets slightly apart from each other, a wider linear range than that of FIG. 14 can be obtained as shown in FIG. As shown in FIG. 17, the phenomenon that the gradient of the magnetic flux density in the central portion becomes small occurs, and the distribution diagram of the magnetic force lines at this time is flat in a wide range in the central portion of the magnetic field generating means as shown in FIG. There was a problem.

【0005】本発明は上記のような従来の問題点を解消
することを課題になされたもので、本出願に係る第1の
発明の目的は2部材の相対移動の経路に対して垂直方向
の磁界強度が実質的に直線変化する範囲を広くして、正
確な位置決め制御を可能にすることである。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the first invention of the present application is to provide a direction perpendicular to a relative movement path of two members. To widen the range in which the magnetic field strength changes substantially linearly to enable accurate positioning control.

【0006】本出願に係る第2の発明の目的は着磁強度
の異なる1対の永久磁石を用いて、2部材の相対移動経
路に対して垂直方向の磁界強度が直線変化する範囲を広
くして、部品および組立てコストを削減することであ
る。
A second object of the present invention is to use a pair of permanent magnets having different magnetization strengths to widen the range in which the magnetic field strength in the direction perpendicular to the relative movement path of the two members changes linearly. To reduce parts and assembly costs.

【0007】本出願に係る第3の発明の目的は1対の永
久磁石と継鉄により形成する磁気回路内の空隙を左右異
にし、2部材の相対移動経路に対して垂直方向の磁界強
度が直線変化する範囲を広くして、外部からの磁界影響
を低減することである。
A third object of the present invention is to make the air gap in a magnetic circuit formed by a pair of permanent magnets and a yoke different from each other, and to provide a magnetic field strength perpendicular to the relative movement path of the two members. To widen the range of linear change to reduce the influence of the external magnetic field.

【0008】本出願に係る第4の発明の目的は1対の永
久磁石の大きさを異にして、2部材の相対移動の経路に
対して垂直方向の磁界強度が直線変化する範囲を広くし
て、部品および組立てコストを削減することである。
An object of a fourth invention according to the present application is to make the size of the pair of permanent magnets different so as to widen the range in which the magnetic field strength in the direction perpendicular to the relative movement path of the two members changes linearly. To reduce parts and assembly costs.

【0009】本出願に係る第5の発明の目的は着磁強度
の異なる1対の永久磁石と継鉄により、2部材の相対移
動経路に対して垂直方向の磁界強度が直線変化する範囲
を広くして、外部からの磁界の影響を低減することであ
る。
The fifth object of the present invention is to widen the range in which the magnetic field strength in the direction perpendicular to the relative movement path of the two members is linearly changed by the pair of permanent magnets and yokes having different magnetizing strengths. Then, the influence of the magnetic field from the outside is reduced.

【0010】本出願に係る第6の発明の目的は大きさを
異にする1対の永久磁石と継鉄により2部材の相対移動
の経路に対して垂直方向の磁界強度が直線変化する範囲
を広くして、部品および組立てコストを削減し、外部か
らの磁界の影響を低減することである。
A sixth object of the present invention is to set a range in which a magnetic field strength in a direction perpendicular to a relative movement path of two members is linearly changed by a pair of permanent magnets having different sizes and a yoke. Wider to reduce parts and assembly costs and reduce the effects of external magnetic fields.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本出願に係る第1の発明は、第1の部材と、支持手
段によって前記第1の部材に対して相対移動可能に支持
された第2の部材と、前記第1の部材の一部を成し、相
対移動の経路に対して垂直な方向の磁界強度の極値の絶
対値が異なった逆極性の磁界分布を発生し、該極値の弱
い方向へ偏った磁界強度が実質的に直線的に変化する部
分を有する磁界発生手段と、前記第2の部材の一部を成
し、前記磁界発生手段の発生する磁界内に配置され通電
により該磁界との相互作用で力を受ける界磁コイルと、
初期位置が前記磁界強度の直線的に変化する部分の中央
に配置されて前記第2の部材に固定され該磁界強度を電
気信号として出力する磁気検出手段と、目標位置信号と
前記磁気検出手段の出力信号に応じて前記界磁コイルへ
の印加電圧を制御するフィードバック制御手段とを備え
たことにより、2極の永久磁石の空間の中心に対して磁
界極値の絶対値が小さい方へ偏った磁界強度が実質的に
直線的に変化する範囲を広く確保する事が可能となり、
より広い範囲内でより正確な位置決め制御が可能とな
る。
In order to achieve the above object, the first invention of the present application is supported by a first member and a supporting means so as to be movable relative to the first member. A second member and a part of the first member, which generate a magnetic field distribution of opposite polarity in which absolute values of extreme values of magnetic field strength in a direction perpendicular to a relative movement path are different, A magnetic field generating means having a portion where the magnetic field strength deviated in the direction of weak extremum changes substantially linearly, and a part of the second member, which is arranged in the magnetic field generated by the magnetic field generating means. A field coil that receives a force due to the interaction with the magnetic field due to energization,
A magnetic detecting means which is arranged at the center of a portion where the magnetic field strength changes linearly and is fixed to the second member and which outputs the magnetic field strength as an electric signal; a target position signal and the magnetic detecting means. By providing the feedback control means for controlling the voltage applied to the field coil according to the output signal, the absolute value of the magnetic field extreme value is biased toward the smaller one with respect to the center of the space of the two-pole permanent magnet. It is possible to secure a wide range in which the magnetic field strength changes substantially linearly,
More accurate positioning control is possible within a wider range.

【0012】本出願に係る第2の発明は、磁界発生手段
は空間を隔てて配置された相対移動の経路に対して垂直
方向に互いに逆方向に着磁された1対の永久磁石より成
り片側の磁石の着磁強度を他方より弱くして前記磁界分
布を発生させるようにしたことにより、部品および組立
てコストを削減できる。
According to a second aspect of the present invention, the magnetic field generating means is composed of a pair of permanent magnets, which are magnetized in directions opposite to each other in a direction perpendicular to a relative movement path arranged with a space therebetween. Since the magnetizing strength of the magnet is weaker than that of the other magnet to generate the magnetic field distribution, the cost of parts and assembly can be reduced.

【0013】本出願に係る第3の発明は、磁界発生手段
は空間を隔てて配置された相対移動の経路に対して垂直
方向に互いに逆方向に同一強度で着磁された1対の永久
磁石と、該永久磁石の発生する磁力線を通し、閉路した
磁気回路を形成する強磁性の継鉄より成り、前記磁気回
路内の空隙の片方を他方より広くして前記磁界分布を発
生させるようにしたことより、外部からの磁界(外乱)
の影響を受けることを低減できる。
According to a third invention of the present application, the magnetic field generating means is a pair of permanent magnets which are magnetized with the same strength in directions opposite to each other in a direction perpendicular to a relative movement path arranged with a space. And a ferromagnetic yoke which forms a closed magnetic circuit through the magnetic field lines generated by the permanent magnet, and one of the voids in the magnetic circuit is made wider than the other to generate the magnetic field distribution. Therefore, the magnetic field from the outside (disturbance)
Can be reduced.

【0014】本出願に係る第4の発明は、磁界発生手段
は空間を隔てて配置された相対移動の経路に対して垂直
方向に互いに逆方向に同一強度で着磁された1対の永久
磁石より成り、片側の永久磁石を他方より小さくして前
記磁界分布を発生させるようにしたことにより、部品お
よび組立てコストを削減できる。
According to a fourth invention of the present application, the magnetic field generating means is a pair of permanent magnets magnetized with the same strength in directions opposite to each other in a direction perpendicular to a relative movement path arranged with a space. Since the permanent magnet on one side is made smaller than that on the other side to generate the magnetic field distribution, the cost of parts and assembly can be reduced.

【0015】本出願に係る第5の発明は、磁界発生手段
は空間を隔てて配置された、相対移動の経路に対して垂
直方向に互いに逆方向に着磁された1対の永久磁石と、
該永久磁石の発生する磁力線を通し、閉路した磁気回路
を形成する強磁性の継鉄より成り、片側の永久磁石の着
磁強度を他方より弱くして、前記磁界分布を発生させる
ようにしたことにより、外部からの磁界の影響を受ける
ことを低減できる。
According to a fifth aspect of the present invention, the magnetic field generating means is arranged with a space in between, and a pair of permanent magnets magnetized in directions opposite to each other in a direction perpendicular to the relative movement path,
The magnetic field distribution is generated by a ferromagnetic yoke that forms a closed magnetic circuit through the lines of magnetic force generated by the permanent magnet, and the magnetizing strength of the permanent magnet on one side is weaker than that of the other permanent magnet. As a result, the influence of the magnetic field from the outside can be reduced.

【0016】本出願に係る第6の発明は、磁界発生手段
は空間を隔てて配置された、相対移動の経路に対して垂
直方向に互いに逆方向に同一強度で着磁された1対の永
久磁石と、該永久磁石の発生する磁力線を通して、閉路
した磁気回路を形成する強磁性の継鉄より成り、片側の
永久磁石を他方より小さくして、前記磁界分布を発生さ
せるようにしたことにより、部品および組当てコストを
削減した構成で、外部からの磁界の影響を受けることを
低減できる。
According to a sixth aspect of the present invention, the magnetic field generating means is arranged with a space therebetween, and is a pair of permanent magnets magnetized at the same strength in directions opposite to each other in a direction perpendicular to the path of relative movement. Through a magnet and a magnetic field generated by the permanent magnet, a ferromagnetic yoke that forms a closed magnetic circuit is formed, and the permanent magnet on one side is made smaller than the other to generate the magnetic field distribution. With the configuration in which the parts and the assembly cost are reduced, the influence of the external magnetic field can be reduced.

【0017】[0017]

【実施例】【Example】

第1の実施例 図1は本発明の特徴を最もよく表す第1の実施例の図面
であり、同図において、1は第1の部材、2は第1の部
材に対して矢印B方向に図示しない支持手段によって相
対移動可能に支持された第2の部材、3は矢印B方向に
対して垂直方向に着磁された1対の永久磁石3b、3c
よりなる永久磁石部であり、両永久磁石3b、3cの当
接面中央部に開口部3aを有する。
First Embodiment FIG. 1 is a drawing of a first embodiment that best represents the features of the present invention. In the drawing, 1 is a first member and 2 is a direction of arrow B with respect to the first member. The second member 3 supported by a support means (not shown) so as to be relatively movable is a pair of permanent magnets 3b, 3c magnetized in a direction perpendicular to the arrow B direction.
The permanent magnet portion is composed of the two permanent magnets 3b and 3c, and has an opening 3a at the center of the contact surface.

【0018】4は永久磁石部3からの磁力線を通し閉路
した磁気回路を形成する強磁性の継鉄、5は永久磁石部
3と空間を隔てて配置され、磁気回路中に空隙を形成す
る強磁性の継鉄であり、上記永久磁石部3、継鉄4、5
は第1の部材1に固定されている。
Reference numeral 4 denotes a ferromagnetic yoke which forms a closed magnetic circuit by passing magnetic lines of force from the permanent magnet section 3, and 5 is arranged with a space from the permanent magnet section 3 to form a void in the magnetic circuit. It is a magnetic yoke, and the permanent magnet part 3, the yokes 4, 5 are
Are fixed to the first member 1.

【0019】[0019]

【外1】 7は界磁コイル6内に配置され、永久磁石部3の発生す
る磁界強度を検出するホール効果を利用した磁界強度セ
ンサとしてのホール素子であり、磁界強度に比例した電
圧出力を得ることができる。
[Outside 1] Reference numeral 7 denotes a Hall element that is arranged in the field coil 6 and that serves as a magnetic field strength sensor that utilizes the Hall effect that detects the magnetic field strength generated by the permanent magnet unit 3. It is possible to obtain a voltage output proportional to the magnetic field strength. .

【0020】8はホール素子7の電圧出力を処理し、位
置信号を得る信号処理回路、9は目標位置信号と位置信
号の差出力を増幅し、界磁コイル6に印加する増幅回路
であり、両回路によりフィードバック制御手段を構成
し、目標位置信号に基づいて、2つの部材1、2の相対
位置決めが可能となる。
Reference numeral 8 is a signal processing circuit for processing the voltage output of the Hall element 7 to obtain a position signal, and 9 is an amplifier circuit for amplifying the difference output between the target position signal and the position signal and applying it to the field coil 6. Feedback control means is constituted by both circuits, and relative positioning of the two members 1 and 2 is possible based on the target position signal.

【0021】図2は継鉄5を取外し、界磁コイル6と永
久磁石部3、ホール素子7の初期位置の平面的な配置を
示している。図3は永久磁石部3とホール素子7の平面
的を配置を示し、永久磁石部3は対称な着磁パターンを
持っており、着磁強度は永久磁石3bが永久磁石3cよ
り弱く着磁されている。又、ホール素子7は初期位置が
永久磁石部3の中心より着磁の弱い永久磁石3b側にず
らして第2の部材2に固定されている。
FIG. 2 shows the planar arrangement of the initial positions of the field coil 6, the permanent magnet section 3, and the Hall element 7 with the yoke 5 removed. FIG. 3 shows a planar arrangement of the permanent magnet portion 3 and the Hall element 7. The permanent magnet portion 3 has a symmetrical magnetizing pattern, and the magnetizing strength of the permanent magnet 3b is weaker than that of the permanent magnet 3c. ing. The Hall element 7 is fixed to the second member 2 with its initial position displaced from the center of the permanent magnet section 3 toward the side of the permanent magnet 3b which is weakly magnetized.

【0022】図4は永久磁石部3と継鉄5の成す磁気回
路中の空隙における第1の部材1と第2の部材2の相対
移動の経路である矢印B方向とは垂直方向の磁束密度分
布を示すもので、横軸は変位量、縦軸は磁束密度(磁界
強度)を示す。図示する様に着磁強度の弱い永久磁石3
b側の磁界強度の極値の絶対値bは着磁強度の強い永久
磁石3b側の磁界強度の極値の絶対値a’より小さくな
っており、2点鎖線で示す範囲S内で実質的に磁界強度
が直線的に変化しており、この範囲Sの中心位置(一点
鎖線位置)に上記ホール素子7が設けられている。
FIG. 4 shows the magnetic flux density in the direction perpendicular to the direction of arrow B, which is the path of relative movement of the first member 1 and the second member 2 in the gap in the magnetic circuit formed by the permanent magnet portion 3 and the yoke 5. In the distribution, the horizontal axis represents the amount of displacement and the vertical axis represents the magnetic flux density (magnetic field strength). Permanent magnet 3 with weak magnetization strength as shown
The absolute value b of the extreme value of the magnetic field strength on the b side is smaller than the absolute value a ′ of the extreme value of the magnetic field strength on the permanent magnet 3b side, which has a strong magnetization strength, and is substantially within the range S indicated by the two-dot chain line. The magnetic field strength changes linearly, and the Hall element 7 is provided at the center position (dashed line position) of this range S.

【0023】図5はホール素子7の信号処理回路を示す
もので、オペアンプ10は抵抗10a、10b、10c
と組み合わされてホール素子7に定電流を供給する。こ
のホール素子7の出力信号はオペアンプ11と抵抗11
a、11b、11c、11dによって差動増幅される。
抵抗11eは可変抵抗であり、この可変抵抗11eの抵
抗値を変えることにより、磁界強度に対するオペアンプ
11の出力端の電圧を変化させる事が可能である。前記
図4に示す一点鎖線位置に設けられたホール素子7の出
力を、基準電圧Vcに等しくなる様に調整することによ
り、一点鎖線位置を中心とする第1の部材1と第2の部
材2の相対位置に対して、基準電圧Vcを中心とする正
負の電圧出力が得られる。
FIG. 5 shows a signal processing circuit for the hall element 7. The operational amplifier 10 includes resistors 10a, 10b and 10c.
A constant current is supplied to the Hall element 7 in combination with. The output signal of the hall element 7 is the operational amplifier 11 and the resistor 11
It is differentially amplified by a, 11b, 11c and 11d.
The resistor 11e is a variable resistor. By changing the resistance value of the variable resistor 11e, it is possible to change the voltage at the output end of the operational amplifier 11 with respect to the magnetic field strength. By adjusting the output of the Hall element 7 provided at the alternate long and short dash line position shown in FIG. 4 so as to be equal to the reference voltage Vc, the first member 1 and the second member 2 centered at the alternate long and short dash line position. Positive and negative voltage outputs centered on the reference voltage Vc are obtained for the relative position of.

【0024】オペアンプ12は抵抗12a、12bと組
み合わせて、オペアンプ11の出力を基準電圧Vcを中
心に反転増幅し、可変抵抗12bの抵抗値を変化させる
ことにより、磁界強度の変化に対する出力電圧の変化の
割合を可変とする。
The operational amplifier 12 is combined with the resistors 12a and 12b to invert and amplify the output of the operational amplifier 11 around the reference voltage Vc and change the resistance value of the variable resistor 12b, thereby changing the output voltage with respect to the change in the magnetic field strength. The ratio of is variable.

【0025】本実施例では1対の永久磁石3b、3cの
発生する磁束を2つの継鉄4、5を介して閉じている為
に、外部からの磁界(外乱)の影響を受けにくく安定し
た位置決め制御が可能となる。
In this embodiment, since the magnetic flux generated by the pair of permanent magnets 3b and 3c is closed via the two yokes 4 and 5, the magnetic field from the outside (disturbance) is less likely to be affected and stable. Positioning control is possible.

【0026】第2の実施例 図6は本発明の第2の実施例を表す図であり、同図にお
いて、21は第1の部材、22は第1の部材21に対し
て矢印B方向に図示しない支持手段によって相対移動可
能に支持された第2の部材、23は矢印B方向に対して
垂直方向に2極に着磁された一対の永久磁石23b、2
3cよりなる永久磁石部であり、永久磁石23bの着磁
強度は永久磁石23cより弱くなっている。
Second Embodiment FIG. 6 is a diagram showing a second embodiment of the present invention, in which 21 is a first member and 22 is a direction of arrow B with respect to the first member 21. A second member 23 supported by a supporting means (not shown) so as to be relatively movable is a pair of permanent magnets 23b, 2b magnetized to have two poles in a direction perpendicular to the arrow B direction.
The permanent magnet portion 3c has a magnetizing strength lower than that of the permanent magnet 23c.

【0027】[0027]

【外2】 本実施例は第1の実施例に対して、永久磁石の磁束を閉
じる継鉄を無くした構成であるが、第1の実施例と同様
な磁界強度分布が得られ、同様な制御回路によって位置
決め制御が可能である。そして、本実施例では磁気回路
閉じる継鉄を省いた構成なので、部品および組立てコス
トを削減できる。
[Outside 2] The present embodiment is different from the first embodiment in that the yoke that closes the magnetic flux of the permanent magnet is eliminated, but a magnetic field strength distribution similar to that of the first embodiment is obtained, and positioning is performed by a similar control circuit. It can be controlled. Further, in this embodiment, since the yoke for closing the magnetic circuit is omitted, parts and assembling costs can be reduced.

【0028】第3の実施例 図7は本発明の第3の実施例を表す図であり、永久磁石
部33を構成する一対の永久磁石33b、33cの着磁
パターンを変化させたもので、図8に示す様に永久磁石
33b、33cは前記図4の一点鎖線で示すホール素子
7の初期位置を境として着磁されており、図7に示す様
に界磁コイル6はホール素子7の初期位置に対して左右
対称な形状としている。ただしホール素子7の相対移動
する断面での永久磁石部33の形状は第1、第2の実施
例と同様となり、各実施例と同様な位置決め制御が可能
である。本実施例では界磁コイルを小型化でき省スペー
スに有利である。
Third Embodiment FIG. 7 is a diagram showing a third embodiment of the present invention, in which the magnetization patterns of the pair of permanent magnets 33b and 33c constituting the permanent magnet section 33 are changed. As shown in FIG. 8, the permanent magnets 33b and 33c are magnetized with the initial position of the Hall element 7 shown by the alternate long and short dash line in FIG. 4 as a boundary, and as shown in FIG. The shape is symmetrical with respect to the initial position. However, the shape of the permanent magnet portion 33 in the cross section of the Hall element 7 that moves relatively is the same as in the first and second embodiments, and the same positioning control as in each embodiment is possible. In this embodiment, the field coil can be downsized, which is advantageous in saving space.

【0029】第4の実施例 図9は本発明の第4の実施例を表す図であり、同図にお
いて、41は第1の部材、42は第1の部材41に対し
て矢印B方向に図示しない支持手段によって、相対移動
可能に支持された第2の部材、43は矢印B方向に対し
て垂直方向に同一の磁界強度に着磁された一対の永久磁
石43b、43cよりなる永久磁石部であり、両永久磁
石43b、43cの当接面中央部に開口部43aを有す
る。44は永久磁石43b、43cの発生する磁力線を
通し閉路した磁気回路を形成する強磁性の継鉄、45は
永久磁石部43と空間を隔てて配置され、磁気回路中に
空隙を形成する強磁性の継鉄であり、上記の永久磁石部
43、継鉄44、45は第1の部材41に固定されてい
る。
Fourth Embodiment FIG. 9 is a diagram showing a fourth embodiment of the present invention, in which 41 is a first member and 42 is a direction of arrow B with respect to the first member 41. The second member 43 is supported by a supporting means (not shown) so as to be relatively movable, and 43 is a permanent magnet portion composed of a pair of permanent magnets 43b and 43c magnetized in the direction perpendicular to the arrow B direction with the same magnetic field strength. And has an opening 43a at the center of the contact surface of both permanent magnets 43b and 43c. Reference numeral 44 is a ferromagnetic yoke that forms a closed magnetic circuit through the lines of magnetic force generated by the permanent magnets 43b and 43c. 45 is a ferromagnetic material that is arranged with a space from the permanent magnet portion 43 and forms a gap in the magnetic circuit. The permanent magnet part 43 and the yokes 44 and 45 are fixed to the first member 41.

【0030】[0030]

【外3】 上記継鉄45は段差のついた形状をしており、永久磁石
部43とで形成する磁気回路内の空隙は左側の方が右側
より広くなっている。この空隙が広くなると磁気抵抗が
増し、磁束は通りにくくなり、その結果として矢印Bで
示す相対移動の経路に垂直な方向の磁束密度の極値の絶
対値は、図9において左側の方が右側より小さくなり、
前記図4で示す磁界強度分布が得られる。
[Outside 3] The yoke 45 has a stepped shape, and the gap in the magnetic circuit formed with the permanent magnet portion 43 is wider on the left side than on the right side. When this gap is widened, the magnetic resistance increases and it becomes difficult for the magnetic flux to pass through. As a result, the absolute value of the extreme value of the magnetic flux density in the direction perpendicular to the relative movement path indicated by arrow B is rightward on the left side in FIG. Smaller,
The magnetic field strength distribution shown in FIG. 4 is obtained.

【0031】第5の実施例 図10は本発明の第5の実施例を表すもので、同図にお
いて、51は第1の部材、52は第1の部材51に対し
て矢印B方向に図示しない支持部材によって相対移動可
能に支持された第2の部材、53は矢印Bに対して垂直
方向に同一の磁界強度で着磁された一対の永久磁石53
b、53cよりなる永久磁石部であり、両永久磁石53
b、53cの当接面中央部に開口部53aを有する。5
4は永久磁石部53の発生する磁力線の閉磁路を形成す
る強磁性を有する継鉄、55は永久磁石部53と空間を
隔てて配置され、磁気回路中に空隙を形成するための強
磁性を有する継鉄であり、上記永久磁石部53、継鉄5
4、55は第1の部材51に固定されている。
Fifth Embodiment FIG. 10 shows a fifth embodiment of the present invention. In FIG. 10, 51 is a first member and 52 is a first member 51 in the direction of arrow B. The second member 53 is movably supported by a non-supporting member, and 53 is a pair of permanent magnets 53 magnetized in the direction perpendicular to the arrow B with the same magnetic field strength.
b, 53c, which is a permanent magnet part,
An opening 53a is provided at the center of the contact surface of b and 53c. 5
Reference numeral 4 denotes a yoke having ferromagnetism that forms a closed magnetic path of the magnetic lines of force generated by the permanent magnet portion 53, and 55 is arranged with a space from the permanent magnet portion 53 to provide ferromagnetism for forming an air gap in the magnetic circuit. It is a yoke which has the above-mentioned permanent magnet part 53 and yoke 5.
4, 55 are fixed to the first member 51.

【0032】[0032]

【外4】 57はホール素子であり、上記磁界強度に応じた電圧を
出力する。上記永久磁石53部は図10に示すように開
口部53aより左側の永久磁石が右側のそれより小さく
なっており、矢印Bで示す相対移動の経路に垂直な方向
の磁束密度の極値の絶対値は、左側の方が右側より小さ
くなり、前記図4で示す様な磁界強度分布が得られる。
本実施例において、第1の実施例と同様な制御回路によ
って位置決め制御が可能である。
[Outside 4] Reference numeral 57 is a Hall element, which outputs a voltage corresponding to the magnetic field strength. As shown in FIG. 10, in the permanent magnet 53, the permanent magnet on the left side of the opening 53a is smaller than that on the right side, and the absolute value of the extreme value of the magnetic flux density in the direction perpendicular to the relative movement path indicated by arrow B is shown. The value is smaller on the left side than on the right side, and the magnetic field intensity distribution as shown in FIG. 4 is obtained.
In this embodiment, the positioning control can be performed by the same control circuit as in the first embodiment.

【0033】第6の実施例 図11は本発明の第6の実施例を表す図であり、同図に
おいて、61は第1の部材、62は第1の部材61に対
して矢印B方向に図示しない支持部材によって相対移動
可能に支持された第2の部材、63は矢印B方向に対し
て垂直方向に同一の磁界強度で着磁された一対の永久磁
石63b、63cよりなる永久磁石部であり、両永久磁
石63b、63cの当接面中央部に開口部63aを有
し、開口部63aより左側の永久磁石63bが右側の永
久磁石63cより小さくなっている。
Sixth Embodiment FIG. 11 is a view showing a sixth embodiment of the present invention, in which 61 is a first member and 62 is a direction of arrow B with respect to the first member 61. A second member 63 supported by a support member (not shown) so as to be relatively movable is a permanent magnet portion composed of a pair of permanent magnets 63b and 63c magnetized in the direction perpendicular to the arrow B direction with the same magnetic field strength. There is an opening 63a at the center of the contact surface between the two permanent magnets 63b and 63c, and the permanent magnet 63b on the left side of the opening 63a is smaller than the right permanent magnet 63c.

【0034】[0034]

【外5】 本実施例は永久磁石部63の磁束を閉じる継鉄を無くし
た構成であるが、前記第5の実施例と同様な磁界強度分
布が得られ、同様な制御回路により位置決め制御が可能
である。
[Outside 5] The present embodiment has a configuration in which a yoke for closing the magnetic flux of the permanent magnet portion 63 is eliminated, but a magnetic field strength distribution similar to that of the fifth embodiment can be obtained, and positioning control can be performed by a similar control circuit.

【0035】以上の各実施例において、相対移動する第
1の部材と第2の部材の動きについては直線的な動きに
ついて説明したが、図12に示す様に第1の部材71、
第2の部材72、永久磁石73、継鉄74、75、界磁
コイル76等の構成部材を円弧もしくは図13に示す様
に第1の部材を兼ねる永久磁石81、第2の部材82、
界磁コイル83、継鉄84等の構成部材を円形とし相対
移動の経路を円弧としたものでも同様である。この場
合、ホール素子77、85の検出する磁界の強度は、相
対移動の経路に垂直すなわち回転中心から放射方向の磁
界成分となる。又、永久磁石、継鉄、界磁コイル等が平
面構成であって、第1の部材と第2の部材の相対運動が
回転であっても、実質的に直線と見なせる場合も同様で
ある。
In each of the above embodiments, the linear movement of the first member and the second member which move relative to each other has been described, but as shown in FIG. 12, the first member 71,
The second member 72, the permanent magnet 73, the yokes 74 and 75, the field coil 76 and the like are arcs or permanent magnets 81 which also serve as the first member as shown in FIG. 13, a second member 82,
The same applies to the case where the constituent members such as the field coil 83 and the yoke 84 are circular and the relative movement path is an arc. In this case, the intensity of the magnetic field detected by the Hall elements 77, 85 is a magnetic field component perpendicular to the relative movement path, that is, in the radial direction from the center of rotation. The same applies when the permanent magnets, yokes, field coils, and the like have a planar configuration and the relative motion of the first member and the second member is rotation, but can be regarded as a substantially straight line.

【0036】尚、本発明は上記各実施例の構成に限られ
るものではなく、請求項で示した機能が達成できる構成
であれば、どのようなものでもよいことは言うまでもな
い。
It is needless to say that the present invention is not limited to the configurations of the above-mentioned embodiments, and may have any configuration as long as the functions shown in the claims can be achieved.

【0037】[0037]

【発明の効果】以上説明したように、本出願に係る第1
の発明によれば、1対の永久磁石が発生する磁界分布
を、2部材の相対移動の経路に対して垂直な方向の磁界
強度の極値の絶対値の片方を他方に対して小さく構成し
たので、1対の永久磁石の空間の中心に対して磁界極値
の絶対値が小さい方へ偏り磁界強度が実質的に直線的に
変化する範囲を広く確保する事が可能となり、より広い
範囲内でより正確な位置決め制御が可能である。
As described above, the first aspect of the present application
According to the invention, the magnetic field distribution generated by the pair of permanent magnets is configured such that one of the absolute values of the extreme values of the magnetic field strength in the direction perpendicular to the relative movement path of the two members is smaller than the other. Therefore, it becomes possible to secure a wide range in which the absolute value of the magnetic field extreme value is biased toward the smaller center of the space of the pair of permanent magnets and the magnetic field strength changes substantially linearly. Allows more accurate positioning control.

【0038】本出願に係る第2の発明によれば、1対の
永久磁石の着磁強度を異に構成したので、部品および組
立てコストを削減でき、簡単な構成で磁界強度が実質的
に直線的に変化する範囲を広く確保する事が可能であ
る。
According to the second invention of the present application, since the pair of permanent magnets have different magnetizing strengths, the cost of parts and assembly can be reduced, and the magnetic field strength is substantially linear with a simple structure. It is possible to secure a wide range of dynamic changes.

【0039】本出願に係る第3の発明によれば、1対の
永久磁石と継鉄で形成される磁気回路内の空隙を異に構
成したので、外部からの磁界(外乱)の影響を受けるこ
となく、磁界強度が実質的に直線的に変化する範囲を広
く確保する事ができ、安定した位置決め制御が可能であ
る。
According to the third invention of the present application, since the air gap in the magnetic circuit formed by the pair of permanent magnets and the yoke is made different, it is affected by the external magnetic field (disturbance). Without doing so, a wide range in which the magnetic field strength changes substantially linearly can be secured, and stable positioning control is possible.

【0040】本出願に係る第4の発明によれば、1対の
永久磁石の大きさを異にして構成したので、部品および
組立てコストを削減した簡単な構成で、磁界強度が実質
的に直線的に変化する範囲を広く確保する事が可能であ
る。
According to the fourth invention of the present application, since the size of the pair of permanent magnets is different, the magnetic field strength is substantially linear with a simple structure in which the parts and assembling costs are reduced. It is possible to secure a wide range of dynamic changes.

【0041】本出願に係る第5の発明によれば、着磁強
度を異にする1対の永久磁石と継鉄で構成したので、外
部からの磁界の影響を受けることなく、磁界強度が実質
的に直線的に変化する範囲を広く確保する事が可能であ
る。
According to the fifth invention of the present application, a pair of permanent magnets having different magnetizing strengths and a yoke are used, so that the magnetic field strength is substantially not affected by the external magnetic field. It is possible to secure a wide range that changes linearly.

【0042】本出願に係る第6の発明によれば、大きさ
を異にする1対の永久磁石と継鉄で構成したので、部品
および組立てコストを削減した簡単な構成で、外部から
の磁界の影響を受けることなく、磁界強度が実質的に直
線的に変化する範囲を広く確保する事が可能である。
According to the sixth invention of the present application, a pair of permanent magnets of different sizes and yokes are used, so that the magnetic field from the outside can be reduced with a simple structure that reduces the cost of parts and assembly. It is possible to secure a wide range in which the magnetic field strength changes substantially linearly without being affected by.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る位置決め装置を説
明する断面および制御ブロック図である
FIG. 1 is a sectional view and a control block diagram illustrating a positioning device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る位置決め装置を説
明する平面図である
FIG. 2 is a plan view illustrating a positioning device according to a first embodiment of the present invention.

【図3】図2において界磁コイルを取外した平面図であ
FIG. 3 is a plan view with the field coil removed in FIG.

【図4】図2において界磁コイルを取外した平面図の磁
界強度分布図である
FIG. 4 is a magnetic field strength distribution diagram of a plan view with the field coil removed in FIG.

【図5】図2において界磁コイルを取外した平面図のホ
ール素子の信号処理回路図である
FIG. 5 is a signal processing circuit diagram of the Hall element in a plan view with the field coil removed in FIG.

【図6】本発明の第2の実施例に係る位置決め装置を説
明する断面図である
FIG. 6 is a sectional view illustrating a positioning device according to a second embodiment of the present invention.

【図7】本発明の第3の実施例に係る位置決め装置を説
明する平面図である
FIG. 7 is a plan view illustrating a positioning device according to a third embodiment of the present invention.

【図8】図7において界磁コイルを取外した平面図であ
8 is a plan view of FIG. 7 with the field coil removed.

【図9】本発明の第4の実施例に係る位置決め装置を説
明する断面図である
FIG. 9 is a sectional view illustrating a positioning device according to a fourth embodiment of the present invention.

【図10】本発明の第5の実施例に係る位置決め装置を
説明する断面図である
FIG. 10 is a sectional view illustrating a positioning device according to a fifth embodiment of the present invention.

【図11】本発明の第6の実施例に係る位置決め装置を
説明する断面図である
FIG. 11 is a sectional view illustrating a positioning device according to a sixth embodiment of the present invention.

【図12】本発明の他の実施例に係る位置決め装置を説
明する断面図である
FIG. 12 is a sectional view illustrating a positioning device according to another embodiment of the present invention.

【図13】本発明の他の実施例に係る位置決め装置を説
明する断面図である
FIG. 13 is a sectional view illustrating a positioning device according to another embodiment of the present invention.

【図14】従来例を説明する磁界強度分布図であるFIG. 14 is a magnetic field strength distribution diagram for explaining a conventional example.

【図15】従来例を説明する磁界強度分布図であるFIG. 15 is a magnetic field strength distribution diagram for explaining a conventional example.

【図16】従来例を説明する磁界強度分布図であるFIG. 16 is a magnetic field strength distribution diagram for explaining a conventional example.

【図17】1対の永久磁石の磁束分布図であるFIG. 17 is a magnetic flux distribution diagram of a pair of permanent magnets.

【符号の説明】[Explanation of symbols]

1 第1の部材 2 第2の部材 3 永久磁石部(磁界発生手段) 3b 永久磁石 3c 永久磁石 4 ヨーク(継鉄) 5 ヨーク(継鉄) 6 界磁コイル 7 ホール素子(磁気検出手段) 8 信号処理回路(フィールドバック制御手段) 9 増幅回路(フィールドバック制御手段) 1 1st member 2 2nd member 3 permanent magnet part (magnetic field generation means) 3b permanent magnet 3c permanent magnet 4 yoke (yoke) 5 yoke (yoke) 6 field coil 7 hall element (magnetic detection means) 8 Signal processing circuit (fieldback control means) 9 Amplifier circuit (fieldback control means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の部材と、支持手段によって前記第
1の部材に対して相対移動可能に支持された第2の部材
と、前記第1の部材の一部を成し、相対移動の経路に対
して垂直な方向の磁界強度の極値の絶対値が異なった逆
極性の磁界分布を発生し、該極値の弱い方向へ偏った磁
界強度が実質的に直線的に変化する部分を有する磁界発
生手段と、前記第2の部材の一部を成し、前記磁界発生
手段の発生する磁界内に配置され通電により該磁界との
相互作用で力を受ける界磁コイルと、初期位置が前記磁
界強度の直線的に変化する部分の略中央に配置されて前
記第2の部材に固定され該磁界強度を電気信号として出
力する該磁気検出手段と、目標位置信号と前記磁気検出
手段の出力信号に応じて前記界磁コイルへの印加電圧を
制御するフィードバック制御手段とを備えたことを特徴
とする位置決め装置。
1. A first member, a second member supported by a support means so as to be relatively movable with respect to the first member, and a part of the first member. A magnetic field distribution of opposite polarity in which the absolute value of the extreme value of the magnetic field strength in the direction perpendicular to the path is different is generated, and the portion where the magnetic field strength biased in the direction of weaker extreme value changes substantially linearly And a field coil that is a part of the second member and that is disposed in the magnetic field generated by the magnetic field generating means and that receives a force due to interaction with the magnetic field due to energization, and an initial position The magnetic detection means, which is disposed substantially in the center of the portion where the magnetic field strength changes linearly, is fixed to the second member and outputs the magnetic field strength as an electric signal, and the target position signal and the output of the magnetic detection means. A feed bar that controls the voltage applied to the field coil according to a signal. A positioning device comprising: a lock control means.
【請求項2】 請求項1において、磁界発生手段は空間
を隔てて配置された相対移動の経路に対して垂直方向に
互いに逆方向に着磁された1対の永久磁石より成り片側
の磁石の着磁強度を他方より弱くして前記磁界分布を発
生させるようにしたことを特徴とする位置決め装置。
2. The magnetic field generating means according to claim 1, wherein the magnetic field generating means is composed of a pair of permanent magnets which are magnetized in directions opposite to each other in a direction perpendicular to a path of relative movement arranged with a space therebetween. A positioning device characterized in that the magnetizing strength is made weaker than the other to generate the magnetic field distribution.
【請求項3】 請求項1において、磁界発生手段は空間
を隔てて配置された相対移動の経路に対して垂直方向に
互いに逆方向に同一強度で着磁された1対の永久磁石
と、該永久磁石の発生する磁力線を通し、閉路した磁気
回路を形成する強磁性の継鉄より成り、前記磁気回路内
の空隙の片方を他方より広くして前記磁界分布を発生さ
せるようにしたことを特徴とする位置決め装置。
3. The pair of permanent magnets according to claim 1, wherein the magnetic field generating means is a pair of permanent magnets, which are magnetized at the same strength in directions opposite to each other in a direction perpendicular to a path of relative movement, which are arranged with a space therebetween. It is made of a ferromagnetic yoke that forms a closed magnetic circuit through the magnetic field lines generated by a permanent magnet, and one of the voids in the magnetic circuit is made wider than the other to generate the magnetic field distribution. Positioning device.
【請求項4】 請求項1において、磁界発生手段は空間
を隔てて配置された相対移動の経路に対して垂直方向に
互いに逆方向に同一強度で着磁された1対の永久磁石よ
り成り、片側の永久磁石を他方より小さくして前記磁界
分布を発生させるようにしたことを特徴とする位置決め
装置。
4. The magnetic field generating means according to claim 1, comprising a pair of permanent magnets, which are magnetized with the same strength in directions opposite to each other in a direction perpendicular to a path of relative movement arranged with a space therebetween, A positioning device characterized in that a permanent magnet on one side is made smaller than the other to generate the magnetic field distribution.
【請求項5】 請求項1において、磁界発生手段は空間
を隔てて配置された、相対移動の経路に対して垂直方向
に互いに逆方向に着磁された1対の永久磁石と、該永久
磁石の発生する磁力線を通し、閉路した磁気回路を形成
する強磁性の継鉄より成り、片側の永久磁石の着磁強度
を他方より弱くして、前記磁界分布を発生させるように
したことを特徴とする位置決め装置。
5. The pair of permanent magnets according to claim 1, wherein the magnetic field generating means is arranged with a space therebetween and is magnetized in directions opposite to each other in a direction perpendicular to a relative movement path. Through a magnetic field line generated by a magnetic yoke to form a closed magnetic circuit, and the magnetizing strength of the permanent magnet on one side is weaker than that on the other side to generate the magnetic field distribution. Positioning device.
【請求項6】 請求項1において、磁界発生手段は空間
を隔てて配置された、相対移動の経路に対して垂直方向
に互いに逆方向に同一強度で着磁された1対の永久磁石
と、該永久磁石の発生する磁力線を通して、閉路した磁
気回路を形成する強磁性の継鉄より成り、片側の永久磁
石を他方より小さくして、前記磁界分布を発生させるよ
うにしたことを特徴とする位置決め装置。
6. A pair of permanent magnets according to claim 1, wherein the magnetic field generating means is arranged with a space between them, and is magnetized in the directions opposite to each other in the direction perpendicular to the path of relative movement and with the same strength. Positioning characterized by comprising a ferromagnetic yoke that forms a closed magnetic circuit through the lines of magnetic force generated by the permanent magnet, and one of the permanent magnets is made smaller than the other to generate the magnetic field distribution. apparatus.
JP20426694A 1994-08-05 1994-08-05 Positioning device Expired - Fee Related JP3359157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20426694A JP3359157B2 (en) 1994-08-05 1994-08-05 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20426694A JP3359157B2 (en) 1994-08-05 1994-08-05 Positioning device

Publications (2)

Publication Number Publication Date
JPH0850515A true JPH0850515A (en) 1996-02-20
JP3359157B2 JP3359157B2 (en) 2002-12-24

Family

ID=16487628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20426694A Expired - Fee Related JP3359157B2 (en) 1994-08-05 1994-08-05 Positioning device

Country Status (1)

Country Link
JP (1) JP3359157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275379A (en) * 2004-02-27 2005-10-06 Pentax Corp Position-detecting apparatus of movable object and image blurring compensation apparatus
WO2017154781A1 (en) * 2016-03-07 2017-09-14 ミツミ電機株式会社 Lens drive device, camera module, and camera mount device
CN108603994A (en) * 2015-11-30 2018-09-28 旭化成微电子株式会社 Driving device, lens unit, equipment, bearing calibration and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275379A (en) * 2004-02-27 2005-10-06 Pentax Corp Position-detecting apparatus of movable object and image blurring compensation apparatus
JP4714474B2 (en) * 2004-02-27 2011-06-29 Hoya株式会社 Movable body position detection device and image blur correction device
CN108603994A (en) * 2015-11-30 2018-09-28 旭化成微电子株式会社 Driving device, lens unit, equipment, bearing calibration and program
CN108603994B (en) * 2015-11-30 2021-09-24 旭化成微电子株式会社 Driving device, lens unit, apparatus, correction method, and program
US11347024B2 (en) 2015-11-30 2022-05-31 Asahi Kasei Microdevices Corporation Driving apparatus, lens unit, device, and correction method for external disturbance magnetic field
WO2017154781A1 (en) * 2016-03-07 2017-09-14 ミツミ電機株式会社 Lens drive device, camera module, and camera mount device
CN109073854A (en) * 2016-03-07 2018-12-21 三美电机株式会社 Lens driver, camara module and camera carrying device

Also Published As

Publication number Publication date
JP3359157B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US5493216A (en) Magnetic position detector
US6160395A (en) Non-contact position sensor
US7786725B2 (en) Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same
CN110260770B (en) Magnetic sensor and position detection device
JP2008506946A (en) DC current sensor
JP2005195481A (en) Magnetic linear position sensor
JPH10225083A (en) Linear actuator and optical instrument using the linear actuator
JP4204294B2 (en) Rotation angle detector
JP7099483B2 (en) Current sensor
JP2001281308A (en) Magnetic sensor and position detector
US6549003B2 (en) Position detector utilizing two magnetic field sensors and a scale
JPH0850515A (en) Positioning device
US3587016A (en) Null adjuster for magnetically operated torque motors
JP4195152B2 (en) Position detection device
JPH04278415A (en) Potentiometer
JP3400641B2 (en) Linear displacement detector
KR19990083064A (en) Electromagnetic actuator with function detecting position of driven member
JP2000258449A (en) Magnetic acceleration sensor and acceleration detecting device
JP2000055930A (en) Acceleration sensor
JP7046721B2 (en) Speed detector
JP3451829B2 (en) Acceleration sensor
JP3671313B2 (en) Displacement detector
JPH08178691A (en) Magnetic position sensor
JP2626055B2 (en) Acceleration sensor
JP2622775B2 (en) Signal detection method for brushless DC linear motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees