JPH0850256A - Display device provided with line-of-sight detection system - Google Patents

Display device provided with line-of-sight detection system

Info

Publication number
JPH0850256A
JPH0850256A JP6204268A JP20426894A JPH0850256A JP H0850256 A JPH0850256 A JP H0850256A JP 6204268 A JP6204268 A JP 6204268A JP 20426894 A JP20426894 A JP 20426894A JP H0850256 A JPH0850256 A JP H0850256A
Authority
JP
Japan
Prior art keywords
line
eyeball
observer
detection system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6204268A
Other languages
Japanese (ja)
Other versions
JP3847799B2 (en
Inventor
Shoichi Yamazaki
章市 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20426894A priority Critical patent/JP3847799B2/en
Priority to DE69534221T priority patent/DE69534221T2/en
Priority to EP19950109058 priority patent/EP0687932B1/en
Publication of JPH0850256A publication Critical patent/JPH0850256A/en
Priority to US08/959,285 priority patent/US7262919B1/en
Priority to US09/333,998 priority patent/US7345822B1/en
Priority to KR1019990041863A priority patent/KR100254730B1/en
Priority to US09/511,243 priority patent/US7355795B1/en
Priority to US09/768,306 priority patent/US7253960B2/en
Application granted granted Critical
Publication of JP3847799B2 publication Critical patent/JP3847799B2/en
Priority to US11/766,294 priority patent/US7567385B2/en
Priority to US11/928,561 priority patent/US7505207B2/en
Priority to US11/928,518 priority patent/US7495836B2/en
Priority to US11/928,421 priority patent/US7538950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a head mounted display type display device provided with a line-of-sight detection system where video information displayed on a display means is controlled based on information on the line of sight of an observer. CONSTITUTION:This device is provided with an observation system for observing the virtual image of the video information by guiding the video information in a visible area displayed on the display means 4 to the eyeball of an observer without forming an image halfway by the use of an optical system having a reflection surface; and a line-of-sight detection system for detecting the line of sight of the eyeball of the observer 101 by the use of a signal from an image pickup means by making non-visible light from a light source means 102 incident on the eyeball of the observer, allowing the reflected luminous flux from the eyeball to pass through a part of the optical system, and then guiding the light to the surface of the image pickup means by an image-formation optical system 8 provided independently of the optical system. Then, the video information displayed on the display means 4 is controlled by utilizing the video information from the line-of-sight detection system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は視線検出系を有した表示
装置に関し、特に情報視認者(観察者)の頭部に装着し
て表示手段で表示した映像情報(表示情報)を情報視認
者の眼球に導光して該映像情報を観察するようにした、
所謂ヘッドマウントディスプレーと称されるメガネ型、
ゴーグル型、ヘルメット型の表示装置において、該表示
手段で映像情報を表示して観察する際に、該映像情報を
観察者の眼球の動き、即ち視線を検知する視線検出系か
らの信号を利用して種々と制御するようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device having a line-of-sight detection system, and more particularly to image information (display information) displayed on display means by being mounted on the head of an information viewer (observer). The light is guided to the eyeball of the user to observe the image information.
Glasses type, which is called a so-called head mount display,
In a goggle-type or helmet-type display device, when the image information is displayed and observed by the display means, the image information is obtained by using a signal from a line-of-sight detection system that detects the movement of the eyeball of the observer, that is, the line of sight. And various controls.

【0002】[0002]

【従来の技術】従来より情報視認者(観察者)の頭部に
装着して表示手段に表示した映像情報を観察者の眼球に
導光して観察するようにしたヘッドマウントディスプレ
ーと称される表示装置が種々提案されている。そしてこ
のような表示装置に視線検出系、即ち観察者が観察して
いる注視点方向の軸、所謂視線(視軸)を観察者の眼球
面上を照明したときに得られる眼球の反射像を利用して
検出するようにした視線検出系を設け、該視線検出系で
得られる視線情報を利用して表示装置に表示された映像
情報を制御するようにした装置が、例えば特開平3−1
01709号公報で提案されている。
2. Description of the Related Art Conventionally, it is called a head mount display which is mounted on the head of an information viewer (observer) to guide image information displayed on a display means to an observer's eyeball for observation. Various display devices have been proposed. A line-of-sight detection system, that is, an axis of the direction of the gazing point observed by the observer, a so-called line-of-sight (visual axis), is reflected on the eyeball of the observer on such a display device. For example, Japanese Patent Application Laid-Open No. 3-1 / 1993 discloses a device that is provided with a visual axis detection system that is used for detection and controls visual information displayed on a display device by using visual axis information obtained by the visual axis detection system.
It is proposed in Japanese Patent No. 01709.

【0003】同公報ではCRT等の表示手段で表示され
た映像情報を結像系で1次結像面に結像させ、該1次結
像面に結像させた映像情報を接眼系を介して観察するよ
うにした光学系を用いている。一方、赤外光を発する光
源を設け、該光源からの赤外光を該光学系の一部を利用
して観察者の眼球に入射させている。そして眼球からの
反射光束を該光学系の一部と赤外光を透過し、可視光を
反射するダイクロイックミラーを介して撮像素子面上に
導光し、該撮像素子からの出力信号を用いて眼球の視線
(動き)を検知している。
In this publication, image information displayed by a display means such as a CRT is imaged on a primary imaging surface by an imaging system, and the image information imaged on the primary imaging surface is passed through an eyepiece system. It uses an optical system designed to be observed. On the other hand, a light source that emits infrared light is provided, and the infrared light from the light source is incident on the eyeball of the observer by utilizing a part of the optical system. Then, the reflected light flux from the eyeball is transmitted to a part of the optical system and infrared light, and is guided to the image pickup device surface through a dichroic mirror that reflects visible light, and an output signal from the image pickup device is used. The line of sight (movement) of the eyeball is detected.

【0004】[0004]

【発明が解決しようとする課題】一般にヘッドマウント
ディスプレーとしての表示装置は、情報視認者の頭部へ
装着して個人的に用いるので装置全体が小型軽量である
ことが望ましい。
In general, a display device as a head mounted display is mounted on the head of an information viewer for personal use, and therefore it is desirable that the entire device be small and lightweight.

【0005】前述の特開平3−101709号公報で提
案されている装置においては、表示手段で表示された映
像情報を一度結像させる1次結像方式の光学系を用いて
いる。このため視線検出系には専用の結像系が不要とな
るが、光学系全体が複雑化し、観察者の頭部に装着する
装置としては大型化する傾向があった。
The apparatus proposed in the above-mentioned Japanese Patent Laid-Open No. 3-101709 uses a primary image-forming optical system which forms an image of the image information displayed by the display means. For this reason, the visual axis detection system does not require a dedicated imaging system, but the optical system as a whole becomes complicated and tends to be large in size as a device to be mounted on the observer's head.

【0006】本発明はヘッドマウントディスプレー等の
表示装置における表示手段で表示された映像情報を観察
する観察系とその一部に設ける観察者の視線を検出する
視線検出系の構成を適切に設定することにより、装置全
体の小型化を図りつつ、視線情報に基づいて観察系の表
示手段で表示する映像情報の観察状態を種々と制御する
ことができる視線検出系を有した表示装置の提供を目的
とする。
According to the present invention, the configuration of an observation system for observing image information displayed on the display means of a display device such as a head mounted display and a line-of-sight detection system for detecting the line of sight of an observer provided in a part thereof is appropriately set. Accordingly, it is an object of the present invention to provide a display device having a line-of-sight detection system capable of variously controlling the observation state of video information displayed on the display means of the observation system based on the line-of-sight information while downsizing the entire device And

【0007】[0007]

【課題を解決するための手段】本発明の視線検出系を有
した表示装置は、 (1−1)表示手段で表示された可視域の映像情報を反
射面を有する光学系を用いて観察者の眼球に途中結像さ
せずに導光して該映像情報の虚像を観察する観察系と、
該観察者の眼球に光源手段からの非可視光を入射させ、
該眼球からの反射光束を該光学系の一部を介した後に、
該光学系とは独立に設けた結像光学系により撮像手段面
上に導光し、該撮像手段からの信号を用いて該観察者の
眼球の視線を検出する視線検出系とを設け、該視線検出
系からの視線情報を利用して該表示手段に表示する映像
情報を制御したことを特徴としている。
A display device having a line-of-sight detection system of the present invention is: (1-1) An observer using an optical system having a reflecting surface for video information in the visible range displayed by the display means. An observation system for observing a virtual image of the image information by guiding light without forming an image on the eyeball of
Invisible light from the light source means is incident on the eyeball of the observer,
After passing the reflected light flux from the eyeball through a part of the optical system,
An imaging optical system provided independently of the optical system is provided to guide the light onto the surface of the image pickup means, and a line-of-sight detection system for detecting the line of sight of the eyeball of the observer using a signal from the image pickup means is provided. The video information displayed on the display means is controlled by utilizing the line-of-sight information from the line-of-sight detection system.

【0008】特に、(1−1−1)前記光学系は前記表
示手段で表示した映像情報からの光束を観察者の眼球に
導光するプリズム体を有し、該プリズム体は曲率を有し
た全反射作用をする反射面を有していること。
In particular, (1-1-1) the optical system has a prism body for guiding a light beam from the image information displayed on the display means to an observer's eyeball, and the prism body has a curvature. Must have a reflective surface that performs total internal reflection.

【0009】(1−1−2)前記プリズム体は前記表示
手段で表示した映像情報からの光束を入射面より入射さ
せ、該入射面からの光束を曲率を有した前面で全反射さ
せ、該前面からの光束を曲率を有した凹面で反射させた
後、該前面の一部より通過させて観察者の眼球に導光し
ていること。
(1-1-2) The prism body allows a light beam from the image information displayed on the display means to enter from an incident surface, and totally reflects the light beam from the incident surface on a front surface having a curvature, The light flux from the front surface is reflected by a concave surface having a curvature, and then passed through a part of the front surface to be guided to the eyeball of the observer.

【0010】(1−1−3)前記プリズム体の前面又は
/及び凹面はアジムス角により屈折力が異なっているこ
と。
(1-1-3) The front surface and / or the concave surface of the prism body has a different refractive power depending on the azimuth angle.

【0011】(1−1−4)観察者の眼球からの反射光
束を前記プリズム体の少なくとも一部とダイクロイック
ミラー面を介した後に前記視線検出系の結像光学系に導
光していること。
(1-1-4) The reflected light beam from the eyeball of the observer is guided to the image forming optical system of the visual axis detection system after passing through at least a part of the prism body and the dichroic mirror surface. .

【0012】(1−1−5)観察者の眼球からの反射光
束をダイクロイックミラー面を介した後に前記視線検出
系の結像光学系に導光していること。
(1-1-5) The reflected light beam from the eyeball of the observer is guided to the image forming optical system of the visual axis detection system after passing through the dichroic mirror surface.

【0013】(1−2)表示手段で表示された可視域の
映像情報を反射面を有する光学系を用いて観察者の眼球
に途中結像させずに導光して該映像情報の虚像を観察す
る観察系と、該観察者の眼球に光源手段からの非可視光
を入射させ、該眼球からの反射光束を該光学系の一部を
介した後に、該光学系とは独立に設けた結像光学系によ
り撮像手段面上に導光し、該撮像手段からの信号を用い
て該観察者の眼球の視線を検出する視線検出系と該表示
手段に映像情報を送出する映像情報供給手段とを有し、
該映像情報供給手段は該視線検出系からの視線情報に基
づいて該表示手段に表示する映像情報を制御しているこ
とを特徴としている。
(1-2) The image information in the visible range displayed by the display means is guided by an optical system having a reflecting surface without being formed on the eyeball of an observer halfway to form a virtual image of the image information. An observation system for observation and an invisible light from the light source means are made incident on the eyeball of the observer, and a light flux reflected from the eyeball is provided independently of the optical system after passing through a part of the optical system. A line-of-sight detection system that guides light onto the surface of the image-capturing means by the image-forming optical system and detects the line-of-sight of the eyeball of the observer using the signal from the image-capturing means, and video information supply means that sends video information to the display means. Has and
The video information supply means is characterized by controlling the video information displayed on the display means based on the visual line information from the visual line detection system.

【0014】(1−3)表示手段で表示された可視域の
映像情報を曲率を有した全反射作用とする反射面を有す
る光学系を用いて観察者の眼球に導光して該映像情報の
像を観察する観察系と、該観察者の眼球に光源手段から
の非可視光を入射させ、該眼球から反射光束を該光学系
の一部を介した後に、撮像手段面上に導光し、該撮像手
段からの信号を用いて該観察者の眼球の視線を検出する
視線検出系とを設け、該視線検出系からの視線情報を利
用して該表示手段に表示する映像情報を制御したことを
特徴としている。
(1-3) The image information in the visible range displayed by the display means is guided to the eyeball of an observer by using an optical system having a reflecting surface having a curvature and having a total reflection effect. And an observation system for observing the image of the observer, invisible light from the light source means is made incident on the eyeball of the observer, and a reflected light flux from the eyeball is guided to the surface of the image pickup means after passing through a part of the optical system. And a line-of-sight detection system for detecting the line-of-sight of the eyeball of the observer using the signal from the image-pickup unit, and controlling the image information displayed on the display unit by using the line-of-sight information from the line-of-sight detection system. It is characterized by having done.

【0015】(1−4)表示手段で表示された可視域の
映像情報をアジムス角により屈折力が異なっている面を
有する光学系を用いて観察者の眼球に導光して該映像情
報の像を観察する観察系と、該観察者の眼球に光源手段
から非可視光を入射させ、該眼球からの反射光束を該光
学系の一部を介した後に撮像手段面上に導光し、該撮像
手段からの信号を用いて該観察者の眼球の視線を検出す
る視線検出系とを設け、該視線検出系からの視線情報を
利用して該表示手段に表示する映像情報を制御したこと
を特徴としている。
(1-4) The image information in the visible range displayed by the display means is guided to the eyeball of the observer by using an optical system having a surface having a different refractive power depending on the azimuth angle. An observation system for observing an image, invisible light is made incident on the eyeball of the observer from the light source means, and a reflected light flux from the eyeball is guided to the image pickup means surface through a part of the optical system, A line-of-sight detection system for detecting the line-of-sight of the eyeball of the observer by using a signal from the image-pickup unit, and controlling the video information displayed on the display unit by using the line-of-sight information from the line-of-sight detection system. Is characterized by.

【0016】特に、前記視線検出系は、前記光学系とは
独立に設けた結像光学系を所有することや、前記アジム
ス角により屈折力が異なる面は反射面であることを特徴
としている。
In particular, the line-of-sight detection system is characterized in that it has an image-forming optical system provided independently of the optical system, and that a surface having a different refractive power depending on the azimuth angle is a reflecting surface.

【0017】(1−5)表示手段で表示された可視域の
映像情報を反射面を有する光学系を用いて観察者の眼球
に導光して該映像情報の像を観察する観察系と、該観察
者の眼球に光源手段から非可視光を入射させ、該眼球か
らの反射光束を該光学系の一部を介した後に、該光学系
とは独立に設けた結像光学系により撮像手段面上に導光
し、該撮像手段からの信号を用いて該観察者の眼球の視
線を検出する視線検出系とを設け、該視線検出系からの
視線情報を利用して該表示手段に表示する映像情報を制
御し、該結像光学系の該観察者の眼球から該撮像素子へ
の結像倍率をβとしたとき 0.02<|β|<0.18 となる条件を満足することを特徴としている。
(1-5) An observation system for guiding image information in the visible range displayed by the display means to an eyeball of an observer by using an optical system having a reflecting surface to observe an image of the image information. The invisible light is made incident on the eyeball of the observer from the light source means, the reflected light flux from the eyeball is passed through a part of the optical system, and then the imaging means is provided by an imaging optical system provided independently of the optical system. A line-of-sight detection system that guides light onto a surface and detects the line-of-sight of the eyeball of the observer using the signal from the image-capturing unit, and displays on the display unit by utilizing the line-of-sight information from the line-of-sight detection system The image information to be controlled so that the imaging magnification of the imaging optical system from the eyeball of the observer to the imaging device is β, 0.02 <| β | <0.18 is satisfied. Is characterized by.

【0018】[0018]

【実施例】図1,図2は本発明の実施例1に係る観察系
と視線検出系の光路を示す要部断面図である。図3は図
2の要部平面図である。図4,図5は本発明を観察者の
頭部に装着したときの概略図である。
1 and 2 are cross-sectional views of essential parts showing the optical paths of an observation system and a line-of-sight detection system according to a first embodiment of the present invention. FIG. 3 is a plan view of an essential part of FIG. 4 and 5 are schematic diagrams when the present invention is attached to the head of an observer.

【0019】図中、101は観察者、4は表示手段であ
り液晶表示素子等から成り可視域の映像情報を表示して
いる。表示手段4はCD−ROM105やビデオカメラ
106等の映像情報供給手段からの信号に基づいて映像
情報を表示している。10は透明の平行平面板より成る
光学部材であり、その内部にはビームスプリッターとし
ての可視域通過で赤外域反射のダイクロイックミラー面
7が設けられている。尚、ダイクロイックミラー面7の
代わりに単なるハーフミラー面を用いても良い。
In the figure, 101 is an observer, and 4 is a display means, which is composed of a liquid crystal display element or the like and displays image information in the visible range. The display means 4 displays the video information based on the signal from the video information supply means such as the CD-ROM 105 and the video camera 106. Reference numeral 10 is an optical member formed of a transparent plane parallel plate, and inside thereof is provided a dichroic mirror surface 7 as a beam splitter which transmits visible light and reflects infrared light. Instead of the dichroic mirror surface 7, a simple half mirror surface may be used.

【0020】3はプリズム体であり、トーリック非球面
より成る一部に全反射を利用した前面1、透明又は非透
明の平面又は曲率を有した面より成る後面6、プリズム
体3中に設けた半透過又は鏡面反射のトーリック非球面
より成る凹面2、そして入射面5を有している。104
は光軸(中心軸)であり、これは後述する眼球103の
光軸と一致している。表示手段4から眼球103に至る
光路中の各要素で、表示手段4で表示した映像情報の虚
像を観察する観察系を構成している。102は光源手段
であり、観察者101の眼球103の視線を検出する為
に眼球103に赤外光(非可視光,波長880nm付
近)を投光している。
Reference numeral 3 denotes a prism body, which is provided in the prism body 3 with a front surface 1 which is a toric aspherical surface and which utilizes total internal reflection, a rear surface 6 which is a transparent or non-transparent plane or a surface having a curvature. It has a concave surface 2 made of a semi-transparent or specular toric aspherical surface, and an incident surface 5. 104
Is the optical axis (center axis), which coincides with the optical axis of the eyeball 103 described later. Each element in the optical path from the display means 4 to the eyeball 103 constitutes an observation system for observing the virtual image of the image information displayed on the display means 4. Reference numeral 102 denotes a light source means, which emits infrared light (invisible light, wavelength near 880 nm) to the eyeball 103 in order to detect the line of sight of the eyeball 103 of the observer 101.

【0021】8は結像光学系(結像レンズ)であり、図
2に示すように光源手段102からの赤外光を観察者1
01の眼球103に照射したとき、該眼球103の角膜
からの反射光による角膜反射像と瞳孔等の結像位置等を
プリズム体3と光学部材10のダイクロイックミラー面
7を介してCCD等の撮像素子9面上に結像している。
結像レンズ8は表示手段4の映像情報の虚像を観察する
観察系とは独立に設けている。光源手段102からの眼
球103を介して撮像素子9に至る光路中の各要素で観
察者101の眼球103の視線を検出する視線検出系を
構成している。本実施例では以上のように、観察系と視
線検出系の各要素を設定することにより、2つの系を用
いたときの光学系全体の小型化を容易にしている。
Reference numeral 8 denotes an image forming optical system (image forming lens), which observer 1 emits infrared light from the light source means 102 as shown in FIG.
When the eyeball 103 of No. 01 is irradiated, the corneal reflection image by the reflected light from the cornea of the eyeball 103 and the imaging position of the pupil and the like are imaged by the CCD or the like via the prism body 3 and the dichroic mirror surface 7 of the optical member 10. An image is formed on the surface of the element 9.
The imaging lens 8 is provided independently of the observation system for observing the virtual image of the image information on the display means 4. Each element in the optical path from the light source means 102 to the image sensor 9 via the eyeball 103 constitutes a visual axis detection system for detecting the visual axis of the eyeball 103 of the observer 101. In the present embodiment, as described above, by setting each element of the observation system and the line-of-sight detection system, the miniaturization of the entire optical system when using two systems is facilitated.

【0022】次に図1を用いて表示手段4に表示した映
像情報の虚像を観察する観察系について説明する。本実
施例では表示手段4で表示された映像情報に基づく光束
(可視光束)を光学部材10のダイクロイックミラー面
7を通過させプリズム体3にその入射面5より導入して
いる。そしてプリズム体3の前面1で全反射させた後に
凹面2で反射集光して前面1を通過させて観察者101
の眼球103に導光している。このとき前面1、凹面2
の曲率を適切に設定することにより、表示手段4に表示
した映像情報を途中結像させることなく、即ち1次結像
面を設けずに該映像情報の虚像を観察者101の前方に
表示している。
Next, the observation system for observing the virtual image of the video information displayed on the display means 4 will be described with reference to FIG. In this embodiment, a light flux (visible light flux) based on the image information displayed by the display means 4 is passed through the dichroic mirror surface 7 of the optical member 10 and introduced into the prism body 3 through its incident surface 5. Then, after being totally reflected by the front surface 1 of the prism body 3, it is reflected and condensed by the concave surface 2 and passed through the front surface 1 to allow the observer 101
The light is guided to the eyeball 103. At this time, the front surface 1 and the concave surface 2
By properly setting the curvature of the image information, the virtual image of the image information displayed on the display unit 4 is displayed in front of the observer 101 without intermediately forming the image information, that is, without providing the primary image formation surface. ing.

【0023】このように本実施例では観察系を虚像タイ
プより構成し、これにより観察者101は該映像情報の
虚像を観察するようにしている。尚、本実施例において
凹面2を半透過面、後面6を透過面とし、後面6の曲率
を適切に設定することにより、外景の画像情報と表示手
段4の映像情報の虚像とを空間的に重畳して双方を同一
視野で同一視度として観察するようにしても良い。
As described above, in this embodiment, the observation system is of the virtual image type so that the observer 101 can observe the virtual image of the image information. In the present embodiment, the concave surface 2 is a semi-transmissive surface, the rear surface 6 is a transmissive surface, and the curvature of the rear surface 6 is appropriately set, so that the image information of the outside scene and the virtual image of the video information of the display unit 4 are spatially separated. You may make it superimpose and observe both as the same diopter in the same visual field.

【0024】本実施例の観察系では、図4や図5に示す
ように観察者101が有しているCD−ROM105や
ビデオカメラ106等の映像情報供給手段からの映像情
報を表示手段4に表示する際に、視線検出系で得られた
観察者の眼球の視線情報を利用して、例えばオートフォ
ーカス(ビデオカメラの焦点合わせ)、電子ズーム(視
線方向の情報を電気的に拡大)、ズーム駆動(視線で抽
出した画面寸法となるようにビデオカメラの焦点距離f
を演算し、その焦点距離に合わす)、そしてメニュー視
線選択(測光、ストロボ、パノラマ等)等の制御をして
いる。
In the observation system of this embodiment, as shown in FIGS. 4 and 5, the image information from the image information supply means such as the CD-ROM 105 and the video camera 106 possessed by the observer 101 is displayed on the display means 4. At the time of display, using the line-of-sight information of the eyeball of the observer obtained by the line-of-sight detection system, for example, autofocus (focusing of the video camera), electronic zoom (electrically magnifying the line-of-sight direction information), zoom Drive (focal length f of the video camera so that the screen dimensions are extracted by the line of sight
Is calculated and adjusted to the focal length), and menu line-of-sight selection (photometry, strobe, panorama, etc.) is controlled.

【0025】次に図2を用いて観察者101の眼球10
3の視線を検出する視線検出系について説明する。光源
手段102からの赤外光で観察者101の眼球103を
照明する。眼球103の角膜で反射した赤外光をプリズ
ム体3の前面1を通過させ、凹面2で反射させて前面1
で全反射させた後に、入射面5より射出して光学部材1
0に導光している。そして光学部材10のダイクロイッ
クミラー面7で反射させ、次いで光学部材10の面10
aで全反射させた後に結像レンズ8により撮像素子9に
入射させている。
Next, the eyeball 10 of the observer 101 will be described with reference to FIG.
A line-of-sight detection system for detecting line-of-sight 3 will be described. The infrared light from the light source means 102 illuminates the eyeball 103 of the observer 101. The infrared light reflected by the cornea of the eyeball 103 passes through the front surface 1 of the prism body 3 and is reflected by the concave surface 2 so that the front surface 1
After being totally reflected by the optical member 1,
Light is guided to 0. Then, the light is reflected by the dichroic mirror surface 7 of the optical member 10, and then the surface 10 of the optical member 10 is reflected.
After being totally reflected by a, the light is incident on the image sensor 9 by the imaging lens 8.

【0026】ここで結像レンズ8は観察系を虚像タイプ
とした為に結像作用がない為に用いている。これにより
撮像素子9面上に眼球103の角膜反射像や瞳孔等の眼
球103に関する像を形成している。そして該撮像素子
9からの信号を用いて眼球103の視線を検出してい
る。
The image forming lens 8 is used because it has no image forming action because the observation system is of a virtual image type. As a result, a corneal reflection image of the eyeball 103 and an image of the eyeball 103 such as a pupil are formed on the surface of the image sensor 9. The line of sight of the eyeball 103 is detected using the signal from the image sensor 9.

【0027】本実施例における眼球の視線の検出方法と
しては、例えば本出願人が先に提案した特開平1−27
4736号公報や特開平3−11492号公報等で開示
した方法を用いている。
As a method of detecting the line of sight of the eyeball in the present embodiment, for example, Japanese Patent Application Laid-Open No. 1-27 previously proposed by the present applicant.
The method disclosed in Japanese Patent No. 4736, Japanese Patent Laid-Open No. 3-11492, etc. is used.

【0028】図6(A),(B)は本実施例で用いてい
るプリズム体3の要部断面図である。図6(A),
(B)ではプリズム体3を観察系として用いた場合を示
すが、視線検出系として用いる場合は光路が逆となるだ
けであり、光学作用は同じである。表示手段4の表示面
から垂直に発した光束4aはプリズム体3の入射面5を
介してトーリック非球面より成る前面1に入射角度43
度以上で前面1で全反射するように入射させている。前
面1で全反射した光束4aをトーリック非球面より成る
凹面2に入射角度43度以下で反射させ前面1より射出
させている。
FIGS. 6A and 6B are cross-sectional views of the main part of the prism body 3 used in this embodiment. FIG. 6 (A),
(B) shows the case where the prism body 3 is used as an observation system, but when it is used as a line-of-sight detection system, the optical paths are only reversed and the optical action is the same. The light beam 4a emitted perpendicularly from the display surface of the display means 4 passes through the incident surface 5 of the prism body 3 and enters the front surface 1 of the toric aspherical surface at an incident angle 43.
The light is made incident so as to be totally reflected on the front surface 1 at an angle of more than 1 degree. The light beam 4a totally reflected by the front surface 1 is reflected by the concave surface 2 formed of a toric aspherical surface at an incident angle of 43 degrees or less and emitted from the front surface 1.

【0029】前面1は曲率を有しており、一部で全反射
作用を行い、他の一部で透過作用をするようにしてい
る。これにより2つの曲面を持つのと等価とし、凹面2
と合わせて全体として3つの曲率を有した反射光学系を
構成している。これにより光学系全体の焦点距離を短く
し(後述する数値実施例では20〜25mm)、光学系
全体の小型化を図っている。
The front surface 1 has a curvature so that a part of the front surface 1 has a total reflection effect and another part has a transmission effect. This is equivalent to having two curved surfaces, and the concave surface 2
Together with this, a reflective optical system having three curvatures as a whole is configured. As a result, the focal length of the entire optical system is shortened (20 to 25 mm in a numerical example described later), and the overall size of the optical system is reduced.

【0030】本実施例では観察系と視線検出系にアジム
ス角度により屈折力が異なる、即ちアジムス角度により
曲率が異なるトーリック面又はトーリック非球面又はア
ナモフィック非球面を前面1と凹面2そして入射面5に
適用している。これにより凹面2への入射光線と反射光
線のなす角度を大きくして光学系全体の小型化を図った
ときに発生してくる偏心収差を良好に補正している。
In this embodiment, a toric surface or a toric aspherical surface or an anamorphic aspherical surface having different refractive power depending on the azimuth angle, that is, a curvature different depending on the azimuth angle is used as the front surface 1, the concave surface 2 and the incident surface 5 in the observation system and the line-of-sight detection system. Applied. As a result, the angle formed between the light ray incident on the concave surface 2 and the reflected light ray is increased to favorably correct the decentering aberration that occurs when the overall size of the optical system is reduced.

【0031】前面1と後面6の曲率は光が双方の面を通
過するとき、屈折力が小さいメニスカス状のレンズ形状
となるようにしている。これにより後面6を介して外の
風景等の画像情報を観察するときに画像情報が良好に観
察されるようにしている。
The curvatures of the front surface 1 and the rear surface 6 are such that when light passes through both surfaces, it has a meniscus lens shape having a small refractive power. As a result, when observing the image information such as the outside scenery through the rear surface 6, the image information is satisfactorily observed.

【0032】子線断面内において前面1が負の屈折力を
有するようにして凹面2の正の屈折力で発生する諸収差
を補正している。ここで子線とは、設計値の眼球中心に
光が導かれる表示手段の画像中心からの光路を含む面と
垂直な面である(図6の紙面と垂直方向)。
The anterior surface 1 has a negative refractive power in the sagittal section to correct various aberrations generated by the positive refractive power of the concave surface 2. Here, the sagittal line is a plane perpendicular to the plane including the optical path from the image center of the display unit where the light is guided to the eyeball center of the design value (the direction perpendicular to the paper surface of FIG. 6).

【0033】尚、本実施例においては前面1の母線断面
も負の屈折力を有するようにしても良く、これによれば
子線断面を負の屈折力としたのと同様の効果が得られ
る。ここで母線断面とは、設計値の眼球中心に光が導か
れる表示手段の画像中心からの光路を含む面である(図
6の紙面内)。
In this embodiment, the generatrix section of the front surface 1 may also have a negative refracting power, and the same effect can be obtained as if the sagittal section has a negative refracting power. . Here, the generatrix cross section is a plane including the optical path from the image center of the display unit where the light is guided to the eyeball center of the designed value (inside the paper surface of FIG. 6).

【0034】図6(B)に示すように、前面1の面頂点
における母線断面での接戦Lと眼球の光軸104と垂直
で前面1の面頂点を通る線mとのなす角度(チルド角
度)をαとしたとき、 |α|≦20° ・・・・・・(1) となるようにしている。条件式(1)の如く、角度αを
20度より小さくして、これにより表示手段4の映像情
報の虚像と外の風景等の画像情報を空間的に重畳させて
双方を観察するときの歪みを少なくし、かつ光軸方向の
プリズムの厚さを薄くしている。
As shown in FIG. 6 (B), the angle (tilde angle) formed by the close battle L in the generatrix section at the surface vertex of the front surface 1 and the line m perpendicular to the optical axis 104 of the eyeball and passing through the surface vertex of the front surface 1. ) = Α, | α | ≦ 20 ° (1) As in the conditional expression (1), the angle α is set to be smaller than 20 degrees, so that the virtual image of the image information of the display means 4 and the image information such as the outside scenery are spatially superposed and the distortion when observing both of them. And the prism thickness in the optical axis direction is reduced.

【0035】次に本実施例の表示手段4から眼球103
に至る光路中に設けた各要素(入射面5、前面1、凹面
2)を有する観察系及び視線検出系の前述以外の特徴に
ついて説明する。
Next, from the display means 4 of this embodiment to the eyeball 103
Other features of the observation system and the line-of-sight detection system having the respective elements (incident surface 5, front surface 1, concave surface 2) provided in the optical path to the above will be described.

【0036】(2−1)本実施例において結像レンズ8
の眼球103から撮像素子9への結像倍率βは、 0.02<|β|<0.18 ・・・・・・(2) としている。ここで条件式(2)の上限値を越えると眼
球像の倍率が大きくなりすぎ撮像素子の有効径が増大し
てくるので良くない。また条件式(2)の下限値を越え
ると視線検出系の焦点距離をより短くしなければなら
ず、この結果、諸収差の発生が多くなってきて良好なる
眼球像が得られなくなってくる。
(2-1) Imaging lens 8 in this embodiment
The imaging magnification β from the eyeball 103 to the image sensor 9 is 0.02 <| β | <0.18 (2). Here, if the upper limit of conditional expression (2) is exceeded, the magnification of the eyeball image becomes too large and the effective diameter of the image pickup element increases, which is not preferable. If the lower limit of conditional expression (2) is exceeded, the focal length of the line-of-sight detection system will have to be made shorter, and as a result, various aberrations will occur more frequently and a good eyeball image will not be obtained.

【0037】(2−2)観察系における母線断面と子線
断面の全系の焦点距離を各々fy,fxとしたとき、 0.9<|fy/fx|<1.1 ・・・・・・(3) なる条件を満足するようにしている。これにより、どの
アジムス角度においても全系の焦点距離が略一定となる
ようにして、表示手段で表示された映像情報の母線方向
と子線方向のアスペクト比の補正を不要としている。
(2-2) When the focal lengths of the whole system of the generatrix section and the sagittal section in the observation system are fy and fx, respectively, 0.9 <| fy / fx | <1.1・ (3) Make sure that the following condition is satisfied. As a result, the focal length of the entire system becomes substantially constant at any azimuth angle, and correction of the aspect ratio of the video information displayed on the display means in the generatrix direction and the sagittal direction is unnecessary.

【0038】(2−3)凹面2の母線断面と子線断面の
近軸曲率半径を各々Ry,Rxとしたとき、 |Rx|<|Ry| ・・・・・・(4) となる条件を満足するようにしている。観察系を小型に
するには母線断面で凹面の光軸を眼球の光軸から時計方
向に大きくチルトさせる必要がある。そうすると偏心収
差が多く発生してくる。これに対して子線断面は偏心さ
せるところが少ないので偏心収差の発生が少ない。そこ
で本実施例では条件式(4)で示すように、母線断面の
曲率半径Ryを子線断面の曲率半径Rxより大きくし
て、即ち母線方向の屈折力を子線方向の屈折力に比べて
弱くして母線断面での偏心収差を小さくしている。
(2-3) When the paraxial curvature radii of the generatrix section and the sagittal section of the concave surface 2 are Ry and Rx, respectively, | Rx | <| Ry | (4) To be satisfied. In order to reduce the size of the observation system, it is necessary to tilt the optical axis of the concave surface in the cross section of the generatrix largely clockwise from the optical axis of the eyeball. Then, many decentration aberrations occur. On the other hand, since the sagittal cross section is decentered at a small number of places, decentration aberrations are less likely to occur. Therefore, in the present embodiment, as indicated by the conditional expression (4), the radius of curvature Ry of the generatrix section is made larger than the radius of curvature Rx of the sagittal section, that is, the refracting power in the generatrix direction is compared with the refracting power in the sagittal direction. It is weakened to reduce the decentering aberration in the generatrix section.

【0039】特に本実施例において条件式(4)を |Rx/Ry|<0.85 ・・・・・・(5) の如く設定するのが偏心収差の補正上好ましい。Particularly in this embodiment, it is preferable to set the conditional expression (4) as follows: | Rx / Ry | <0.85 (5) for correction of decentration aberrations.

【0040】(2−4)プリズム体3の入射面5をトー
リック面又はアナモフィック面としたときは、母線断面
と子線断面の近軸曲率半径を各々Ry5,Rx5とした
とき、 |Ry5|<|Rx5| ・・・・・・(6) としている。入射面5の母線断面は比較的偏心収差の発
生が少ない。そこで凹面2と前面1の母線断面の屈折力
をあまり強くすることができない代わりに、入射面5の
母線断面の屈折力を強くして、これにより観察系全体と
してどのアジムス角度でも焦点距離が略一定となるよう
にしている。
(2-4) When the entrance surface 5 of the prism body 3 is a toric surface or an anamorphic surface, | Ry5 | <when the paraxial curvature radii of the generatrix section and the sagittal section are Ry5 and Rx5, respectively. | Rx5 | ... (6) The eccentric aberration is relatively small in the generatrix cross section of the entrance surface 5. Therefore, the refracting power of the concave surface 2 and the front surface 1 cannot be made so strong, but the refracting power of the incident surface 5 is made strong, so that the focal length is almost the same at any azimuth angle in the entire observation system. I try to keep it constant.

【0041】(2−5)子線断面内において、光束が前
面1で全反射するときのその領域での屈折力が負、凹面
2の屈折力が正、前面1で透過するときのその領域での
屈折力が負となるようにして良好なる光学性能を得てい
る。また入射面5に屈折力を付与するときは母線断面を
正とするのが良く、これによれば全体としての母線断面
での正の屈折力の不足を補うことができる。
(2-5) Within the sagittal section, when the light beam is totally reflected by the front surface 1, the refractive power in that area is negative, the refractive power of the concave surface 2 is positive, and that area when it is transmitted in the front surface 1. Good optical performance is obtained by making the refracting power to be negative. Further, when giving the refracting power to the incident surface 5, it is preferable to make the generatrix cross section positive, which makes it possible to compensate for the lack of the positive dioptric power in the generatrix cross section as a whole.

【0042】(2−6)母線断面内において、光束が前
面1で全反射するときのその領域での屈折力が負、凹面
2の屈折力が正となるようにして良好なる光学性能を得
ている。また入射面5に屈折力を付与するときは子線断
面内において正の屈折力とするのが良く、これによれば
子線断面内での収差を少なくすることができる。
(2-6) In the cross section of the generatrix, when the light beam is totally reflected on the front surface 1, the refracting power in that region is negative and the refracting power of the concave surface 2 is positive, so that good optical performance is obtained. ing. Further, when the refracting power is applied to the entrance surface 5, it is preferable to make the refracting power positive in the sagittal section, and this can reduce the aberration in the sagittal section.

【0043】(2−7)子線断面内において、前面1の
光束が全反射するときのその領域と凹面2の曲率半径を
各々Rx1,Rx2、全系の焦点距離をfxとしたと
き、 0.1<|2fx/Rx1|<2.0 ・・・・・・(7) 0.5<|2fx/Rx2|<2.5 ・・・・・・(8) としている。条件式(7),(8)の上限値は曲率半径
Rx1,Rx2の屈折力が強くなる方向、逆に下限値は
屈折力が弱くなる方向である。条件式(7)の上限値を
越えると歪曲収差の補正が難しくなってくる。また下限
値を越えると全反射条件を満足するのが難しくなってく
る。条件式(8)の上限値を越えると非点収差の補正が
難しくなってくる。また下限値を越えると光学系全体が
大型化、特に光軸と平行な方向での厚さが厚くなってく
るので良くない。
(2-7) In the sagittal section, when the radius of curvature of the concave surface 2 and the area of the front surface 1 when the light flux is totally reflected are Rx1 and Rx2, respectively, and the focal length of the entire system is fx, 0: .1 <| 2fx / Rx1 | <2.0 (7) 0.5 <| 2fx / Rx2 | <2.5 (8) The upper limit value of the conditional expressions (7) and (8) is a direction in which the refractive powers of the curvature radii Rx1 and Rx2 are strong, and conversely, the lower limit value is a direction in which the refractive powers are weak. If the upper limit of conditional expression (7) is exceeded, it becomes difficult to correct distortion. If the lower limit is exceeded, it will be difficult to satisfy the total reflection condition. If the upper limit of conditional expression (8) is exceeded, it becomes difficult to correct astigmatism. On the other hand, when the value goes below the lower limit, the entire optical system becomes large, and the thickness in the direction parallel to the optical axis becomes thick, which is not preferable.

【0044】(2−8)母線断面内において、前面1の
光束が全反射する領域と凹面2の曲率半径を各々Ry
1,Ry2、全系の焦点距離をfyとしたとき 0<|2fy/Ry1|<1.0 ・・・・・・(9) 0.2<|2fy/Ry2|<2.5 ・・・・・・(10) としている。条件式(9),(10)の上限値は曲率半
径Ry1,Ry2の屈折力が強くなる方向、逆に下限値
は屈折力が弱くなる方向である。条件式(9)の上限値
を越えると偏心歪曲収差の補正が難しくなり、また下限
値を越えると全反射条件を満足するのが難しくなってく
る。条件式(10)の上限値を越えると偏心非点収差の
発生が多くなり、また下限値を越えるとレンズ全長が長
くなり光学系全体が大型化してくるので良くない。
(2-8) In the cross section of the generatrix, the radius of curvature of the concave surface 2 and the area where the light flux of the front surface 1 is totally reflected are Ry.
1, Ry2, when the focal length of the entire system is fy 0 <| 2fy / Ry1 | <1.0 (9) 0.2 <| 2fy / Ry2 | <2.5 ... ... (10). The upper limit value of the conditional expressions (9) and (10) is a direction in which the refractive powers of the curvature radii Ry1 and Ry2 are strong, and conversely the lower limit value is a direction in which the refractive power is weak. If the upper limit of conditional expression (9) is exceeded, it becomes difficult to correct decentering distortion, and if the lower limit is exceeded, it becomes difficult to satisfy the total reflection condition. If the upper limit of conditional expression (10) is exceeded, eccentric astigmatism will occur more often, and if the lower limit of this conditional expression is exceeded, the overall lens length will increase and the overall optical system will increase in size.

【0045】(2−9)凹面2は眼球の光軸104より
母線断面(Y方向)で表示手段4側へ平行偏心してい
る。これにより母線断面内での偏心歪曲収差を小さく抑
えている。このときの平行偏心のシフト量(図6(B)
に示すように光軸104から凹面2の面頂点までの距
離)をEとしたとき、 25≦E ・・・・・・(11) となるようにして偏心歪曲収差を良好に補正している。
(2-9) The concave surface 2 is decentered parallel to the display means 4 side in the generatrix cross section (Y direction) from the optical axis 104 of the eyeball. Thereby, the eccentric distortion aberration within the cross section of the generatrix is suppressed to be small. Parallel eccentricity shift amount at this time (FIG. 6 (B))
When the distance from the optical axis 104 to the surface apex of the concave surface 2) is E, as shown in (5), the decentering distortion aberration is satisfactorily corrected so that 25 ≦ E (11) .

【0046】(2−10)(1)式におけるチルト角度
αを、 −15°≦α≦5° ・・・・・・(12) としている。これにより光学系全体を効果的に小型にし
ている。条件式(12)の下限値を越えると映像情報の
歪みが大きくなり、また上限値を越えるとプリズム体3
の光軸104方向の厚みが増加してくるので良くない。
The tilt angle α in the equation (2-10) (1) is set to −15 ° ≦ α ≦ 5 ° (12). This effectively reduces the size of the entire optical system. If the lower limit of conditional expression (12) is exceeded, distortion of image information will increase, and if the upper limit is exceeded, the prism body 3 will be distorted.
This is not good because the thickness in the direction of the optical axis 104 increases.

【0047】図7〜図10は本発明の実施例2〜5のプ
リズム体3近傍の視線検出系の一部を変更したときの要
部概略図である。
7 to 10 are schematic views of the essential parts when a part of the visual axis detection system in the vicinity of the prism body 3 of Examples 2 to 5 of the present invention is changed.

【0048】図7の実施例2では実施例1に比べて、光
学部材10を観察者の眼球103とプリズム体3との間
に設けて、それに伴い結像レンズ8と撮像素子9とを設
けている点が異なっており、その他の構成は同じであ
る。本実施例では視線検出系に偏心面がないので視線を
高精度に検出することができるという特長がある。
In Example 2 of FIG. 7, as compared with Example 1, the optical member 10 is provided between the eyeball 103 of the observer and the prism body 3, and accordingly, the imaging lens 8 and the image pickup element 9 are provided. However, the other configurations are the same. The present embodiment has a feature that the visual axis can be detected with high accuracy because the visual axis detection system has no eccentric surface.

【0049】図8の実施例3では実施例1に比べて、プ
リズム体3の内部にダイクロイック面7を傾けて設け、
それに伴い結像レンズ8と撮像素子9を設けている点が
異なっており、その他の構成は同じである。本実施例で
は部品点数を少なくして、光学系全体のより小型化を図
っている。
In Example 3 of FIG. 8, as compared with Example 1, the dichroic surface 7 is provided inside the prism body 3 with an inclination.
Along with that, the imaging lens 8 and the image pickup element 9 are different, and the other configurations are the same. In this embodiment, the number of parts is reduced and the overall size of the optical system is further reduced.

【0050】図9の実施例4では実施例1に比べて、光
学部材10をプリズム体3よりも眼球103に対して遠
方に配置している。そして凹面2を可視光反射で赤外光
透過のダイクロイック膜を施している。また光学部材1
0に半透過、または100%反射またはダイクロイック
膜を施した反射面11を傾けて設け、それに伴い結像レ
ンズ8と撮像素子9を設けている点が異なっており、そ
の他の構成は同じである。本実施例の部材を観察者の頭
部に装着したときの概略図を図11に示す。
In Example 4 of FIG. 9, the optical member 10 is disposed farther from the eyeball 103 than the prism body 3 as compared with Example 1. The concave surface 2 is coated with a dichroic film that reflects visible light and transmits infrared light. Moreover, the optical member 1
0 is semi-transmissive, or is 100% reflective or is provided with a reflecting surface 11 on which a dichroic film is provided with an inclination, and the imaging lens 8 and the image pickup element 9 are provided accordingly, and other configurations are the same. . FIG. 11 shows a schematic diagram when the member of this example is attached to the head of an observer.

【0051】図10の実施例5では実施例1に比べて、
平行平面板より成る光学部材10を用いずにプリズム体
3の入射面5に可視光透過で赤外光反射のダイクロイッ
クミラー7を設け、それに伴い結像レンズ8と撮像素子
9を設けている点が異なっており、その他の構成は同じ
である。本実施例の部材を観察者の頭部に装着したとき
の概略図は図12に示す。
Compared with the first embodiment, the fifth embodiment shown in FIG.
A dichroic mirror 7 that transmits visible light and reflects infrared light is provided on the incident surface 5 of the prism body 3 without using the optical member 10 formed of a plane-parallel plate, and the imaging lens 8 and the image sensor 9 are provided accordingly. Are different, and other configurations are the same. FIG. 12 shows a schematic diagram when the member of this embodiment is attached to the observer's head.

【0052】尚、以上の各実施例の視線検出系を有した
表示装置は、所謂ヘッドアップディスプレイ装置にその
まま適用することができる。
The display device having the line-of-sight detection system of each of the above embodiments can be directly applied to a so-called head-up display device.

【0053】次に本実施例の数値実施例を示す。数値実
施例においては、図1〜図3を参照して各要素を次のよ
うにして示している。 (1)眼球103を座標系の原点(0,0) (2)眼球103から光線を追跡し、視線検出系におい
て、 i=1 眼球 i=2 前面1(透過面) i=3 凹面2 i=4 前面1(全反射面) i=5 入射面5 i=6 光学部材10の入射面 i=7 ダイクロイック面 i=8 i=9 光学部材10の射出面 i=10 結像レンズの入射面 i=11 結像レンズの射出面 i=12 撮像素子 観察系において、 i=8 映像情報の入射面 i=9 映像情報の表示面 (3)TALはトーリック非球面 AALはアナモフィック非球面を表わしている。
Next, numerical examples of this embodiment will be shown. In the numerical example, each element is shown as follows with reference to FIGS. (1) Eyeball 103 is the origin of the coordinate system (0, 0) (2) Rays are traced from the eyeball 103, and in the line-of-sight detection system, i = 1 eyeball i = 2 front surface 1 (transmissive surface) i = 3 concave surface 2 i = 4 Front surface 1 (total reflection surface) i = 5 Incident surface 5 i = 6 Incident surface of optical member 10 i = 7 Dichroic surface i = 8 i = 9 Exit surface of optical member 10 i = 10 Incident surface of imaging lens i = 11 exit surface of imaging lens i = 12 image sensor In observation system, i = 8 entrance surface of image information i = 9 display surface of image information (3) TAL is toric aspherical surface AAL is anamorphic aspherical surface There is.

【0054】TALの定義は母線断面(Y,Z断面)が
下記非球面式
The definition of TAL is that the cross section of the generatrix (Y, Z cross section) is the following aspherical expression.

【0055】[0055]

【数1】 で、子線断面(X,Z断面)は球面である。[Equation 1] The sagittal section (X, Z section) is a spherical surface.

【0056】またAALの定義式はThe definition formula of AAL is

【0057】[0057]

【数2】 である。[Equation 2] Is.

【0058】また本発明に使用しているALは非球面
(回転対称)であり、ALの定義式は
The AL used in the present invention is an aspherical surface (rotationally symmetric), and the definition formula of AL is

【0059】[0059]

【数3】 である。面頂点座標Y,Zは眼球の面頂点を(0,0)
としたときの絶対座標。母線断面チルト角度は眼球の光
軸に対する各面の光軸のチルト角度(時計と反対方向を
正)。反射面(全反射含)はMを付している。nd,ν
dをd線の屈折率とアッベ数である。 (数値実施例1) 〈視線検出系〉
(Equation 3) Is. The surface vertex coordinates Y and Z are (0,0) the surface vertex of the eyeball.
The absolute coordinates when. The meridian section tilt angle is the tilt angle of the optical axis of each surface with respect to the optical axis of the eyeball (the direction opposite to the clock is positive). The reflecting surface (including total reflection) is indicated by M. nd, ν
d is the refractive index of the d-line and the Abbe number. (Numerical Example 1) <Gaze detection system>

【0060】[0060]

【外1】 〈TAL,ALデータ〉 TAL2,4:K=460.670, A=-0.227E-5, B=0.179E-7, C=-0.45
3E-10, D=0.429E-13 TAL3 : K=1.105, A=-0.709E-6, B=-0.273E-8,C=-0.19
1E-11, D=0.631E-15 AL10 : K=-3.858, A=0.851E-2, B=-0.101, C=0.14
9, D=-0.755E-1 AL11 : K=-0.113, A=0.195, B=-0.590, C=0.47
1, D=-0.138 (1)α=0 (5)|Rx1/Ry1|=0.10 (8) 2fx/Rx2=
-1.09 (11) E=26.3 (2)|β|=0.10 |Rx2/Ry2|=0.67 (9) 2fy/Ry1=
-0.04 (3)|fy/fx |=1.00 (7) 2fx/Rx1=-0.88 (10)2fy/Ry2=
-0.36 (数値実施例2) 〈視線検出系〉
[Outside 1] <TAL, AL data> TAL2,4: K = 460.670, A = -0.227E-5, B = 0.179E-7, C = -0.45
3E-10, D = 0.429E-13 TAL3: K = 1.105, A = -0.709E-6, B = -0.273E-8, C = -0.19
1E-11, D = 0.631E-15 AL10: K = -3.858, A = 0.851E-2, B = -0.101, C = 0.14
9, D = -0.755E-1 AL11: K = -0.113, A = 0.195, B = -0.590, C = 0.47
1, D = -0.138 (1) α = 0 (5) | Rx1 / Ry1 | = 0.10 (8) 2fx / Rx2 =
-1.09 (11) E = 26.3 (2) | β | = 0.10 | Rx2 / Ry2 | = 0.67 (9) 2fy / Ry1 =
-0.04 (3) | fy / fx | = 1.00 (7) 2fx / Rx1 = -0.88 (10) 2fy / Ry2 =
-0.36 (Numerical example 2) <Gaze detection system>

【0061】[0061]

【外2】 〈TAL,ALデータ〉 TAL2,4:K=460.670, A=-0.227E-5, B=0.179E-7, C=-0.45
3E-10, D=0.429E-13 TAL3 : K=1.105, A=-0.709E-6, B=0.273E-8, C=-0.19
1E-11, D=0.631E-15 AL6 : K=-3.858, A=0.851E-2, B=-0.101, C=0.14
9, D=-0.755E-1 AL7 : K=-0.113, A=0.195, B=-0.590, C=0.47
1, D=-0.138 (1)α=0 (5)|Rx1/Ry1|=0.10 (8) 2fx/Rx2=
-1.09 (11) E=26.3 (2)|β|=0.05 |Rx2/Ry2|=0.67 (9) 2fy/Ry1=
-0.04 (3)|fy/fx |=1.00 (7) 2fx/Rx1=-0.88 (10)2fy/Ry2=
-0.36 (数値実施例3) 〈視線検出系〉
[Outside 2] <TAL, AL data> TAL2,4: K = 460.670, A = -0.227E-5, B = 0.179E-7, C = -0.45
3E-10, D = 0.429E-13 TAL3: K = 1.105, A = -0.709E-6, B = 0.273E-8, C = -0.19
1E-11, D = 0.631E-15 AL6: K = -3.858, A = 0.851E-2, B = -0.101, C = 0.14
9, D = -0.755E-1 AL7: K = -0.113, A = 0.195, B = -0.590, C = 0.47
1, D = -0.138 (1) α = 0 (5) | Rx1 / Ry1 | = 0.10 (8) 2fx / Rx2 =
-1.09 (11) E = 26.3 (2) | β | = 0.05 | Rx2 / Ry2 | = 0.67 (9) 2fy / Ry1 =
-0.04 (3) | fy / fx | = 1.00 (7) 2fx / Rx1 = -0.88 (10) 2fy / Ry2 =
-0.36 (Numerical example 3) <Gaze detection system>

【0062】[0062]

【外3】 〈AAL,ALデータ〉 AAL2,4: Ky=-13763.5, AR=-0.170E-4, BR=0.406E-7, CR=-0.154E
-9, DR=0.223E-12 Kx=-3.896, AP=-0.245, BP=0.416E-1, CP=0.870E-
1, DP=-0.203E-1 AAL3: Ky=1.238, AR=-0.317E-5, BR=0.248E-8, CR=-0.179E-
11, DR=0.608E-15 Kx=0.279, AP=-0.249, BP=0.327E-2, CP=-0.192E
-1, DP=0.181E-1 AAL5: Ky=6.825, AR=-0.114E-4, BR=-0.402E-6, CR=0.113E
-8, DR=-0.411E-10 Kx=-1.33E+6, AP=0.273E+1, BP=0.155E+1, CP=0.160E
+1, DP=-0.644 AL10 : K=-3.858, A=0.851E-2, B=-0.101, C=0.149, D=
-0.755E-1 AL11 : K=-0.113, A=0.195, B=-0.590, C=0.471, D=
-0.138 (1)α=-10.5 (5)|Rx1/Ry1|=0.01 (8) 2fx/Rx2=
-1.47 (11) E=34.8 (2)|β|=0.12 |Rx2/Ry2|=0.52 (9) 2fy/Ry1=
-0.02 (3)|fy/fx |=0.96 (7) 2fx/Rx1=-1.5 (10)2fy/Ry2=-
0.73 (数値実施例4) 〈視線検出系〉
[Outside 3] <AAL, AL data> AAL2,4: Ky = -13763.5, AR = -0.170E-4, BR = 0.406E-7, CR = -0.154E
-9, DR = 0.223E-12 Kx = -3.896, AP = -0.245, BP = 0.416E-1, CP = 0.870E-
1, DP = -0.203E-1 AAL3: Ky = 1.238, AR = -0.317E-5, BR = 0.248E-8, CR = -0.179E-
11, DR = 0.608E-15 Kx = 0.279, AP = -0.249, BP = 0.327E-2, CP = -0.192E
-1, DP = 0.181E-1 AAL5: Ky = 6.825, AR = -0.114E-4, BR = -0.402E-6, CR = 0.113E
-8, DR = -0.411E-10 Kx = -1.33E + 6, AP = 0.273E + 1, BP = 0.155E + 1, CP = 0.160E
+1, DP = -0.644 AL10: K = -3.858, A = 0.851E-2, B = -0.101, C = 0.149, D =
-0.755E-1 AL11: K = -0.113, A = 0.195, B = -0.590, C = 0.471, D =
-0.138 (1) α = -10.5 (5) | Rx1 / Ry1 | = 0.01 (8) 2fx / Rx2 =
-1.47 (11) E = 34.8 (2) | β | = 0.12 | Rx2 / Ry2 | = 0.52 (9) 2fy / Ry1 =
-0.02 (3) | fy / fx | = 0.96 (7) 2fx / Rx1 = -1.5 (10) 2fy / Ry2 =-
0.73 (Numerical example 4) <Gaze detection system>

【0063】[0063]

【外4】 〈AAL,ALデータ〉 AAL2,4: Ky=-361850, AR=-0.183E-4, BR=0.381E-7, CR=-0.114E
-9, DR=0.153E-12 Kx=-13.802, AP=-0.317, BP=-0.602E-1, CP=0.272E-
1, DP=-0.211E-1 AAL3: Ky=1.227, AR=-0.209E-5, BR=0.308E-8, CR=-0.190E-
11, DR=0.505E-15 Kx=0.172, AP=0.472, BP=0.553E-1, CP=-0.265E-
1, DP=0.751E-2 AAL5: Ky=987000, AR=-0.871E-5, BR=-0.264E-6, CR=0.469E-
13, DR=0.137E-11 Kx=-70.169, AP=41.763, BP=-0.395, CP=0.183E+
2, DP=-0.988 AL7 : K=-3.858, A=0.851E-2, B=-0.101, C=0.149,
D=-0.755E-1 AL8 : K=-0.113, A=0.195, B=-0.590, C=0.471,
D=-0.138 (1)α=1.5 (5)|Rx1/Ry1|=0.005 (8) 2fx/Rx2=
-1.22 (11) E=33.1 (2)|β|=0.10 |Rx2/Ry2|=0.56 (9) 2fy/Ry1=
-0.46 (3)|fy/fx |=1.00 (7) 2fx/Rx1=-0.93 (10)2fy/Ry2=
-0.61 (数値実施例5) 〈視線検出系〉
[Outside 4] <AAL, AL data> AAL2,4: Ky = -361850, AR = -0.183E-4, BR = 0.381E-7, CR = -0.114E
-9, DR = 0.153E-12 Kx = -13.802, AP = -0.317, BP = -0.602E-1, CP = 0.272E-
1, DP = -0.211E-1 AAL3: Ky = 1.227, AR = -0.209E-5, BR = 0.308E-8, CR = -0.190E-
11, DR = 0.505E-15 Kx = 0.172, AP = 0.472, BP = 0.553E-1, CP = -0.265E-
1, DP = 0.751E-2 AAL5: Ky = 987000, AR = -0.871E-5, BR = -0.264E-6, CR = 0.469E-
13, DR = 0.137E-11 Kx = -70.169, AP = 41.763, BP = -0.395, CP = 0.183E +
2, DP = -0.988 AL7: K = -3.858, A = 0.851E-2, B = -0.101, C = 0.149,
D = -0.755E-1 AL8: K = -0.113, A = 0.195, B = -0.590, C = 0.471,
D = -0.138 (1) α = 1.5 (5) | Rx1 / Ry1 | = 0.005 (8) 2fx / Rx2 =
-1.22 (11) E = 33.1 (2) | β | = 0.10 | Rx2 / Ry2 | = 0.56 (9) 2fy / Ry1 =
-0.46 (3) | fy / fx | = 1.00 (7) 2fx / Rx1 = -0.93 (10) 2fy / Ry2 =
-0.61 (Numerical Example 5) <Gaze detection system>

【0064】[0064]

【外5】 〈AAL,ALデータ〉 AAL2,4: Ky=-387540, AR=-0.183E-4, BR=0.378E-7, CR=-0.117E
-9, DR=0.158E-12 Kx=-20.897, AP=-0.300, BP=-0.548E-1, CP=0.326E-
1, DP=-0.228E-1 AAL3: Ky=1.213, AR=-0.224E-5, BR=0.305E-8, CR=-0.190E-
11, DR=0.500E-15 Kx=0.165, AP=-0.464, BP=0.630E-1, CP=-0.251E-
1, DP=0.380E-2 AAL5: Ky=559.028, AR=-0.675E-5, BR=0.182E-6, CR=0.212E
-12, DR=-0.189E-10 Kx=-99429.4, AP=0.486E+1, BP=-0.125E+1, CP=0.111E
+2, DP=-0.789 AL11 : K=-3.858, A=0.851E-2, B=-0.101, C=0.149, D=
-0.755E-1 AL12 : K=-0.113, A=0.195, B=-0.590, C=0.471, D=
-0.138 (1)α=0.28 (5)|Rx1/Ry1|=0.005 (8) 2fx/Rx2=
-1.26 (11) E=33.0 (2)|β|=0.11 |Rx2/Ry2|=0.55 (9) 2fy/Ry1=
-0.005 (3)|fy/fx |=1.00 (7) 2fx/Rx1=-0.95 (10)2fy/Ry2=
-0.69
[Outside 5] <AAL, AL data> AAL2,4: Ky = -387540, AR = -0.183E-4, BR = 0.378E-7, CR = -0.117E
-9, DR = 0.158E-12 Kx = -20.897, AP = -0.300, BP = -0.548E-1, CP = 0.326E-
1, DP = -0.228E-1 AAL3: Ky = 1.213, AR = -0.224E-5, BR = 0.305E-8, CR = -0.190E-
11, DR = 0.500E-15 Kx = 0.165, AP = -0.464, BP = 0.630E-1, CP = -0.251E-
1, DP = 0.380E-2 AAL5: Ky = 559.028, AR = -0.675E-5, BR = 0.182E-6, CR = 0.212E
-12, DR = -0.189E-10 Kx = -99429.4, AP = 0.486E + 1, BP = -0.125E + 1, CP = 0.111E
+2, DP = -0.789 AL11: K = -3.858, A = 0.851E-2, B = -0.101, C = 0.149, D =
-0.755E-1 AL12: K = -0.113, A = 0.195, B = -0.590, C = 0.471, D =
-0.138 (1) α = 0.28 (5) | Rx1 / Ry1 | = 0.005 (8) 2fx / Rx2 =
-1.26 (11) E = 33.0 (2) | β | = 0.11 | Rx2 / Ry2 | = 0.55 (9) 2fy / Ry1 =
-0.005 (3) | fy / fx | = 1.00 (7) 2fx / Rx1 = -0.95 (10) 2fy / Ry2 =
-0.69

【0065】[0065]

【発明の効果】本発明によれば以上のように、ヘッドマ
ウントディスプレー等の表示装置における表示手段で表
示された映像情報を観察する観察系とその一部に設ける
観察者の視線を検出する視線検出系の構成を適切に設定
することにより、装置全体の小型化を図りつつ、視線情
報に基づいて観察系の表示手段で表示する映像情報の観
察状態を種々と制御することができる視線検出系を有し
た表示装置を達成することができる。
As described above, according to the present invention, the observation system for observing the image information displayed by the display means in the display device such as the head mount display and the line of sight for detecting the line of sight of the observer provided in a part thereof. By properly setting the configuration of the detection system, it is possible to reduce the size of the entire apparatus and to control various observation states of the video information displayed on the display means of the observation system based on the visual line information. It is possible to achieve a display device having.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の観察系の光路を示す概略
FIG. 1 is a schematic diagram showing an optical path of an observation system of Example 1 of the present invention.

【図2】 本発明の実施例1の視線検出系の光路を示す
概略図
FIG. 2 is a schematic diagram showing an optical path of the line-of-sight detection system according to the first embodiment of the present invention.

【図3】 本発明の実施例1の視線検出系の光路を示す
概略図
FIG. 3 is a schematic diagram showing an optical path of the line-of-sight detection system according to the first embodiment of the present invention.

【図4】 本発明の表示装置を観察者に装着したときの
説明図
FIG. 4 is an explanatory view when a display device of the present invention is attached to an observer.

【図5】 本発明の表示装置を観察者に装着したときの
説明図
FIG. 5 is an explanatory diagram when the display device of the present invention is attached to an observer.

【図6】 図1の一部分の拡大説明図FIG. 6 is an enlarged explanatory view of a part of FIG.

【図7】 本発明の実施例2のプリズム体近傍の要部概
略図
FIG. 7 is a schematic view of a main part near a prism body according to a second embodiment of the present invention.

【図8】 本発明の実施例3のプリズム体近傍の要部概
略図
FIG. 8 is a schematic view of a main part near a prism body according to a third embodiment of the present invention.

【図9】 本発明の実施例4のプリズム体近傍の要部概
略図
FIG. 9 is a schematic view of a main part near a prism body according to a fourth embodiment of the present invention.

【図10】 本発明の実施例5のプリズム体近傍の要部
概略図
FIG. 10 is a schematic view of a main part near a prism body according to a fifth embodiment of the present invention.

【図11】 本発明の実施例4の観察系と視線検出系の
光路を示す概略図
FIG. 11 is a schematic diagram showing optical paths of an observation system and a line-of-sight detection system according to a fourth embodiment of the present invention.

【図12】 本発明の実施例5の観察系と視線検出系の
光路を示す概略図
FIG. 12 is a schematic diagram showing optical paths of an observation system and a line-of-sight detection system according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 前面 2 凹面 3 プリズム体 4 表示手段 5 入射面 6 後面 7 ダイクロイックミラー面 8 結像光学系 9 撮像素子 10 光学部材 101 観察者 102 光源手段 103 眼球 104 光軸 105 映像情報供給手段 DESCRIPTION OF SYMBOLS 1 Front surface 2 Concave surface 3 Prism body 4 Display means 5 Incident surface 6 Rear surface 7 Dichroic mirror surface 8 Imaging optical system 9 Imaging element 10 Optical member 101 Observer 102 Light source means 103 Eyeball 104 Optical axis 105 Image information supplying means

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 表示手段で表示された可視域の映像情報
を反射面を有する光学系を用いて観察者の眼球に途中結
像させずに導光して該映像情報の虚像を観察する観察系
と、該観察者の眼球に光源手段からの非可視光を入射さ
せ、該眼球からの反射光束を該光学系の一部を介した後
に、該光学系とは独立に設けた結像光学系により撮像手
段面上に導光し、該撮像手段からの信号を用いて該観察
者の眼球の視線を検出する視線検出系とを設け、該視線
検出系からの視線情報を利用して該表示手段に表示する
映像情報を制御したことを特徴とする視線検出系を有し
た表示装置。
1. An observation for observing a virtual image of the image information displayed on the display means by guiding the image information of the image information in an eyeball of an observer without forming an image on the eyeball of the observer by using an optical system having a reflecting surface. System and imaging optics provided independently of the optical system after injecting invisible light from the light source means into the eyeball of the observer and passing the reflected light beam from the eyeball through a part of the optical system. A line-of-sight detection system that guides light onto the surface of the image-pickup unit by a system and detects the line-of-sight of the eyeball of the observer using a signal from the image-pickup unit, A display device having a line-of-sight detection system characterized by controlling video information displayed on a display means.
【請求項2】 前記光学系は前記表示手段で表示した映
像情報からの光束を観察者の眼球に導光するプリズム体
を有し、該プリズム体は曲率を有した全反射作用をする
反射面を有していることを特徴とする請求項1の視線検
出系を有した表示装置。
2. The optical system has a prism body for guiding a light flux from the image information displayed by the display means to an eyeball of an observer, and the prism body has a reflecting surface having a total reflection effect. A display device having the line-of-sight detection system according to claim 1.
【請求項3】 前記プリズム体は前記表示手段で表示し
た映像情報からの光束を入射面より入射させ、該入射面
からの光束を曲率を有した前面で全反射させ、該前面か
らの光束を曲率を有した凹面で反射させた後、該前面の
一部より通過させて観察者の眼球に導光していることを
特徴とする請求項2の視線検出系を有した表示装置。
3. The prism body makes a light beam from the image information displayed on the display unit incident from an incident surface, totally reflects the light beam from the incident surface on a front surface having a curvature, and The display device having a visual line detection system according to claim 2, wherein after being reflected by a concave surface having a curvature, the light is passed through a part of the front surface and guided to the eyeball of the observer.
【請求項4】 前記プリズム体の前面又は/及び凹面は
アジムス角により屈折力が異なっていることを特徴とす
る請求項3の視線検出系を有した表示装置。
4. A display device having a line-of-sight detection system according to claim 3, wherein the front surface and / or the concave surface of the prism body has a different refractive power depending on the azimuth angle.
【請求項5】 観察者の眼球からの反射光束を前記プリ
ズム体の少なくとも一部とダイクロイックミラー面を介
した後に前記視線検出系の結像光学系に導光しているこ
とを特徴とする請求項2の視線検出系を有した表示装
置。
5. A light flux reflected from an eyeball of an observer is guided to an image forming optical system of the visual axis detection system after passing through at least a part of the prism body and a dichroic mirror surface. A display device having the line-of-sight detection system of item 2.
【請求項6】 観察者の眼球からの反射光束をダイクロ
イックミラー面を介した後に前記視線検出系の結像光学
系に導光していることを特徴とする請求項2の視線検出
系を有した表示装置。
6. The line-of-sight detection system according to claim 2, wherein a light beam reflected from an eyeball of an observer is guided to an image-forming optical system of the line-of-sight detection system after passing through a dichroic mirror surface. Display device.
【請求項7】 前記結像光学系の前記観察者の眼球から
前記撮像素子への結像倍率をβとしたとき、 0.02<|β|<0.18 なる条件を満足することを特徴とする請求項1の視線検
出系を有した表示装置。
7. The condition that 0.02 <| β | <0.18 is satisfied, where β is the imaging magnification of the imaging optical system from the eyeball of the observer to the imaging device. A display device having the line-of-sight detection system according to claim 1.
【請求項8】 前記プリズム体の前面の面頂点における
母線断面の接線と眼球の光軸と垂直で該前面の面頂点を
通る線とのなす角度をαとしたとき、 |α|≦20° なる条件を満足することを特徴とする請求項3の視線検
出系を有した表示装置。
8. When the angle between the tangent of the generatrix cross section at the surface vertex of the front surface of the prism body and the line perpendicular to the optical axis of the eyeball and passing through the surface vertex of the front surface is α, | α | ≦ 20 ° 4. A display device having a line-of-sight detection system according to claim 3, which satisfies the following condition.
【請求項9】 表示手段で表示された可視域の映像情報
を反射面を有する光学系を用いて観察者の眼球に途中結
像させずに導光して該映像情報の虚像を観察する観察系
と、該観察者の眼球に光源手段からの非可視光を入射さ
せ、該眼球からの反射光束を該光学系の一部を介した後
に、該光学系とは独立に設けた結像光学系により撮像手
段面上に導光し、該撮像手段からの信号を用いて該観察
者の眼球の視線を検出する視線検出系と該表示手段に映
像情報を送出する映像情報供給手段とを有し、該映像情
報供給手段は該視線検出系からの視線情報に基づいて該
表示手段に表示する映像情報を制御していることを特徴
とする視線検出系を有した表示装置。
9. An observation for observing a virtual image of the image information displayed on the display means by using an optical system having a reflecting surface to guide the image information of the image information to the observer's eyeball without forming the image on the way. System and imaging optics provided independently of the optical system after injecting invisible light from the light source means into the eyeball of the observer and passing the reflected light beam from the eyeball through a part of the optical system. The system includes a visual line detection system that guides light onto the surface of the image pickup unit and detects a line of sight of the eyeball of the observer using a signal from the image pickup unit, and a video information supply unit that sends video information to the display unit. A display device having a line-of-sight detection system, wherein the image-information supply unit controls the image information displayed on the display unit based on the line-of-sight information from the line-of-sight detection system.
【請求項10】 表示手段で表示された可視域の映像情
報を曲率を有した全反射作用とする反射面を有する光学
系を用いて観察者の眼球に導光して該映像情報の像を観
察する観察系と、該観察者の眼球に光源手段からの非可
視光を入射させ、該眼球から反射光束を該光学系の一部
を介した後に、撮像手段面上に導光し、該撮像手段から
の信号を用いて該観察者の眼球の視線を検出する視線検
出系とを設け、該視線検出系からの視線情報を利用して
該表示手段に表示する映像情報を制御したことを特徴と
する視線検出系を有した表示装置。
10. An image of the image information displayed on the display means is guided to an eyeball of an observer by using an optical system having a reflecting surface having a curvature and having a total reflection effect. An observation system for observing and invisible light from the light source means are made incident on the eyeball of the observer, and a reflected light flux from the eyeball is guided to the surface of the image pickup means after passing through a part of the optical system. A line-of-sight detection system for detecting the line-of-sight of the eyeball of the observer using a signal from the imaging unit is provided, and the visual information displayed on the display unit is controlled by using the line-of-sight information from the line-of-sight detection system. A display device having a characteristic line-of-sight detection system.
【請求項11】 表示手段で表示された可視域の映像情
報をアジムス角により屈折力が異なっている面を有する
光学系を用いて観察者の眼球に導光して該映像情報の像
を観察する観察系と、該観察者の眼球に光源手段から非
可視光を入射させ、該眼球からの反射光束を該光学系の
一部を介した後に撮像手段面上に導光し、該撮像手段か
らの信号を用いて該観察者の眼球の視線を検出する視線
検出系とを設け、該視線検出系からの視線情報を利用し
て該表示手段に表示する映像情報を制御したことを特徴
とする視線検出系を有した表示装置。
11. The image information in the visible range displayed by the display means is guided to an eyeball of an observer to observe an image of the image information by using an optical system having a surface having a different refractive power depending on the azimuth angle. And an invisible light from the light source means to the eyeball of the observer, and the reflected light flux from the eyeball is guided to the surface of the image pickup means after passing through a part of the optical system. And a line-of-sight detection system for detecting the line-of-sight of the eyeball of the observer using a signal from, and controlling the video information displayed on the display means using the line-of-sight information from the line-of-sight detection system. A display device having a line-of-sight detection system.
【請求項12】 前記視線検出系は、前記光学系とは独
立に設けた結像光学系を所有することを特徴とする請求
項1又は11の視線検出系を有した表示装置。
12. A display device having a line-of-sight detection system according to claim 1, wherein the line-of-sight detection system has an imaging optical system provided independently of the optical system.
【請求項13】 前記アジムス角により屈折力が異なる
面は反射面であることを特徴とする請求項11の視線検
出系を有した表示装置。
13. A display device having a line-of-sight detection system according to claim 11, wherein the surface having a different refractive power depending on the azimuth angle is a reflecting surface.
【請求項14】 表示手段で表示された可視域の映像情
報を反射面を有する光学系を用いて観察者の眼球に導光
して該映像情報の像を観察する観察系と、該観察者の眼
球に光源手段から非可視光を入射させ、該眼球からの反
射光束を該光学系の一部を介した後に、該光学系とは独
立に設けた結像光学系により撮像手段面上に導光し、該
撮像手段からの信号を用いて該観察者の眼球の視線を検
出する視線検出系とを設け、該視線検出系からの視線情
報を利用して該表示手段に表示する映像情報を制御し、
該結像光学系の該観察者の眼球から該撮像素子への結像
倍率をβとしたとき 0.02<|β|<0.18 となる条件を満足することを特徴とする視線検出系を有
した表示装置。
14. An observation system for guiding image information in the visible range displayed by a display means to an eyeball of an observer to observe an image of the image information by using an optical system having a reflecting surface, and the observer. After invisible light is made incident on the eyeball from the light source means and the reflected light flux from the eyeball passes through a part of the optical system, the image is formed on the image pickup means surface by an imaging optical system provided independently of the optical system. A visual line detection system that guides light and detects a visual line of the eyeball of the observer using a signal from the image pickup unit, and image information displayed on the display unit by using visual line information from the visual line detection system Control the
A line-of-sight detection system that satisfies the condition 0.02 <| β | <0.18, where β is the imaging magnification of the imaging optical system from the eyeball of the observer to the imaging device. Having a display.
【請求項15】 請求項1,9,10,11又は14記
載の視線検出系を有した表示装置を用いたことを特徴と
するヘッドアップディスプレイ装置。
15. A head-up display device using the display device having the line-of-sight detection system according to claim 1, 9, 10, 11, or 14.
JP20426894A 1994-06-13 1994-08-05 Display device having gaze detection system Expired - Fee Related JP3847799B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP20426894A JP3847799B2 (en) 1994-08-05 1994-08-05 Display device having gaze detection system
DE69534221T DE69534221T2 (en) 1994-06-13 1995-06-12 display device
EP19950109058 EP0687932B1 (en) 1994-06-13 1995-06-12 Display device
US08/959,285 US7262919B1 (en) 1994-06-13 1997-10-24 Head-up display device with curved optical surface having total reflection
US09/333,998 US7345822B1 (en) 1994-06-13 1999-06-16 Head-up display device with curved optical surface having total reflection
KR1019990041863A KR100254730B1 (en) 1994-06-13 1999-09-29 Observation apparatus
US09/511,243 US7355795B1 (en) 1994-06-13 2000-02-23 Head-up display device with curved optical surface having total reflection
US09/768,306 US7253960B2 (en) 1994-06-13 2001-01-25 Head-up display device with rotationally asymmetric curved surface
US11/766,294 US7567385B2 (en) 1994-06-13 2007-06-21 Head-up display device with curved optical surface having total reflection
US11/928,561 US7505207B2 (en) 1994-06-13 2007-10-30 Display device
US11/928,518 US7495836B2 (en) 1994-06-13 2007-10-30 Display device
US11/928,421 US7538950B2 (en) 1994-06-13 2007-10-30 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20426894A JP3847799B2 (en) 1994-08-05 1994-08-05 Display device having gaze detection system

Publications (2)

Publication Number Publication Date
JPH0850256A true JPH0850256A (en) 1996-02-20
JP3847799B2 JP3847799B2 (en) 2006-11-22

Family

ID=16487664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20426894A Expired - Fee Related JP3847799B2 (en) 1994-06-13 1994-08-05 Display device having gaze detection system

Country Status (1)

Country Link
JP (1) JP3847799B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917662A (en) * 1996-01-29 1999-06-29 Canon Kabushiki Kaisha Phototaking optical system and optical device
US5973858A (en) * 1996-01-29 1999-10-26 Canon Kabushiki Kaisha Reflecting optical system and optical apparatus
US5995287A (en) * 1995-09-27 1999-11-30 Canon Kabushiki Kaisha Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
WO2000060398A1 (en) * 1999-04-02 2000-10-12 Olympus Optical Co., Ltd. Viewing optical system and image display comprising the same
US6166859A (en) * 1998-08-05 2000-12-26 Canon Kabushiki Kaisha Viewfinder optical system and optical apparatus having the same
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US6445507B2 (en) 2000-03-03 2002-09-03 Olympus Optical Co., Ltd. Viewing optical system and image display apparatus using the same
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
KR100386725B1 (en) * 2000-07-31 2003-06-09 주식회사 대양이앤씨 Optical System for Head Mount Display
KR100388819B1 (en) * 2000-07-31 2003-06-25 주식회사 대양이앤씨 Optical System for Head Mount Display
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
US7019909B2 (en) 2001-11-14 2006-03-28 Canon Kabushiki Kaisha Optical system, image display apparatus, and image taking apparatus
US7027229B2 (en) 2003-05-08 2006-04-11 Canon Kabushiki Kaisha Display optical system
US7199935B2 (en) 2002-12-04 2007-04-03 Canon Kabushiki Kaisha Image display apparatus and image display system
US7210803B2 (en) 2003-01-31 2007-05-01 Canon Kabushiki Kaisha Optical system, display optical system and image-taking optical system
JP2015508182A (en) * 2012-01-24 2015-03-16 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact line-of-sight head-mounted display
WO2015108161A1 (en) * 2014-01-17 2015-07-23 株式会社ニコン Electronic apparatus, image pickup apparatus, and communication apparatus
KR20180056737A (en) * 2015-09-23 2018-05-29 매직 립, 인코포레이티드 Eye imaging using off-axial imager
JP2018520373A (en) * 2015-06-04 2018-07-26 グーグル エルエルシー Efficient thin curved eyepiece for see-through head wearable display
JP2018536883A (en) * 2015-11-25 2018-12-13 グーグル エルエルシー Eye tracking with prism
JP2019117338A (en) * 2017-12-27 2019-07-18 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Spectacle lens, head mount display, lens blank and semifinished lens blank
CN112711140A (en) * 2016-04-26 2021-04-27 麦克赛尔株式会社 Optical system
US11137597B2 (en) 2019-03-28 2021-10-05 Samsung Electronics Co., Ltd. Image display apparatus
JP7025075B1 (en) * 2021-07-14 2022-02-24 ホログラム株式会社 Augmented reality provider
KR20230016035A (en) * 2013-11-27 2023-01-31 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
US11852830B2 (en) 2020-06-18 2023-12-26 Samsung Electronics Co., Ltd. Augmented reality glass and operating method therefor
WO2023246812A1 (en) * 2022-06-21 2023-12-28 北京七鑫易维信息技术有限公司 Eye tracking optical device, system and virtual reality apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053235A1 (en) * 2016-06-29 2018-01-05 Institut Mines Telecom OCULAR MEASURING DEVICE EQUIPPED WITH AN OPTICALLY ALIGNED SYSTEM ON THE AXIS OF VISION OF THE USER

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995287A (en) * 1995-09-27 1999-11-30 Canon Kabushiki Kaisha Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
US6181470B1 (en) 1995-09-27 2001-01-30 Canon Kabushiki Kaisha Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
US5973858A (en) * 1996-01-29 1999-10-26 Canon Kabushiki Kaisha Reflecting optical system and optical apparatus
US5917662A (en) * 1996-01-29 1999-06-29 Canon Kabushiki Kaisha Phototaking optical system and optical device
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US6166859A (en) * 1998-08-05 2000-12-26 Canon Kabushiki Kaisha Viewfinder optical system and optical apparatus having the same
WO2000060398A1 (en) * 1999-04-02 2000-10-12 Olympus Optical Co., Ltd. Viewing optical system and image display comprising the same
US6445507B2 (en) 2000-03-03 2002-09-03 Olympus Optical Co., Ltd. Viewing optical system and image display apparatus using the same
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
KR100386725B1 (en) * 2000-07-31 2003-06-09 주식회사 대양이앤씨 Optical System for Head Mount Display
KR100388819B1 (en) * 2000-07-31 2003-06-25 주식회사 대양이앤씨 Optical System for Head Mount Display
US7019909B2 (en) 2001-11-14 2006-03-28 Canon Kabushiki Kaisha Optical system, image display apparatus, and image taking apparatus
US7408715B2 (en) 2002-12-04 2008-08-05 Canon Kabushiki Kaisha Image display apparatus and image display system
US7199935B2 (en) 2002-12-04 2007-04-03 Canon Kabushiki Kaisha Image display apparatus and image display system
US7210803B2 (en) 2003-01-31 2007-05-01 Canon Kabushiki Kaisha Optical system, display optical system and image-taking optical system
US7027229B2 (en) 2003-05-08 2006-04-11 Canon Kabushiki Kaisha Display optical system
JP2020181214A (en) * 2012-01-24 2020-11-05 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact eye sight tracking head-mounted display
JP2015508182A (en) * 2012-01-24 2015-03-16 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact line-of-sight head-mounted display
JP2017182078A (en) * 2012-01-24 2017-10-05 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact eye sight tracked head-mounted display
KR20230016035A (en) * 2013-11-27 2023-01-31 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
WO2015108161A1 (en) * 2014-01-17 2015-07-23 株式会社ニコン Electronic apparatus, image pickup apparatus, and communication apparatus
JP2018520373A (en) * 2015-06-04 2018-07-26 グーグル エルエルシー Efficient thin curved eyepiece for see-through head wearable display
KR20180056737A (en) * 2015-09-23 2018-05-29 매직 립, 인코포레이티드 Eye imaging using off-axial imager
US11747624B2 (en) 2015-09-23 2023-09-05 Magic Leap, Inc. Eye imaging with an off-axis imager
JP2018536883A (en) * 2015-11-25 2018-12-13 グーグル エルエルシー Eye tracking with prism
US10303940B2 (en) 2015-11-25 2019-05-28 Google Llc Prism-based eye tracking
CN112711140A (en) * 2016-04-26 2021-04-27 麦克赛尔株式会社 Optical system
CN112711140B (en) * 2016-04-26 2023-04-28 麦克赛尔株式会社 Optical system
JP2019117338A (en) * 2017-12-27 2019-07-18 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Spectacle lens, head mount display, lens blank and semifinished lens blank
US11137597B2 (en) 2019-03-28 2021-10-05 Samsung Electronics Co., Ltd. Image display apparatus
US11852830B2 (en) 2020-06-18 2023-12-26 Samsung Electronics Co., Ltd. Augmented reality glass and operating method therefor
JP7025075B1 (en) * 2021-07-14 2022-02-24 ホログラム株式会社 Augmented reality provider
WO2023246812A1 (en) * 2022-06-21 2023-12-28 北京七鑫易维信息技术有限公司 Eye tracking optical device, system and virtual reality apparatus

Also Published As

Publication number Publication date
JP3847799B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP3847799B2 (en) Display device having gaze detection system
US7355795B1 (en) Head-up display device with curved optical surface having total reflection
US6310736B1 (en) Image-forming optical system and viewing optical system
JP6369017B2 (en) Virtual image display device
JP2911750B2 (en) Observation optical system
US6646811B2 (en) Optical element and compound display apparatus using the same
JP3645618B2 (en) Image display device
JP2001264681A (en) Display device
JPH07191274A (en) Image display device
US6829113B2 (en) Image-forming optical system
JPH0643389A (en) Visual display device
US20030197943A1 (en) Optical system, image display apparatus, and image taking apparatus
JPH10239628A (en) Composite display device
JP3143553B2 (en) Finder device
JP2002228970A (en) Optical system and picture display device using the same
US7027229B2 (en) Display optical system
JP3486465B2 (en) Visual display device
JP3870073B2 (en) Image display device and imaging device
JP3870076B2 (en) Image display device and imaging device
JP3026233B2 (en) Daylighting bright frame finder
JP3870074B2 (en) Image display device and imaging device
JP3870072B2 (en) Image display device and imaging device
KR100254730B1 (en) Observation apparatus
JPH07218859A (en) Image display device
JP2003149588A (en) Display optical system, image display unit, and optical system and device for imaging

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041001

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees