JPH08501238A - 脈管内の障害物の溶解及び付随する再狭窄の抑制を含む強化された脈管内音伝達用の装置及び方法 - Google Patents

脈管内の障害物の溶解及び付随する再狭窄の抑制を含む強化された脈管内音伝達用の装置及び方法

Info

Publication number
JPH08501238A
JPH08501238A JP6508215A JP50821594A JPH08501238A JP H08501238 A JPH08501238 A JP H08501238A JP 6508215 A JP6508215 A JP 6508215A JP 50821594 A JP50821594 A JP 50821594A JP H08501238 A JPH08501238 A JP H08501238A
Authority
JP
Japan
Prior art keywords
intravascular
fluid
introducing
cavitation
closest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6508215A
Other languages
English (en)
Other versions
JP3561274B2 (ja
Inventor
カーター,ロバート・イー
Original Assignee
コラジェ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/945,275 external-priority patent/US5318014A/en
Application filed by コラジェ・インコーポレーテッド filed Critical コラジェ・インコーポレーテッド
Publication of JPH08501238A publication Critical patent/JPH08501238A/ja
Application granted granted Critical
Publication of JP3561274B2 publication Critical patent/JP3561274B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • A61B2017/22002Angioplasty, e.g. PCTA preventing restenosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22008Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • A61B2017/22021Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter electric leads passing through the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Materials For Medical Uses (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

(57)【要約】 超音波装置(10)及び音伝達を強調し且つ脈管内障害物の溶解のために脈管内壁内に超音波エネルギーをカップリングさせる方法。該装置(10)は、超音波を結合するための放射体(44)、及び該放射体(44)に連結されている超音波の脈管内発生のための圧電性結晶(24)を含む;該超音波は、該圧電性結晶(24)の長手軸(104)に沿って伝搬される。脈管内流体の空洞化を促進するためのシード液体は、放射体の末端に導入される。加えて、化学薬剤による脈管内障害物の溶解の増強及び再狭窄の阻害は、超音波エネルギーと組み合わされた場合に顕著に増加する。

Description

【発明の詳細な説明】 脈管内の障害物の溶解及び付随する再狭窄の抑制を含む強化された脈管内音伝達 用の装置及び方法 本出願は、係属中の1992年9月14日付け出願の米国特許出願第07/9 95,275号の一部継続出願である。発明の背景 本発明は、一般に、音伝達に関し、特に、強化されたドラッグデリバリのため 、さらに脈管内の障害物の除去及び再狭窄の防止という二つの目的のための脈管 内の超音波エネルギーの発生に向けられる。 超音波は、生理学的活性成分すなわち薬剤を、膜を横切って運搬可能であるこ とが知られている。音伝達は、超音波の影響下で皮膚を貫通するカップリング/ コンタクト剤に含まれる薬剤分子の移動として規定される。超音波は、骨格筋及 び脊椎傍神経内に薬剤を推進することができることが立証されており、また多く の観察者によって超音波の影響による数種の薬剤の経皮吸収における増加が報告 されている。超音波はドラッグデリバリを所望の領域に局所的に集中し、全身系 の毒性を増加させることなく効能を増長することができるので、化学療法におけ る音伝達の有用性は重要である。 超音波エネルギーは、アテローム硬化プラク及び脈管内血餅の両者に起因する 脈管内の障害物の除去用に考慮されている。超音波エネルギーは、機械的な作用 あるいは空洞化の結果として、プラクの細分化及び血栓症に有用であるとみなさ れている。液体に負荷される高エネルギーの超音波は、気体で満たされた微細泡 、すなわち「空洞」を生成し、同時に、血栓の細分化あるいは溶解を誘導する局 部的な激しい水の衝撃による該空洞の迅速な膨張及び破壊を伴う。 同時係属中の1990年12月10日付けにて出願された出願番号第07/6 25,919号に記載されているように、可撓性カテーテルのチップに載置され ており且つ小径の動脈に展開されている小型の超音波離解ツールが、動脈内のア テローム硬化プラク及び/又は血餅の除去に有用である。該記載は、すべての図 面及び詳細な説明を含み、特定の参照例により、本願に参照として組み込まれて いる。 経管冠動脈形成術は幅広い受容能を得ているが、連続的な冠動脈形成術の後、 急性再閉塞が約5%の患者に生じる。後期の再狭窄(一般に3カ月未満)は、ア テローム硬化症のこの治療法の長期的な効果を制限する主な臨床上の問題であり 、約25%〜50%の患者に生じている。 再狭窄の病因はまだ完全には明らかにされていないけれども、最近冠動脈形成 術を受けいている患者からの剖検用検体及び再狭窄の患者からのじゅく状サンプ ル(ATHERECTOMY SAMPLE)の毛細血管顕微鏡観察によれば、冠動脈形成術後の急性 閉塞を誘導する異常生理学プロセスは、主として支配的な血栓機構あるいは内膜 弁での主なプラク解体のいずれかに関連するものであり且つ血栓症に重ね合わさ れるものであること、また、異常生理学事象は、脈管損傷、血小板沈着及び血栓 症、血栓の器質化及び合体並びに連続的な平滑筋細胞増殖及び結合組織合成を含 む慢性の再狭窄を誘導することが、実証されている。 冠動脈形成術及び最終的な平滑筋細胞増殖の部位における過度の血小板沈着は 、再閉塞プロセスの主要部に現れるので、血栓及び平滑筋細胞に向けられた薬剤 成分の使用が考慮されている。ヘパリン、あるいはサイクロスポリン、魚油及び オメガ−3脂肪酸等の免疫抑制薬、カルシウムチャンネルブロッカー、コルチコ ステロイド、カプトプリル(captopril)及び他の阻害因子を含む平滑筋細胞増殖 を阻害するための多くの薬剤成分が報告されている。 本発明の超音波装置は、強調された音伝達及び再狭窄阻害のための治療を付随 する脈管内障害物の溶解に特に有用である。発明の概要 本発明によれば、超音波装置は一般に、超音波を脈管内の壁及び流体にカップ リングさせるための放射手段、超音波の発生のために該放射手段に連結されてい る手段、及び重要なことであるが、該放射手段に最も近い脈管内流体の空洞化を 促進するための個別の手段を含む。この空洞化は音伝達の増強に重要である。 特に、該放射手段は、脈管内に挿入するために適当な大きさとすることもでき 、 また空洞化を促進するための手段は、該放射手段に最も近い脈管内流体内にシー ド流体を導入するための内腔手段を含む。 該シード流体は、溶液1lに対し約10g/wtの含有率で二酸化炭素を含む食 塩水溶液であってもよい。加えて、該シード流体は、例えばヘパリン等の再狭窄 阻害活性を有する別の成分を含むこともできる。本発明の装置は、脈管内壁への 再狭窄阻害薬剤のデリバリを増進するものである。 さらに、大気圧を越える圧力にて食塩水溶液を貯蔵するための手段を設けるこ ともできる。また、外部コンテナから前記内腔手段内に加圧された水溶液を転送 するための手段を提供してもよい。 前記内腔手段内への前記シード流体の流れを制御するためのバルブが、血餅溶 解の割合を制御するための手段として設けられてもよい。 したがって、該装置は、前記放射手段及び圧電性結晶手段の間に相互連結され ている増幅手段を含むこともでき、該増幅手段によって該圧電性結晶手段から該 放射手段への超音波周波数の機械的振動を伝達し且つ増幅する。 特に、該増幅手段は、異なる横断面積の2つの領域を有するシリンダ手段を備 えていてもよい。ここで、大きな断面積の領域は前記圧電性結晶に取り付けられ ており、小さな断面積の領域は前記放射手段に取り付けられている。 加えて、組み合わせた場合の本発明は、超音波外科用装置を提供する。該超音 波外科用装置は、カテーテルを含む。該カテーテルは、カテーテルを貫通する少 なくとも1つの内腔を有し、カテーテルの末端にてカテーテル内腔内に配置され ている超音波トランスデューサと一緒に脈管内に位置付けるために適する。該超 音波トランスデューサは、前述の超音波を凝固物内にカップリングさせるための 放射手段、超音波を発生するための圧電性結晶手段、及び該放射手段に最も近い 脈管内流体の空洞化を促進するための手段を含んでいてもよい。 加えて、前記カテーテルの先端の外部に電源が設けられていてもよく、カテー テル内腔を通して超音波トランスデューサに電気的に連結されて、圧電性結晶に 超音波発生を引き起こすこともできる。 凝固物溶解のさらなる特定の増強は、超音波トランスデューサとの組み合わせ における活性成分の使用により得ることもできる。 本発明による脈管内凝固物を溶解する方法は、一般に、脈管内障害物の近くに 超音波を導入する工程及び該脈管内障害物に最も近い脈管内流体の空洞化を促進 する工程を含む。こうして該空洞化により導入された機械的な破壊力は、血餅等 の障害物の解体を増進するために効果的に用いられる。 特に、超音波を導入する工程は、凝固物の近くに超音波トランスデューサを位 置付けることにより、一端に超音波トランスデューサを有するカテーテルを管内 に挿入する工程を含むこともできる。空洞化を促進する工程は、凝固物に最も近 い脈管内流体内へのシード流体の導入を含むこともできる。該シード流体は、二 酸化炭素を含有する食塩水溶液を含み、脈管内流体内への導入以前には、約1気 圧を越える圧力で維持されていることが好ましい。 加えて、前記活性成分は、超音波トランスデューサ及び/又は空洞化を促進す る手段の組み合わせにおいて有用とされ、動脈壁に損傷を与えることなく凝固物 溶解を促進するであろう。 さらに、成分の凝固物溶解活性を増進するため及び/又は再狭窄を阻止するた めの組み合わせとしてもよい。かような成分のコスト及び考えられる副作用に鑑 みると、脈管内障害物の治療において、この組み合わせは非常に重要な利点であ る。図面の簡単な説明 本発明のより良い理解は、添付図面を参照しながら、以下の詳細な説明を考慮 することによりなされるであろう。 図1は、本発明による血餅離解用の超音波外科用装置の図であり、一般にカテ ーテル、カテーテル内腔内に配設されている超音波トランスデューサ、該カテー テルの先端部の外部に配設されており且つ該カテーテル内腔を通して超音波トラ ンスデューサに電気的に連結されている電源、及び脈管内流体内における空洞化 を促進するための加圧されたシード溶液の供給源を示す。 図2は、本発明による超音波装置の拡大横断面図である。 図3及び図4は、血餅溶解における本発明の装置の使用状態の説明図である。 図5は、本発明の別の実施例の説明図である。詳細な説明 さて、図1を参照すれば、一般に、カテーテル12、該カテーテル12の先端 16に配設されている超音波トランスデューサ14、及び該カテーテル12の末 端20の外部に配設されており超音波トランスデューサ14に電気的に連結され ている電源18を含む超音波外科用装置10が示されている。該電源18は、詳 細は後述するが、圧電性結晶24(図2参照)に、超音波を発生させるためのも のである。前記カテーテル12及び電源18は、凝固物離解に適する50kHz 〜1.3MHzの手術周波数期待値を有する超音波トランスデューサ14ととも に用いるために適する慣用の設計のいずれでもよい。 詳細は後述するが、カテーテル12及びトランスデューサ14と流体連通状態 の貯蔵容器26もまた示されている。 例えば外科用ハンドピースに用いられている低出力超音波共振器(すなわち、 負荷状態での共振で20ワット出力消費量)は、大気中における(すなわち無負 荷)高い振動の達成能力を維持するために、すべての部品が非常に厳しい許容差 で製造されなければならないということは、当該技術分野では公知である。さら に、チップに不意のマスすなわちスプリング力を加えることにより、振幅共鳴及 び出力運搬能力が顕著に減することもまた公知である。しかしながら、本発明に 従って構築された共振器、すなわち端部全体がアクティブな圧電材料からなり且 つセラミックス本体内に不活性ノード(node)を有する圧電性結晶24は、機能す るために厳密な許容差を有する金属ピースを必要としない。さらに、放射体(発 振子)に与えられるマス、スプリング、流体あるいは点接触型負荷は、一般には 振幅共鳴の損失を生じないが、代わりに結晶を駆動するために用いられているA C(交流)電源からの出力の引き出しを増加させる。 さて、図2を参照すれば、カテーテル12の先端16に配設されている本発明 のトランスデューサ14の拡大図が示されている。 放射体(発振子)44は、凝固物内に超音波をカップリングさせるための手段 (図3及び図4参照)を提供し、結晶本体部分46及び弓状の放射表面48を有 する。放射表面48は概して半球状に描かれているが、多数のずん胴(blunt)形 状を音響エネルギーの効果的な放射体として利用してもよい。 詳細は後述するが、この構造は、部分的に、従来の放射体(発振子)よりも前 方向に超音波エネルギーのより効果的な放射を与える。増幅器58は、圧電性結 晶24から放射体(発振子)44に超音波周波数の機械的な振動を伝達し且つ増 幅するために、圧電性結晶24及び放射体(発振子)44の間に相互連結されて もよい。 放射体(発振子)44及び増幅器58は、チタン等の材料の単ピースから作ら れてもよい。チタンは、その軽量性及び縦方向への振動可能性ゆえに好ましい材 料である。さらに、チタンは、音波に対して比較的損失が少ないことが知られて いる。加えて、チタンは化学的不活性であり、その硬度はキャビテーションエロ ージョンに耐性を有する。これらの特性により、チタンは放射体(発振子)44 用の材料として好ましい。 典型的には四角形横断面である圧電性結晶24を受け入れるための開口60は 、増幅器58の背面62に形成されてもよい。 放射体(発振子)44の本体部分46及び増幅器58の連結部70から外方向 に延びるのは、L字部分74を有する円形フランジである。該円形フランジは、 本体部分46及び放射表面48をカテーテル内腔76から外方向に延ばして、カ テーテル先端16にてカテーテル内腔76内にトランスデューサ14を中心に置 くための手段を提供する。 加えて、圧電性結晶24をカテーテル内腔76内に支持し且つ中心に置くため の柔順な支持体78を圧電性結晶24に近接して且つ該圧電性結晶を取り囲むよ うに設けてもよい。該支持体78は、カテーテルの内壁80に接着する適当な材 料から形成されていてもよいし、あるいはカテーテル壁82は、カテーテル内腔 76内にて同軸関係に中心に置かれた圧電性結晶24を支持する目的を達成する ためにバーン(berm)78を備えるように形成されていてもよい。 電極88及び90は、対向する両側92及び94に配設されて、電線100に より、図1に示すような電源18に相互連結されていてもよい。電極88及び9 0並びに電源18は、超音波の機械的な発生を生じさせるために、結晶表面92 及び94の間に電圧を負荷するために適当な慣用の設計とすることができる。該 超音波は、圧電性結晶24の長手軸104に沿って伝搬される。 圧電性結晶24は、ジルコン酸チタン酸鉛(PZT)等の圧電性を有する当該 技術分野で公知の適当な材料とすることができる。血餅の破壊及び融解のための 空洞化を引き起こすために十分な圧電性結晶24からの出力を持続するために、 圧電性結晶24の横断面は、約1mm〜6mmの対角線を有する四角形であり、約5 0kHz〜1.3MHzの範囲で作動し、圧電性結晶24の長さlは約1.25mm〜1 2.5mmであることが好ましい。 放射体(発振子)44及び増幅器48の大きさは経験的に決定されるけれども 、一般には、増幅器44の長さは圧電性結晶24よりも大きく、増幅器44の直 径は圧電性結晶24の横断面の大きさに匹敵する。放射体(発振子)44の直径 は、圧電性結晶24の対角線の大きさとほぼ等しくすることができる。 本発明によるトランスデューサー14の構造は、図3及び図4に示すように長 手軸104に沿う音波110の前方への放射を促進する。 再び図2を参照すれば、内側内腔76を取り囲むカテーテル12内の外側内腔 120は、詳細は後述するが、凝固物126に最も近い脈管内流体122におけ る空洞化を促進し且つ凝固物溶解活性を有する成分を導入する手段を提供する。 空洞化の概念は、脈管内流体122内での泡128により説明されており、凝固 物126の縮小は図4に表現されている。 内腔120は、カテーテル12の外側で放射体(発振子)44を取り囲むカウ リング130内で終止する。 1気圧よりも大きい圧力でのシード液体は、貯蔵容器26より管134を通し て与えられる。バルブ136は、該シード流体の容積調節により、凝固物溶解の 割合を制御する手段を与える。 液体培地内での音波の圧力−真空サイクル(pressure-vacuum cycle)の真空部 分の大きさが、流体内の溶解ガスが小さな観察可能な泡128の形態で溶液から 現出するほど十分に高くなったときに、空洞化が生じる。典型的には、泡形成( 及び/又は引き続く圧力サイクル中の二次的な崩壊)は、特徴的なランダムノイ ズ音響信号を有する。さらに、凝固物溶解におけるトランスデューサー14の効 力を強める特性は、泡側にて、かなり激しい機械的なものである。 バルブ136は、小さなしかし定常的である空洞化シード液体の脈管内流体1 22への流れの通過を可能とするために実用的である。 シード液体は、流体1l当たり10g/wtを越えない濃度のCO2(二酸化炭素 )で飽和されている食塩水溶液である。該シード液体は、カテーテル内腔を通し て離解/溶解側まで運搬されて使用されるまで、大気に対してシールされている 容器26内に保存されている。該液体が容器を出る際には、液体の圧力は大気圧 にまで降下し、CO2は小さなガス泡(シード泡)の形態にて溶液から現出する 。貯蔵溶液内でのCO2の濃度は、内腔を通しての移送後、シード泡128の大 きさが非常に小さい(25ミクロン未満)のままであるように、調節されなけれ ばならない。 超音波トランスデューサーの音域の圧力において、小さなシード泡は、空洞化 サイトになる。該サイトにおいて、小さなシード泡は、拡大されて崩壊するよう になり、及び/又はトランスデューサの面から強制的に離される。空洞化圧力閾 値は、かなり低くされており、シードサイトの密度は、非常に高い。この両条件 は、トランスデューサーの前方の音媒体の大きな容積内で空洞化の発生に寄与す る(比較すれば、自然に発生する空洞化は、トランスデューザーの面に非常に近 接する領域に制限されるべく現れる。)。シード流体の送り速度を調節すること によって、結果的に生じる切断/溶解活性を最大の効果を得るように制御するこ とができる。典型的な送り速度は2cc/minである。 シード流体流れゼロでの上述のトランスデューサー14の実験的な使用は、ホ ルムアルデヒドに漬けられている全体として閉塞した動脈の浸水した横断面サン プルに対して60グラムの力でトランスデューサーが保持され、また圧電性結晶 24が100kHzの十分な電圧で駆動されて、放射体(発振子)44にて6.2 マイクロ(ピーク)の振動的な増幅を発生する場合に、凝固物内での放射体(発 振子)44の定常的な発生が観察されるとして確立されている。結果的に生じる 空洞は、放射体(発振子)44の平滑な壁で囲まれた陰影であった。 血餅の溶解に関して、容積にしてほぼ1cm3のサンプルが、大きな血餅マスか ら除去されて、ほぼ直径1インチで深さ1/4インチの透明なプラスチックトレ ー内にて浸水された。放射体(発振子)44は、血餅の中心で約1/8インチの 深さに常時位置付けられ、上述のように賦活された。放射体(発振子)44の1 /4インチ半径内の血餅部分は、2〜3秒で溶解した。 圧電性結晶24の連続駆動により、激しい流体移動が発生し、1分以内に、血 餅は数ピースに分離された。この際、各ピースはトレーの周りの渦電流内に推進 され、追加の1分以内に完全な溶解を生じるようにトランスデューサーの照準に 合わされる。約2〜3分のトータル経過時間後、トレー内の流体の様相は、血液 と見分けがつかなくなった。この実験において、血餅溶解に対するピーク振幅は 、100kHzにて約5マイクロであり、該電圧要求は血餅離解用としては少ない ものであった。 これらの結果は、シード液体流れで強調される。加えて、ある大きさ(25〜 50ミクロン)の泡128は、トランスデューサーの音域内に連行され、非常に 早い速度(測定してはいないが、目視できるよりも早く、おそらく10〜15m/ sec)で、脈管内流体122を通して放射される。超音波推進された泡は、赤血 球細胞を分離するために経路に沿って十分なせん断力を生じさせることが要求さ れる。 さらに、トランスデューサー14は、空洞化増強を伴わない脈管内流体122 トランスデューサーの場合であれば、作用チップと厳密に直接接触によるよりも むしろ作用チップからある距離離れて、溶解活性を現出するであろうことが予想 される。 さらに、本発明は、凝固物溶解活性を有する公知の成分との共同作用を現出す ることが見出されている。つまり、凝固物溶解活性を有する成分を伴う超音波エ ネルギーの使用は、該成分のみの使用に比べて、溶解率を2オーダーほど増加さ せる。これは、以下の実施例において示される。実施例 2つの凝固物サンプルが以下のように準備された。 ・凝固物サンプルから直径3mmでコアを抜き取った。 ・室温で、タップ(tap)水にて洗浄した。 ・計量し、内径5mmの1mlバイアルの底部に定置した。 ・ストレプトキナーゼ溶液1ml(強度:2500ユニット/ml、標準塩希釈液 )でカバーした。 サンプル液浸に続き速やかに、トランスデューサーOG−2(横断面3mm×3 mm、120kHz作動周波数)を凝固物の1つと接触するように移動させた。次い で、50%デューティサイクルでの75vピーク駆動レベルで、90秒間、トラ ンスデューサーを作動させた。 超音波暴露後の処理された溶液の温度は、40℃であった。 結果は以下のとおりである。サンプル 初期質量 最終質量 様 相 対照 .142gm .109gm コアサンプルは無傷 超音波+ストレプトキナーゼ.120gm .022gm 3つの小さなピース 上記実施例は、超音波エネルギー及び凝固物溶解活性を有する成分の組み合わ せにより与えられた実際の凝固物溶解における顕著な効果を示す。この共同作用 は、凝固物溶解に効果を与えるために必要な成分量を顕著に減少させる。超音波 エネルギーとの組み合わせにて使用した場合に、凝固物溶解に効果を与えるため に必要な投与量が低いので、該成分のいかなる副作用あるいは望ましくない活性 をも結果的に減少させることは、容易に認められる。 さらに、本発明による装置10により作られた空洞化は、音伝達の強調に有用 であり、したがって、いかなる公知の薬剤すなわち活性成分との組み合わせ、及 び音伝達によるコンディション治療において有用である。かような薬剤としては 、下記の薬剤を挙げることができるが、これらに限定されるものではない。 デキサメタゾン 塩化ナトリウム アラビノシルシトシン 塩化カルシウム BCNU(カルムスチン) ヒドロコルチゾン シクロホスファイドの活性 テトラサイクリン 代謝産物 ストレプトマイシン ナイトロジェンマスタード フルオロラファー(fluorafur) メルファラン フィゾスチグミン マンニトール ペニシリン 亜塩酸及びタンニン酸 チオジン(thiodine) 尿素及びジメチルスルホキシド パパイン リグノカイン/リドカイン インターフェロン リグノカイン及びデキサメタゾン ペニシリン ベンジダミン ストレプトマイシン フルオシノロンアセトニド テトラサイクリン イブプロフェン シアミン及び 安息香酸 アスコルビン酸 塩化カリウム 同様の効果が、再狭窄を減少させる活性を有する薬剤の使用により期待される 。つまり、再狭窄を減少する薬剤の活性は、管壁内へのデリバリの増強により、 超音波エネルギーで増加される。 ヘパリンの抗血栓症効果及び平滑筋細胞増殖阻害効果ゆえに、急性閉塞及び慢 性再狭窄を防止するヘパリンの使用は、魅力的なものである。ヘパリン成長阻害 に対する多くの機構が記載されている。今では否定的にされているけれども、最 も初期の機構は、ヘパリンが繊維芽細胞成長因子及び血小板誘導成長因子等のカ チオン成長因子を「除去する」ということを提案したものである。平滑筋細胞が レセプタ介在エンドサイトーシス(receptor-mediated endocytosis)と一致する ヘパリンと結合し且つ内在化する、といことが見出されている。 残念ながら、全身系抗凝固薬ヘパリン化のために用いられる投与量は、出血、 電解質シフト、及び急性硬化の際の血小板減少によく効き、長期間投与によりoo tcoporosis及び脱毛症(alopecia)を伴う。これらの不都合は、ヘパリンを運搬す る超音波を利用し、慣用の投与量よりも少ない投与量ですむ本発明の装置及び方 法により解決される。 さて図5に戻れば、上述の凝固物溶解活性を有する成分との組み合わせにおい て凝固物溶解に適当な本発明の別の実施例150が示されている。 この実施例150は、一般に、エラストマ材料156によりカテーテル154 に取り付けられている圧電性結晶152を含む。重要なことは、該エラストマ材 料156は、該結晶152の中点160でのみ該結晶152に付着しており、当 接あるいは接着せずに結晶152の後端部164を取り囲むことであり、エラス トマ材料156及び該結晶152の間にエアギャップ170を残してもよい。 この形状において、該結晶152の後端部164にエラストマ材料は負荷され ておらず、凝固物(図5には図示せず)の溶解のために十分な超音波が管(図5 には図示せず)内に導入されてもよい。 上述したように、圧電性結晶152は、図1に示す電源18に相互連結されて いる1セットの電線174により、賦活されてもよい。補助内腔150がカテー テル154内に設けられ、管内で結晶152に最も近く、凝固物溶解活性を有す る成分を導入する手段を提供する。結晶152は、上述したように、凝固物溶解 活性を有する成分との組み合わせにおいて、管内での超音波の脈管内発生のため の手段を提供し、また脈管内凝固物溶解のための組み合わせ及び成分の凝固物溶 解活性を強調するための装置を提供する。 本発明による超音波外科用装置の特定例及び脈管内障害物を溶解し且つ再狭窄 を阻止する方法について記述されているけれども、本発明が有利であるとして用 いられる態様を説明する目的のためであって、本発明はこれらに限定されるもの ではない。したがって、当業者によってなされるかもしれないすべての改変、変 更、あるいは同等の装置は、添付された請求の範囲に規定されている発明の範囲 内のものとして考慮されるべきである。
【手続補正書】特許法第184条の8 【提出日】1994年4月11日 【補正内容】 請求の範囲 1.以下を備える凝固物溶解用超音波装置: 凝固物を含有する脈管内流体内へ、超音波をカップリングさせるための放射手 段であって、脈管内挿入に適当な大きなとされている放射手段; 該放射手段に連結されている、超音波を発生するための超音波発生手段; 該放射手段に最も近い脈管内流体の空洞化を促進するための個別の空洞化促進 手段。 2.前記空洞化促進手段が、シード流体を前記放射手段に最も近い脈管内流体に 導入するための内腔手段を備えることを特徴とする請求項1の装置。 3.さらに、シード流体を備え、前記空洞化を引き起こす手段が、シード流体を 前記放射手段に最も近い脈管内流体に導入するための内腔手段を備えることを特 徴とする請求項1の装置。 4.前記シード流体が、二酸化炭素を含有する食塩水溶液を備えることを特徴と する請求項3の装置。 5.前記食塩水溶液中の二酸化炭素含有量が、溶液1lあたりほぼ10g/wtであ ることを特徴とする請求項4の装置。 6.さらに、前記食塩水溶液を大気圧を越える圧力にて貯蔵するための貯蔵手段 と、加圧された食塩水溶液を前記内腔手段内に移送するための移送手段を備える ことを特徴とする請求項4の装置。 7.さらに、前記放射手段から独立している、凝固物溶解を制御するための凝固 物溶解制御手段を備えることを特徴とする請求項6の装置。 8.前記凝固物溶解割合制御手段が、前記内腔手段内への前記シード流体の流れ を制御するバルブ手段を備えることを特徴とする請求項7の装置。 9.前記凝固物溶解割合制御手段が、凝固物溶解活性を有する成分を放射体に最 も近い脈管内に導入するための手段を備えることを特徴とする請求項7の装置。 10.以下を備える凝固物溶解超音波外科用装置: 貫通する少なくとも1つの内腔を有し、脈管内の位置付けのためのカテーテル ; 該カテーテルの先端にて該カテーテル内腔に配設されている超音波トランスデ ューサーであって、以下を備える超音波トランスデューサー: 凝固物内に超音波を結合するための放射手段; 該放射手段に連結されている、超音波を発生するための圧電性結晶手段; 該放射手段に最も近い脈管内流体の空洞化を促進するための空洞化促進手段; 及び 該カテーテルの末端の外側に配設されて且つ該カテーテル内腔を通して該超音 波トランスデューサーに電気的に連結されており、該圧電性結晶に超音波を発生 させる電源手段。 11.前記空洞化促進手段が、シード流体を前記放射手段に最も近い脈管内流体 内に導入するための内腔手段を備えることを特徴とする請求項10の装置。 12.さらに、シード流体を備え、前記空洞化促進手段が、該シード流体を前記 放射手段に最も近い脈管内流体内に導入するための内腔手段を備えることを特徴 とする請求項10の装置。 13.前記シード流体が、二酸化炭素を含有する食塩水溶液を備えることを特徴 とする請求項12の装置。 14.前記食塩水溶液中の二酸化炭素含有量が、溶液1l当たりほぼ10g/wtで あることを特徴とする請求項13の装置。 15.さらに、前記食塩水溶液を大気圧を越える圧力にて貯蔵するための貯蔵手 段と、加圧された水溶液を前記内腔手段内に移送するための移送手段とを備える ことを特徴とする請求項14の装置。 16.さらに、前記放射手段から独立している、凝固物溶解割合を制御するため の凝固物溶解割合制御手段を備えることを特徴とする請求項15の装置。 17.前記凝固物溶解割合制御手段が、前記内腔手段への前記シード流体の流れ を制御するためのバルブ手段を備えることを特徴とする請求項16の装置。 18.前記凝固物溶解割合制御手段が、前記放射体に最も近い脈管内流体内へ、 凝固物溶解活性を有する成分を導入するための導入手段を備えることを特徴とす る請求項16の装置。 19.以下の工程を備える脈管内凝固物溶解方法: 脈管内凝固物の最も近くに、超音波を導入する工程であって、一方の端部に超 音波トランスデューサーを有するカテーテルを管内に挿入する工程と、脈管内凝 固物の最も近くに超音波トランスデューサーを位置付ける工程と、を備える超音 波を導入する工程;及び 脈管内凝固物の最も近くの脈管内流体の空洞化を促進するための手段を提供す る工程。 20.前記空洞化を促進するための手段を提供する工程が、凝固物に最も近い脈 管内流体内にシード流体を導入する工程を備えることを特徴とする請求項19の 方法。 21.前記空洞化を促進するための手段を提供する工程が、凝固物の最も近くに 、脈管内流体内に、二酸化炭素を含有する食塩水溶液を導入する工程を備えるこ とを特徴とする請求項19の方法。 22.前記空洞化を促進するための手段を提供する工程が、凝固物の最も近くの 脈管内流体内に、約1気圧を越える気圧にて食塩水溶液を導入する工程を備える ことを特徴とする請求項19の方法。 23.以下を備える脈管内障害物溶解用超音波装置: 脈管内障害物に最も近い脈管内流体内へ超音波をカップリングさせるための放 射手段; 該放射手段に連結されている超音波発生手段であって、該放射手段及び該超音 波発生手段の両者が脈管内挿入に適当な大きさとされている超音波手段;及び 該放射手段に最も近い脈管内流体の空洞化を促進するため及び生理学的活性成 分を脈管内流体内に導入するための個別の手段。 24.前記空洞化促進及び生理学的活性成分導入手段が、前記放射手段に最も近 い脈管内流体内へシード流体を導入するための内腔手段を備えることを特徴とす る請求項23の装置。 25.さらに、シード流体を備え、前記空洞化促進及び生理学的活性成分導入手 段が、前記放射手段に最も近い脈管内流体内へシード流体を導入するための内腔 手段を備えることを特徴とする請求項23の装置。 26.前記シード流体が、二酸化炭素を含有する食塩水溶液と、生理学的活性成 分とを備えることを特徴とする請求項25の装置。 27.前記生理学的活性成分が、ヘパリンを備えることを特徴とする請求項25 の装置。 28.前記食塩水溶液中の二酸化炭素含有量が、溶液1l当たりほぼ10g/wtで あることを特徴とする請求項27の装置。 29.前記生理学的活性成分が、再狭窄を阻害するための活性を有する成分を備 えることを特徴とする請求項23の装置。 30.前記生理学的活性成分が、凝固物溶解活性を有する成分及び再狭窄を阻害 するための活性を有する成分を備えることを特徴とする請求項23の装置。 31.前記凝固物溶解活性を有する成分がストレプトキナーゼを備え、且つ前記 再狭窄を阻害するための活性を有する成分がヘパリンを備えることを特徴とする 請求項30の装置。 32.以下の工程を備える、脈管内壁及び流体内に超音波をカップリングさせる 方法: 脈管内壁及び流体の最も近くに、超音波を導入する工程であって、一方の端部 に超音波トランスデューサーを有するカテーテルを管内に挿入する工程と、脈管 内壁の最も近くに超音波トランスデューサーを位置付ける工程と、を備える超音 波を導入する工程; 脈管内壁に最も近い脈管内流体の空洞化を促進するための手段を提供する工程 ;及び 脈管内壁の最も近くに、生理学的活性を有する成分を脈管内流体に導入する工 程。 33.以下の工程を備える、脈管内障害物を溶解し再狭窄を阻害する方法: 脈管内障害物の最も近くに、超音波を導入する工程であって、一方の端部に超 音波トランスデューサーを有するカテーテルを管内に挿入する工程と、該障害物 の最も近くに超音波トランスデューサーを位置付ける工程とを備える超音波を導 入する工程; 脈管内障害物の最も近くの脈管内流体の空洞化を促進するための手段を提供す る工程; 及び狭窄阻害活性を有する成分を脈管内障害物の最も近くに導入する工程。 34.前記空洞化を促進するための手段を提供する工程が、障害物に最も近い脈 管内流体内にシード流体を導入する工程を備えることを特徴とする請求項33の 方法。 35.前記空洞化を促進するための手段を提供する工程が、障害物の最も近くに 、脈管内流体内に、二酸化炭素を含有する食塩水溶液を導入する工程を備えるこ とを特徴とする請求項33の方法。 36.前記空洞化を促進するための手段を提供する工程が、障害物の最も近くに 、脈管内流体内に、約1気圧を越える圧力にて、食塩水溶液を導入する工程を備 えることを特徴とする請求項33の方法。 37.前記成分が、ヘパリンを備えることを特徴とする請求項33の装置。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AT,AU,BB,BG,BR,BY, CA,CH,CZ,DE,DK,ES,FI,GB,H U,JP,KP,KR,KZ,LK,LU,MG,MN ,MW,NL,NO,NZ,PL,PT,RO,RU, SD,SE,SK,UA,VN

Claims (1)

  1. 【特許請求の範囲】 1.以下を備える凝固物溶解用超音波装置: 凝固物を含有する脈管内流体内へ、超音波をカップリングさせるための放射手 段; 該放射手段に連結されている、超音波を発生するための超音波発生手段; 該放射手段に最も近い脈管内流体の空洞化を促進するための個別の空洞化促進 手段。 2.前記放射手段及び超音波発生手段が、脈管内挿入のための大きさとされてい ることを特徴とする請求項1の装置。 3.前記空洞化促進手段が、シード流体を前記放射手段に最も近い脈管内流体に 導入するための内腔手段を備えることを特徴とする請求項1の装置。 4.さらに、シード流体を備え、前記空洞化を引き起こす手段が、シード流体を 前記放射手段に最も近い脈管内流体に導入するための内腔手段を備えることを特 徴とする請求項1の装置。 5.前記シード流体が、二酸化炭素を含有する食塩水溶液を備えることを特徴と する請求項4の装置。 6.前記食塩水溶液中の二酸化炭素含有量が、溶液1lあたりほぼ10g/wtであ ることを特徴とする請求項5の装置。 7.さらに、前記食塩水溶液を大気圧を越える圧力にて貯蔵するための貯蔵手段 と、加圧された食塩水溶液を前記内腔手段内に移送するための移送手段を備える ことを特徴とする請求項5の装置。 8.さらに、前記放射手段から独立している、凝固物溶解を制御するための凝固 物溶解制御手段を備えることを特徴とする請求項7の装置。 9.前記凝固物溶解割合制御手段が、前記内腔手段内への前記シード流体の流れ を制御するバルブ手段を備えることを特徴とする請求項8の装置。 10.前記凝固物溶解割合制御手段が、凝固物溶解活性を有する成分を放射体に 最も近い脈管内に導入するための手段を備えることを特徴とする請求項8の装置 。 11.以下を備える凝固物溶解超音波外科用装置: 貫通する少なくとも1つの内腔を有し、脈管内の位置付けのためのカテーテル ; 該カテーテルの先端にて該カテーテル内腔に配設されている超音波トランスデ ューサーであって、以下を備える超音波トランスデューサー: 凝固物内に超音波を結合するための放射手段; 該放射手段に連結されている、超音波を発生するための圧電性結晶手段; 該放射手段に最も近い脈管内流体の空洞化を促進するための空洞化促進手段; 及び 該カテーテルの末端の外側に配設されて且つ該カテーテル内腔を通して該超音 波トランスデューサーに電気的に連結されており、該圧電性結晶に超音波を発生 させる電源手段。 12.前記空洞化促進手段が、シード流体を前記放射手段に最も近い脈管内流体 内に導入するための内腔手段を備えることを特徴とする請求項11の装置。 13.さらに、シード流体を備え、前記空洞化促進手段が、該シード流体を前記 放射手段に最も近い脈管内流体内に導入するための内腔手段を備えることを特徴 とする請求項11の装置。 14.前記シード流体が、二酸化炭素を含有する食塩水溶液を備えることを特徴 とする請求項13の装置。 15.前記食塩水溶液中の二酸化炭素含有量が、溶液1l当たりほぼ10g/wtで あることを特徴とする請求項14の装置。 16.さらに、前記食塩水溶液を大気圧を越える圧力にて貯蔵するための貯蔵手 段と、加圧された水溶液を前記内腔手段内に移送するための移送手段とを備える ことを特徴とする請求項15の装置。 17.さらに、前記放射手段から独立している、凝固物溶解割合を制御するため の凝固物溶解割合制御手段を備えることを特徴とする請求項16の装置。 18.前記凝固物溶解割合制御手段が、前記内腔手段への前記シード流体の流れ を制御するためのバルブ手段を備えることを特徴とする請求項17の装置。 19.前記凝固物溶解割合制御手段が、前記放射体に最も近い脈管内流体内へ、 凝固物溶解活性を有する成分を導入するための導入手段を備えることを特徴とす る請求項17の装置。 20.以下を備える凝固物溶解用超音波装置: 超音波の脈管内発生手段; 管内で該超音波脈管内発生手段の最も近くに、凝固物溶解活性を有する成分を 導入するための導入手段。 21.以下を備える脈管内凝固物溶解のための組み合わせ: 凝固物溶解活性を有する成分; 超音波の脈管内発生手段;及び 管内で該超音波脈管内発生手段の最も近くに、凝固物溶解活性を有する成分を 導入するための導入手段。 22.前記成分が、ストレプトキナーゼを備えることを特徴とする請求項21の 組み合わせ。 23.以下を備える、成分の凝固物溶解活性を増強するための装置: 超音波の脈管内発生手段;及び 管内で該超音波脈管内発生手段の最も近くに、該成分を導入するための導入手 段。 24.以下を備える凝固物溶解用超音波装置: 凝固物を含有する脈管内流体内に超音波をカップリングさせるための放射手段 ; 該放射手段に連結されている超音波発生手段;及び 該放射手段の最も近くに、凝固物溶解活性を有する成分を導入するための個別 の手段。 25.以下の工程を備える脈管内凝固物溶解方法: 脈管内凝固物の最も近くに、超音波を導入する工程;及び 脈管内凝固物の最も近くの脈管内流体の空洞化を促進する工程。 26.前記超音波を導入する工程が、一方の端部に超音波トランスデューサーを 有するカテーテルを管内に挿入する工程と、凝固物の最も近くに超音波トランス デューサーを位置付ける工程と、を備えることを特徴とする請求項24の方法。 27.前記空洞化を促進する工程が、凝固物に最も近い脈管内流体内にシード流 体を導入する工程を備えることを特徴とする請求項25の方法。 28.前記空洞化を促進する工程が、凝固物の最も近くに、脈管内流体内に、二 酸化炭素を含有する食塩水溶液を導入する工程を備えることを特徴とする請求項 24の方法。 29.前記空洞化を促進する工程が、凝固物の最も近くの脈管内流体内に、約1 気圧を越える気圧にて食塩水溶液を導入する工程を備えることを特徴とする請求 項25の方法。 30.以下の工程を備える脈管内凝固物溶解方法: 脈管内凝固物の最も近くに、超音波を導入する工程;及び 凝固物溶解活性を有する成分を導入する工程。 31.前記成分が、ストレプトキナーゼを備えることを特徴とする請求項30の 方法。 32.以下を備える、脈管内壁及び流体内に超音波をカップリングさせるための 超音波装置: 脈管内壁及び流体に超音波を向けるための放射手段; 該放射手段に連結されている超音波発生手段;及び 該放射手段に最も近い脈管内流体の空洞化を促進するため及び生理学的活性成 分を脈管内壁及び流体内に導入するための個別の手段。 33.前記放射手段及び超音波発生手段が、脈管内挿入に適当な大きさであるこ とを特徴とする請求項32の装置。 34.前記空洞化促進及び生理学的活性成分導入手段が、前記放射手段に最も近 い脈管内流体内へシード流体を導入するための内腔手段を備えることを特徴とす る請求項32の装置。 35.さらに、シード流体を備え、前記空洞化促進及び生理学的活性成分導入手 段が、前記放射手段に最も近い脈管内流体内へシード流体を導入するための内腔 手段を備えることを特徴とする請求項32の装置。 36.前記シード流体が、二酸化炭素を含有する食塩水溶液と、生理学的活性成 分とを備えることを特徴とする請求項35の装置。 37.以下を備える脈管内障害物溶解用超音波装置: 脈管内障害物に最も近い脈管内流体内へ超音波をカップリングさせるための放 射手段; 該放射手段に連結されている超音波発生手段;及び 該放射手段に最も近い脈管内流体の空洞化を促進するため及び生理学的活性成 分を脈管内流体内に導入するための個別の手段。 38.前記放射手段及び超音波発生手段が、脈管内挿入に適当な大きさであるこ とを特徴とする請求項37の装置。 39.前記空洞化促進及び生理学的活性成分導入手段が、前記放射手段に最も近 い脈管内流体内へシード流体を導入するための内腔手段を備えることを特徴とす る請求項37の装置。 40.さらに、シード流体を備え、前記空洞化促進及び生理学的活性成分導入手 段が、前記放射手段に最も近い脈管内流体内へシード流体を導入するための内腔 手段を備えることを特徴とする請求項37の装置。 41.前記シード流体が、二酸化炭素を含有する食塩水溶液と、生理学的活性成 分とを備えることを特徴とする請求項40の装置。 42.前記生理学的活性成分が、ヘパリンを備えることを特徴とする請求項41 の装置。 43.前記食塩水溶液中の二酸化炭素含有量が、溶液1l当たりほぼ10g/wtで あることを特徴とする請求項42の装置。 44.前記生理学的活性成分が、再狭窄を阻害するための活性を有する成分を備 えることを特徴とする請求項37の装置。 45.前記生理学的活性成分が、凝固物溶解活性を有する成分及び再狭窄を阻害 するための活性を有する成分を備えることを特徴とする請求項37の装置。 46.前記凝固物溶解活性を有する成分がストレプトキナーゼを備え、且つ前記 再狭窄を阻害するための活性を有する成分がヘパリンを備えることを特徴とする 請求項45の装置。 47.以下の工程を備える、脈管内壁及び流体内に超音波をカップリングさせる 方法: 脈管内壁及び流体の最も近くに、超音波を導入する工程; 脈管内壁に最も近い脈管内流体の空洞化を促進する工程;及び 脈管内壁の最も近くに、生理学的活性を有する成分を脈管内流体に導入する工 程。 48.前記超音波を導入する工程が、一方の端部に超音波トランスデューサーを 有するカテーテルを管内に挿入する工程と、脈管内壁の最も近くに超音波トラン スデューサーを位置付ける工程と、を備えることを特徴とする請求項47の方法 。 49.前記空洞化を促進する工程が、脈管内壁に最も近い脈管内流体内にシード 流体を導入する工程を備えることを特徴とする請求項47の方法。 50.前記空洞化を促進する工程が、脈管内壁の最も近くに、脈管内流体内に、 二酸化炭素を含有する食塩水溶液を導入する工程を備えることを特徴とする請求 項47の方法。 51.以下の工程を備える、脈管内障害物を溶解し再狭窄を阻害する方法: 脈管内障害物の最も近くに、超音波を導入する工程; 脈管内障害物の最も近くの脈管内流体の空洞化を促進する工程; 及び狭窄阻害活性を有する成分を脈管内障害物の最も近くに導入する工程。 52.前記超音波を導入する工程が、一方の端部に超音波トランスデューサーを 有するカテーテルを管内に挿入する工程と、該障害物の最も近くに超音波トラン スデューサーを位置付ける工程とを備えることを特徴とする請求項51の方法。 53.前記空洞化を促進する工程が、障害物に最も近い脈管内流体内にシード流 体を導入する工程を備えることを特徴とする請求項51の方法。 54.前記空洞化を促進する工程が、障害物の最も近くに、脈管内流体内に、二 酸化炭素を含有する食塩水溶液を導入する工程を備えることを特徴とする請求項 51の方法。 55.前記空洞化を促進する工程が、障害物の最も近くに、脈管内流体内に、約 1気圧を越える圧力にて、食塩水溶液を導入する工程を備えることを特徴とする 請求項51の方法。 56.前記成分が、ヘパリンを備えることを特徴とする請求項51の装置。
JP50821594A 1992-09-14 1993-09-13 超音波装置 Expired - Fee Related JP3561274B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US945,275 1992-09-14
US07/945,275 US5318014A (en) 1992-09-14 1992-09-14 Ultrasonic ablation/dissolution transducer
US058,222 1993-05-10
US08/058,222 US5362309A (en) 1992-09-14 1993-05-10 Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis
PCT/US1993/008591 WO1994006355A1 (en) 1992-09-14 1993-09-13 Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis

Publications (2)

Publication Number Publication Date
JPH08501238A true JPH08501238A (ja) 1996-02-13
JP3561274B2 JP3561274B2 (ja) 2004-09-02

Family

ID=26737372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50821594A Expired - Fee Related JP3561274B2 (ja) 1992-09-14 1993-09-13 超音波装置

Country Status (8)

Country Link
US (2) US5362309A (ja)
EP (1) EP0664686B1 (ja)
JP (1) JP3561274B2 (ja)
AT (1) ATE182259T1 (ja)
AU (1) AU4858093A (ja)
DE (1) DE69325715T2 (ja)
ES (1) ES2135490T3 (ja)
WO (1) WO1994006355A1 (ja)

Families Citing this family (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504881B2 (en) * 1991-03-22 2000-11-08 Katsuro Tachibana Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
US5362309A (en) * 1992-09-14 1994-11-08 Coraje, Inc. Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis
US5509896A (en) * 1994-09-09 1996-04-23 Coraje, Inc. Enhancement of thrombolysis with external ultrasound
US5836940A (en) * 1994-10-25 1998-11-17 Latis, Inc. Photoacoustic drug delivery
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US6689086B1 (en) * 1994-10-27 2004-02-10 Advanced Cardiovascular Systems, Inc. Method of using a catheter for delivery of ultrasonic energy and medicament
US5899882A (en) 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US6210356B1 (en) 1998-08-05 2001-04-03 Ekos Corporation Ultrasound assembly for use with a catheter
US6176842B1 (en) 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
DE69630285T2 (de) * 1995-03-08 2004-07-15 Ekos Corp., Bothell Ultraschalltherapievorrichtung
IL117560A0 (en) * 1995-03-30 1996-07-23 Res Dev Foundation Anti-stroke effects of calcium antagonists
WO1996034567A1 (en) * 1995-05-02 1996-11-07 Heart Rhythm Technologies, Inc. System for controlling the energy delivered to a patient for ablation
AU5739196A (en) * 1995-05-15 1996-11-29 Coraje, Inc. Enhancement of ultrasound thrombolysis
WO1997018851A1 (en) * 1995-11-24 1997-05-29 Ekos Corporation Hemostasis material and apparatus
US5725494A (en) * 1995-11-30 1998-03-10 Pharmasonics, Inc. Apparatus and methods for ultrasonically enhanced intraluminal therapy
US5735811A (en) 1995-11-30 1998-04-07 Pharmasonics, Inc. Apparatus and methods for ultrasonically enhanced fluid delivery
US5728062A (en) * 1995-11-30 1998-03-17 Pharmasonics, Inc. Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers
US5656016A (en) * 1996-03-18 1997-08-12 Abbott Laboratories Sonophoretic drug delivery system
US5971949A (en) * 1996-08-19 1999-10-26 Angiosonics Inc. Ultrasound transmission apparatus and method of using same
US5836896A (en) * 1996-08-19 1998-11-17 Angiosonics Method of inhibiting restenosis by applying ultrasonic energy
US6057367A (en) 1996-08-30 2000-05-02 Duke University Manipulating nitrosative stress to kill pathologic microbes, pathologic helminths and pathologically proliferating cells or to upregulate nitrosative stress defenses
US6024718A (en) * 1996-09-04 2000-02-15 The Regents Of The University Of California Intraluminal directed ultrasound delivery device
US5846218A (en) * 1996-09-05 1998-12-08 Pharmasonics, Inc. Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US6464660B2 (en) 1996-09-05 2002-10-15 Pharmasonics, Inc. Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US6024717A (en) * 1996-10-24 2000-02-15 Vibrx, Inc. Apparatus and method for sonically enhanced drug delivery
US6221038B1 (en) 1996-11-27 2001-04-24 Pharmasonics, Inc. Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers
US6676626B1 (en) 1998-05-01 2004-01-13 Ekos Corporation Ultrasound assembly with increased efficacy
US6582392B1 (en) 1998-05-01 2003-06-24 Ekos Corporation Ultrasound assembly for use with a catheter
US6723063B1 (en) * 1998-06-29 2004-04-20 Ekos Corporation Sheath for use with an ultrasound element
US6001069A (en) * 1997-05-01 1999-12-14 Ekos Corporation Ultrasound catheter for providing a therapeutic effect to a vessel of a body
AR012720A1 (es) 1997-05-19 2000-11-08 Angiosonics Inc Disposicion de control para una sonda acoplada a un transductor y metodo para controlar dicha sonda.
US6228046B1 (en) 1997-06-02 2001-05-08 Pharmasonics, Inc. Catheters comprising a plurality of oscillators and methods for their use
US5931805A (en) * 1997-06-02 1999-08-03 Pharmasonics, Inc. Catheters comprising bending transducers and methods for their use
JP4441000B2 (ja) * 1997-06-23 2010-03-24 克郎 立花 生体組織処理装置
EP1001708A1 (en) * 1997-08-07 2000-05-24 Cardiogenesis Corporation System and method of intra-operative myocardial revascularization using pulsed sonic energy
EP1043949A2 (en) 1997-12-31 2000-10-18 Pharmasonics, Inc. Methods and systems for the inhibition of vascular hyperplasia
CA2320300A1 (en) * 1998-02-10 1999-08-12 Angiosonics Inc. Apparatus and method for inhibiting restenosis by applying ultrasound energy together with drugs
US6312402B1 (en) 1998-09-24 2001-11-06 Ekos Corporation Ultrasound catheter for improving blood flow to the heart
US6135976A (en) * 1998-09-25 2000-10-24 Ekos Corporation Method, device and kit for performing gene therapy
AU1128600A (en) * 1998-11-20 2000-06-13 Joie P. Jones Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound
US6620123B1 (en) * 1999-12-17 2003-09-16 Sontra Medical, Inc. Method and apparatus for producing homogenous cavitation to enhance transdermal transport
AU768190B2 (en) * 1998-12-18 2003-12-04 Sontra Medical, Inc. Method and apparatus for producing homogenous cavitation to enhance transdermal transport
US6309355B1 (en) 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US20050061335A1 (en) * 1999-01-07 2005-03-24 Morris Topaz Irrigation solution for use in ultrasound energy assisted surgery
ATE262891T1 (de) * 1999-01-07 2004-04-15 Moris Topaz Biokompatible injektierbare wässerige lösung zur verwendung bei ultraschallenergieunterstützter chirurgie
IL127967A (en) * 1999-01-07 2004-05-12 Moris Topaz Flushing solution for surgery using ultrasound energy
US8506519B2 (en) 1999-02-16 2013-08-13 Flowcardia, Inc. Pre-shaped therapeutic catheter
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US6852097B1 (en) 1999-06-24 2005-02-08 Fulton, Iii Richard E. Mechanically active infusion catheter
US6361554B1 (en) 1999-06-30 2002-03-26 Pharmasonics, Inc. Methods and apparatus for the subcutaneous delivery of acoustic vibrations
US6387116B1 (en) 1999-06-30 2002-05-14 Pharmasonics, Inc. Methods and kits for the inhibition of hyperplasia in vascular fistulas and grafts
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US20050096669A1 (en) * 1999-10-05 2005-05-05 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions
US20030069525A1 (en) * 2000-03-08 2003-04-10 Pharmasonics, Inc. Methods, systems, and kits for plaque stabilization
US20040158317A1 (en) * 2000-07-18 2004-08-12 Pharmasonics, Inc. Coated stent with ultrasound therapy
US6416492B1 (en) 2000-09-28 2002-07-09 Scimed Life Systems, Inc. Radiation delivery system utilizing intravascular ultrasound
US6964647B1 (en) 2000-10-06 2005-11-15 Ellaz Babaev Nozzle for ultrasound wound treatment
US6487447B1 (en) 2000-10-17 2002-11-26 Ultra-Sonic Technologies, L.L.C. Method and apparatus for in-vivo transdermal and/or intradermal delivery of drugs by sonoporation
US6601581B1 (en) 2000-11-01 2003-08-05 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6761729B2 (en) 2000-12-22 2004-07-13 Advanced Medicalapplications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US6533803B2 (en) 2000-12-22 2003-03-18 Advanced Medical Applications, Inc. Wound treatment method and device with combination of ultrasound and laser energy
US8235919B2 (en) 2001-01-12 2012-08-07 Celleration, Inc. Ultrasonic method and device for wound treatment
US7914470B2 (en) 2001-01-12 2011-03-29 Celleration, Inc. Ultrasonic method and device for wound treatment
US6960173B2 (en) 2001-01-30 2005-11-01 Eilaz Babaev Ultrasound wound treatment method and device using standing waves
DE10108799A1 (de) * 2001-02-19 2002-09-05 Laser & Med Tech Gmbh Verfahren und Vorrichtung zur Ultraschallimpfung von biologischem Zellmaterial
US6623444B2 (en) 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US8123789B2 (en) * 2002-04-29 2012-02-28 Rohit Khanna Central nervous system cooling catheter
US20040019318A1 (en) * 2001-11-07 2004-01-29 Wilson Richard R. Ultrasound assembly for use with a catheter
ATE520362T1 (de) * 2001-12-03 2011-09-15 Ekos Corp Katheter mit mehreren ultraschall-abstrahlenden teilen
AU2002353016A1 (en) 2001-12-03 2003-06-17 Ekos Corporation Small vessel ultrasound catheter
US7141044B2 (en) * 2001-12-11 2006-11-28 Ekos Corporation Alternate site gene therapy
CA2468975A1 (en) 2001-12-14 2003-06-26 Ekos Corporation Blood flow reestablishment determination
US6958040B2 (en) * 2001-12-28 2005-10-25 Ekos Corporation Multi-resonant ultrasonic catheter
US20030144680A1 (en) * 2002-01-22 2003-07-31 Sontra Medical, Inc. Portable ultrasonic scalpel/cautery device
US20040068189A1 (en) * 2002-02-28 2004-04-08 Wilson Richard R. Ultrasound catheter with embedded conductors
DE10211886B4 (de) * 2002-03-18 2004-07-15 Dornier Medtech Gmbh Verfahren und Einrichtung zum Erzeugen bipolarer akustischer Impulse
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
DE10223196B4 (de) * 2002-05-24 2004-05-13 Dornier Medtech Systems Gmbh Verfahren und Einrichtung zum Transferieren von Molekülen in Zellen
JP2004000336A (ja) * 2002-05-31 2004-01-08 Olympus Corp 超音波処置装置
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US8133236B2 (en) 2006-11-07 2012-03-13 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7604608B2 (en) 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US7220233B2 (en) 2003-04-08 2007-05-22 Flowcardia, Inc. Ultrasound catheter devices and methods
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US6921371B2 (en) 2002-10-14 2005-07-26 Ekos Corporation Ultrasound radiating members for catheter
US7771372B2 (en) 2003-01-03 2010-08-10 Ekos Corporation Ultrasonic catheter with axial energy field
US8142457B2 (en) * 2003-03-26 2012-03-27 Boston Scientific Scimed, Inc. Percutaneous transluminal endarterectomy
WO2004093656A2 (en) 2003-04-22 2004-11-04 Ekos Corporation Ultrasound enhanced central venous catheter
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US20050137520A1 (en) * 2003-10-29 2005-06-23 Rule Peter R. Catheter with ultrasound-controllable porous membrane
US7201737B2 (en) * 2004-01-29 2007-04-10 Ekos Corporation Treatment of vascular occlusions using elevated temperatures
US9107590B2 (en) 2004-01-29 2015-08-18 Ekos Corporation Method and apparatus for detecting vascular conditions with a catheter
WO2005072391A2 (en) * 2004-01-29 2005-08-11 Ekos Corporation Small vessel ultrasound catheter
US7341569B2 (en) * 2004-01-30 2008-03-11 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US7540852B2 (en) 2004-08-26 2009-06-02 Flowcardia, Inc. Ultrasound catheter devices and methods
WO2006049600A1 (en) * 2004-10-28 2006-05-11 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions
US8364256B2 (en) * 2004-11-15 2013-01-29 Coraje, Inc. Method and apparatus of removal of intravascular blockages
DE602005019367D1 (de) 2004-12-15 2010-04-01 Dornier Medtech Systems Gmbh Verbesserte Zelltherapie und Gewebsregeneration mittels Stosswellen bei Patienten mit kardiovaskulären and neurologischen Krankheiten
US8221343B2 (en) 2005-01-20 2012-07-17 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US20060264809A1 (en) * 2005-04-12 2006-11-23 Hansmann Douglas R Ultrasound catheter with cavitation promoting surface
US7645290B2 (en) * 2005-05-05 2010-01-12 Lucas Paul R Multi-functional thrombectomy device
US7713218B2 (en) 2005-06-23 2010-05-11 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US7785277B2 (en) 2005-06-23 2010-08-31 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US20070265560A1 (en) 2006-04-24 2007-11-15 Ekos Corporation Ultrasound Therapy System
US20080154181A1 (en) * 2006-05-05 2008-06-26 Khanna Rohit K Central nervous system ultrasonic drain
US7431704B2 (en) * 2006-06-07 2008-10-07 Bacoustics, Llc Apparatus and method for the treatment of tissue with ultrasound energy by direct contact
US8562547B2 (en) 2006-06-07 2013-10-22 Eliaz Babaev Method for debriding wounds
US20080039727A1 (en) * 2006-08-08 2008-02-14 Eilaz Babaev Ablative Cardiac Catheter System
AU2007286660A1 (en) * 2006-08-25 2008-02-28 Eilaz Babaev Portable ultrasound device for the treatment of wounds
US8192363B2 (en) 2006-10-27 2012-06-05 Ekos Corporation Catheter with multiple ultrasound radiating members
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US7842006B2 (en) * 2006-11-17 2010-11-30 Cfd Research Corporation Thrombectomy microcatheter
US8491521B2 (en) 2007-01-04 2013-07-23 Celleration, Inc. Removable multi-channel applicator nozzle
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
PL2111261T3 (pl) 2007-01-08 2015-08-31 Ekos Corp Parametry mocy cewnika ultradźwiękowego
PL2170181T3 (pl) 2007-06-22 2014-08-29 Ekos Corp Sposób i aparat do leczenia wylewów wewnątrzczaszkowych
US8262645B2 (en) * 2007-11-21 2012-09-11 Actuated Medical, Inc. Devices for clearing blockages in in-situ artificial lumens
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
JP5636363B2 (ja) 2008-06-13 2014-12-03 ディージェイティー、 エルエルシー 衝撃波バルーンカテーテル装置
DE102008054083A1 (de) * 2008-10-31 2010-05-12 Theuer, Axel E., Prof. Dr.-Ing. habil. Medizinische Vorrichtung zur Behandlung von Tumorgewebe
US8226566B2 (en) 2009-06-12 2012-07-24 Flowcardia, Inc. Device and method for vascular re-entry
ES2503140T3 (es) 2009-07-03 2014-10-06 Ekos Corporation Parámetros de potencia para catéter ultrasónico
EP2451422B1 (en) 2009-07-08 2016-10-12 Sanuwave, Inc. Usage of extracorporeal and intracorporeal pressure shock waves in medicine
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
JP5863654B2 (ja) 2009-08-26 2016-02-16 リージェンツ オブ ザ ユニバーシティー オブ ミシガン 治療および画像処理超音波変換器用のマイクロマニピュレータ制御アーム
WO2011028609A2 (en) 2009-08-26 2011-03-10 The Regents Of The University Of Michigan Devices and methods for using controlled bubble cloud cavitation in fractionating urinary stones
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US9375223B2 (en) 2009-10-06 2016-06-28 Cardioprolific Inc. Methods and devices for endovascular therapy
US11039845B2 (en) 2009-10-06 2021-06-22 Cardioprolific Inc. Methods and devices for endovascular therapy
US20110105960A1 (en) * 2009-10-06 2011-05-05 Wallace Michael P Ultrasound-enhanced Stenosis therapy
US20110237982A1 (en) * 2009-10-06 2011-09-29 Wallace Michael P Ultrasound-enhanced stenosis therapy
US20110082396A1 (en) * 2009-10-06 2011-04-07 Wallace Michael P Ultrasound-enhanced stenosis therapy
US20110082414A1 (en) * 2009-10-06 2011-04-07 Wallace Michael P Ultrasound-enhanced stenosis therapy
US20110082534A1 (en) * 2009-10-06 2011-04-07 Wallace Michael P Ultrasound-enhanced stenosis therapy
US8740835B2 (en) 2010-02-17 2014-06-03 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
CN103228224B (zh) 2010-08-27 2015-11-25 Ekos公司 用于治疗颅内出血的方法和设备
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9603615B2 (en) 2012-01-18 2017-03-28 C.R. Bard, Inc. Vascular re-entry device
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
JP2015516233A (ja) 2012-04-30 2015-06-11 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン ラピッドプロトタイピング方法を使用した超音波トランスデューサー製造
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
JP6293145B2 (ja) 2012-08-02 2018-03-14 バード・ペリフェラル・バスキュラー・インコーポレーテッド 超音波カテーテルシステム
JP6257625B2 (ja) 2012-08-06 2018-01-10 ショックウェーブ メディカル, インコーポレイテッド 血管形成術用衝撃波カテーテルのための薄型電極
US9138249B2 (en) * 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
WO2014055906A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
SG11201506154RA (en) 2013-03-14 2015-09-29 Ekos Corp Method and apparatus for drug delivery to a target site
EP3016594B1 (en) 2013-07-03 2023-01-25 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
WO2015080901A1 (en) 2013-11-26 2015-06-04 Celleration Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
WO2016201136A1 (en) 2015-06-10 2016-12-15 Ekos Corporation Ultrasound catheter
EP4230262A3 (en) 2015-06-24 2023-11-22 The Regents Of The University Of Michigan Histotripsy therapy systems for the treatment of brain tissue
WO2017087195A1 (en) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Shock wave electrodes
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
EP3809988B1 (en) 2018-06-21 2023-06-07 Shockwave Medical, Inc. System for treating occlusions in body lumens
CN109200458A (zh) * 2018-11-13 2019-01-15 深圳市德迈科技有限公司 一种基于声孔效应的医用超声辅助给药设备及流程
CA3120586A1 (en) 2018-11-28 2020-06-04 Histosonics, Inc. Histotripsy systems and methods
US11478261B2 (en) 2019-09-24 2022-10-25 Shockwave Medical, Inc. System for treating thrombus in body lumens
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3141641A1 (de) * 1981-10-16 1983-04-28 Schering Ag, 1000 Berlin Und 4619 Bergkamen Ultraschall-kontrastmittel und dessen herstellung
WO1986005990A1 (en) * 1985-04-09 1986-10-23 Harvey Wolinsky Method for the prevention of restenosis
US4750902A (en) * 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
EP0293472B1 (en) * 1986-11-27 1994-04-13 Sumitomo Bakelite Company Limited Ultrasonic surgical apparatus
US4870953A (en) * 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US5040537A (en) * 1987-11-24 1991-08-20 Hitachi, Ltd. Method and apparatus for the measurement and medical treatment using an ultrasonic wave
DE3808783A1 (de) * 1988-03-16 1989-10-05 Dornier Medizintechnik Steinzerkleinerung durch kombinierte behandlung
FR2643252B1 (fr) * 1989-02-21 1991-06-07 Technomed Int Sa Appareil de destruction selective de cellules incluant les tissus mous et les os a l'interieur du corps d'un etre vivant par implosion de bulles de gaz
DE3930600A1 (de) * 1989-09-07 1991-04-04 Schubert Werner Dilitationssonde und aehnliche/zusaetzliche vorrichtungen
US5069664A (en) * 1990-01-25 1991-12-03 Inter Therapy, Inc. Intravascular ultrasonic angioplasty probe
US5197946A (en) * 1990-06-27 1993-03-30 Shunro Tachibana Injection instrument with ultrasonic oscillating element
US5269291A (en) * 1990-12-10 1993-12-14 Coraje, Inc. Miniature ultrasonic transducer for plaque ablation
US5362309A (en) * 1992-09-14 1994-11-08 Coraje, Inc. Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis

Also Published As

Publication number Publication date
EP0664686A4 (en) 1995-10-18
AU4858093A (en) 1994-04-12
JP3561274B2 (ja) 2004-09-02
DE69325715D1 (de) 1999-08-26
EP0664686A1 (en) 1995-08-02
DE69325715T2 (de) 2000-02-17
US5474531A (en) 1995-12-12
EP0664686B1 (en) 1999-07-21
ES2135490T3 (es) 1999-11-01
US5362309A (en) 1994-11-08
WO1994006355A1 (en) 1994-03-31
ATE182259T1 (de) 1999-08-15

Similar Documents

Publication Publication Date Title
JP3561274B2 (ja) 超音波装置
US5318014A (en) Ultrasonic ablation/dissolution transducer
US5431663A (en) Miniature ultrasonic transducer for removal of intravascular plaque and clots
US11701134B2 (en) Histotripsy for thrombolysis
US5509896A (en) Enhancement of thrombolysis with external ultrasound
US6113570A (en) Method of removing thrombosis in fistulae
US6210404B1 (en) Microjoule electrical discharge catheter for thrombolysis in stroke patients
Porter et al. Ultrasound, microbubbles, and thrombolysis
Atar et al. Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications
WO2009094554A2 (en) Histotripsy for thrombolysis
JPH11509747A (ja) 超音波血栓崩壊の増強
Francis et al. Ultrasound and thrombolysis
Atar et al. Perspectives on the role of ultrasonic devices in thrombolysis
JP2003111766A (ja) 噴流生成装置
Goel et al. Nanodroplet mediated intravascular sonothrombolysis of retracted clots
Goel et al. Nanodroplet-mediated intravascular sonothrombolysis: Cavitation study
Hennerici et al. Sonothrombolysis: experimental evidence
US20240130746A1 (en) Histotripsy for thrombolysis
US10792054B1 (en) Catheter for thromboembolic disease with mechanic waves, injection and ejection
Gaul Ultrasound thrombolysis
Shlamovitz et al. In vitro ultrasound augmented clot dissolution—what is the optimal timing of ultrasound application?
Bader et al. and Christy K. Holland
Azevedo et al. Cardiovascular Sonothrombolysis-Therapeutic Application of Ultrasound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees