JPH0849065A - Production of boron nitride coated member - Google Patents
Production of boron nitride coated memberInfo
- Publication number
- JPH0849065A JPH0849065A JP6202995A JP20299594A JPH0849065A JP H0849065 A JPH0849065 A JP H0849065A JP 6202995 A JP6202995 A JP 6202995A JP 20299594 A JP20299594 A JP 20299594A JP H0849065 A JPH0849065 A JP H0849065A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- coating
- cbn
- intermediate layer
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0647—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5826—Treatment with charged particles
- C23C14/5833—Ion beam bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/048—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工具その他各種回転機
器の軸受、スライド等の摺動部材等耐摩耗性機械部品等
に適用される立方晶窒化ホウ素もしくは立方晶窒化ホウ
素を含有する硬質窒化ホウ素被覆部材の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cubic boron nitride or hard nitriding containing cubic boron nitride, which is applied to wear-resistant mechanical parts such as bearings of various other rotating machines such as tools and sliding members such as slides. The present invention relates to a method for manufacturing a boron-coated member.
【0002】[0002]
【従来の技術】立方晶窒化ホウ素(Cubic Bor
on Nitride:以下CBNと記す)は、ダイヤ
モンドに次ぐ硬度を有すると共に、反応性が低いため耐
摩耗部材への適用が期待されている。CBNは元来天然
には存在せず、これまで高温・高圧の環境下において粒
状のCBNが合成されており、これは現在、焼結品や砥
石等に使用されている。Cubic Boron Nitride (Cubic Bor)
on Nitride: hereinafter referred to as CBN) has hardness second only to diamond and has low reactivity, and is expected to be applied to wear resistant members. CBN does not originally exist in nature, and granular CBN has been synthesized so far under a high temperature and high pressure environment, and is currently used in sintered products, grindstones, and the like.
【0003】しかし、CBNは粒状であるため、適用範
囲は狭いものである。そこで、その適用範囲を拡張すべ
く、CBNを被膜として合成する方法が現在研究されて
いる。However, since CBN is granular, its application range is narrow. Therefore, in order to expand the applicable range, a method of synthesizing CBN as a film is currently being studied.
【0004】その方法としては、プラズマCVD(化学
的蒸着)法や、PVD(物理的蒸着)法が挙げられる。
しかし、得られるCBN被膜は密着性が不良で、非常に
基材から剥離しやすい。Examples of the method include a plasma CVD (chemical vapor deposition) method and a PVD (physical vapor deposition) method.
However, the resulting CBN coating has poor adhesion and is very easy to peel from the substrate.
【0005】そこで、CBN被膜の密着性を改善する策
として、基材上に中間層を形成させた後、CBN被膜を
形成させる方法がある。しかしこの方法においても基材
上に直接CBN被膜を形成させたときより密着性は向上
するものの、実用に耐え得る密着性は有していない。Therefore, as a measure for improving the adhesion of the CBN coating, there is a method of forming the intermediate layer on the substrate and then forming the CBN coating. However, even in this method, although the adhesiveness is improved as compared with the case where the CBN film is directly formed on the substrate, the adhesiveness is not sufficient for practical use.
【0006】[0006]
【発明が解決しようとする課題】ところで前述の通り、
従来技術ではPVD法やCVD法でCBNを被膜として
合成することはできるが、CBN被膜と基材もしくは中
間層との密着性に乏しく、未だ実用に耐え得る被膜が形
成されていないことが現状である。By the way, as described above,
Although CBN can be synthesized as a coating by the PVD method or the CVD method in the conventional technique, the adhesion between the CBN coating and the base material or the intermediate layer is poor, and a coating that can withstand practical use has not yet been formed. is there.
【0007】CBN被膜の密着性不良の要因としては、
CBN被膜内に存在する大きな内部応力及びCBN被膜
と基材もしくは中間層との親和力不足が挙げられる。The cause of poor adhesion of the CBN coating is
The large internal stress existing in the CBN coating and the lack of affinity between the CBN coating and the base material or the intermediate layer are mentioned.
【0008】本発明は上記従来技術の不具合点を解消
し、CBN被膜と基材もしくは中間層との密着性を向上
させた新たな窒化ホウ素被覆部材の製造方法を提供する
ことを目的としている。An object of the present invention is to solve the above problems of the prior art and to provide a new method for producing a boron nitride coated member in which the adhesion between the CBN coating and the substrate or the intermediate layer is improved.
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
の構成として本発明の窒化ホウ素被覆部材の製造方法
は、工具その他各種耐摩耗機械部品等の基材上に、直接
又は基材上に形成した中間層を介して立方晶窒化ホウ素
膜もしくは立方晶窒化ホウ素を含有する硬質窒化ホウ素
膜を被覆するに際し、該立方晶窒化ホウ素の薄膜合成後
に高エネルギーの希ガスイオンを注入し、これにより上
記窒化ホウ素被膜と基材もしくは基材上に形成された中
間層との境界部に、基材もしくは中間層と窒化ホウ素と
の混合組成を有し、かつ、基材もしくは中間層の成分が
基材もしくは中間層側から被膜側へと連続的に減少して
行く傾斜組成を有する境界層を形成させることを特徴と
している。As a structure for achieving the above object, a method for producing a boron nitride coated member according to the present invention is directed to a base material such as tools and various other wear resistant mechanical parts, directly or on the base material. When coating the cubic boron nitride film or the hard boron nitride film containing the cubic boron nitride through the formed intermediate layer, high energy noble gas ions are injected after the thin film synthesis of the cubic boron nitride, thereby, At the boundary between the boron nitride coating and the base material or the intermediate layer formed on the base material, there is a mixed composition of the base material or the intermediate layer and boron nitride, and the component of the base material or the intermediate layer is It is characterized in that a boundary layer having a graded composition which continuously decreases from the material or the intermediate layer side to the coating side is formed.
【0010】また前記高エネルギーの希ガスイオンの立
方晶窒素被膜への注入するに際し、希ガスイオンの加速
エネルギー、種類は窒化ホウ素被膜の厚さにより選定
し、希ガスイオンの注入量を1×1015〜1×10
17(イオン個数/cm2 )の範囲に設定することが好ま
しい。In implanting the high-energy rare gas ions into the cubic nitrogen film, the acceleration energy of the rare gas ions and the type are selected according to the thickness of the boron nitride film, and the implantation amount of the rare gas ions is 1 ×. 10 15 ~ 1 x 10
It is preferable to set it in the range of 17 (number of ions / cm 2 ).
【0011】[0011]
【作用】前述の通り、従来技術でのCBN被膜の密着力
不足の原因は、CBN被膜内に存在する大きな内部応力
及び、CBN被膜と基材もしくは中間層との親和力不足
にある。As described above, the cause of the insufficient adhesion of the CBN coating in the prior art is the large internal stress existing in the CBN coating and the lack of affinity between the CBN coating and the base material or the intermediate layer.
【0012】これに対し本発明においては、基材もしく
は中間層とCBN被膜との間に傾斜組成を有する境界層
を形成させることによりCBN被膜の密着性の向上を図
っているが、密着性向上する原因として、以下のことが
挙げられる。On the other hand, in the present invention, the adhesion of the CBN coating is improved by forming a boundary layer having a graded composition between the substrate or the intermediate layer and the CBN coating. The causes are as follows.
【0013】傾斜組成を有する境界層を形成させること
により、境界層中の組成が連続的に変化しているため、
CBN被膜内の内部応力をCBN被膜側から基材側もし
くは中間層側へと徐々に低減させることが可能となる。
つまり、これまでCBN被膜と基材もしくは中間層間に
集中していた内部応力を境界層を導入することでその層
内に内部応力を分散させることにより内部応力に起因す
るCBN被膜の剥離を防止することができる。By forming a boundary layer having a graded composition, the composition in the boundary layer changes continuously,
It is possible to gradually reduce the internal stress in the CBN coating from the CBN coating side to the substrate side or the intermediate layer side.
That is, by introducing an internal stress, which has been concentrated between the CBN film and the base material or the intermediate layer, into the boundary layer, the internal stress is dispersed in the boundary layer, thereby preventing the peeling of the CBN film due to the internal stress. be able to.
【0014】また、境界層が傾斜組成を有していること
より、CBN被膜と境界層の親和力は基材もしくは中間
層との親和力より増大するため、親和力不足によるCB
N被膜の剥離も抑制することができる。Further, since the boundary layer has a graded composition, the affinity between the CBN coating and the boundary layer is larger than the affinity with the base material or the intermediate layer.
The peeling of the N coating can also be suppressed.
【0015】また、CBN被膜作製後、高エネルギーの
希ガスイオンを注入することで境界層が形成される理由
は以下の通りである。The reason why the boundary layer is formed by implanting high energy rare gas ions after the CBN film is formed is as follows.
【0016】一般に、ある基材に対し、高エネルギーの
イオンを注入すると、注入後の基材中のイオンの分布は
正規分布を示し、基材表面近傍にはイオンはとどまら
ず、ある深さ領域(注入飛程付近)に多くのイオンがと
どまる。そして、注入飛程付近においては、注入イオン
と基材原子との衝突作用、反跳作用によりその領域の成
分が混ぜ合わされる。Generally, when high-energy ions are implanted into a certain substrate, the distribution of the ions in the substrate after implantation shows a normal distribution, the ions do not remain near the surface of the substrate, and there is a certain depth region. Many ions stay in the vicinity of the injection range. Then, in the vicinity of the implantation range, the components of the region are mixed by the collision action and recoil action of the implanted ions and the base material atoms.
【0017】従って、注入イオンの飛程を、注入イオン
の種類、エネルギーを適当に選択することで、CBN被
膜と基材もしくは中間層との界面に設定すれば、CBN
被膜を通過した注入イオンが界面付近で、被膜材料と基
材もしくは中間層材料を混合し、傾斜組成を有する境界
層を形成させることができる。Therefore, if the range of implanted ions is set at the interface between the CBN coating and the substrate or the intermediate layer by appropriately selecting the type and energy of the implanted ions, CBN
Implanted ions that have passed through the coating can mix the coating material with the substrate or intermediate layer material near the interface to form a boundary layer having a graded composition.
【0018】[0018]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明方法により製造される窒化ホウ素被
覆部材の断面模式図、図2は本発明による窒化ホウ素被
覆部材の形成過程の概略図を示す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a boron nitride coated member manufactured by the method of the present invention, and FIG. 2 is a schematic view of a process of forming the boron nitride coated member according to the present invention.
【0019】本実施例の窒化ホウ素被覆部材は、図1に
示すように、高速度工具鋼(JIS規格:SKH55)
からなる基材1と、中間層2、傾斜組成を有する境界層
3、及びCBN層4で構成されるものである。As shown in FIG. 1, the boron nitride coated member of the present embodiment is a high speed tool steel (JIS standard: SKH55).
It is composed of a substrate 1 made of, an intermediate layer 2, a boundary layer 3 having a graded composition, and a CBN layer 4.
【0020】つぎに図2により窒化ホウ素被覆部材、形
成方法について説明すると、まず基材1上に中間層2を
形成させる。(図2(b)参照) 第1例として、中間層2にHCD(ホローカソード)法
によるイオンプレーティング法を用いて、厚さ約3μm
の窒化チタン被膜を形成した。Next, referring to FIG. 2, a boron nitride coating member and a method of forming the same will be described. First, the intermediate layer 2 is formed on the base material 1. (See FIG. 2B) As a first example, the intermediate layer 2 is formed by an ion plating method using an HCD (hollow cathode) method to have a thickness of about 3 μm.
The titanium nitride film of was formed.
【0021】具体的には図2(a)に示す基材1に有機
溶剤(例えばアセトン)による超音波洗浄で前処理を施
した後、例えば真空度0.1TorrのAr中で1kV
×1Aで10分間イオンボンバードを行ない、その後、
HCDガン出力:45V×400A、基材温度:500
℃、反応ガス:N2 分圧5×10-4Torrの条件でコ
ーティングすることにより図2(b)を得る。Specifically, after the substrate 1 shown in FIG. 2 (a) is pretreated by ultrasonic cleaning with an organic solvent (eg, acetone), for example, 1 kV in Ar with a vacuum degree of 0.1 Torr.
Ion bombard for 10 minutes at × 1A, then
HCD gun output: 45V x 400A, substrate temperature: 500
2B is obtained by coating under the conditions of a reaction gas: N 2 partial pressure of 5 × 10 −4 Torr.
【0022】次に、第2例として中間層2に、ホウ素・
窒素原子比が1以上のBリッチ層を形成した。これは例
えば窒素イオンもしくは窒素及び希ガスの混合ガスイオ
ン照射とホウ素蒸着を同時に行なうイオン蒸着法で形成
できる。この方法は図3に示す装置を用いて行なう。Next, as a second example, boron
A B-rich layer having a nitrogen atomic ratio of 1 or more was formed. This can be formed by, for example, an ion deposition method in which irradiation of nitrogen ions or mixed gas ions of nitrogen and a rare gas and boron deposition are simultaneously performed. This method is performed using the apparatus shown in FIG.
【0023】図3は本発明方法の実施に用いる窒化ホウ
素被覆部材形成装置における真空槽拡大図で、同図に示
す装置は、真空容器11内の基材ホルダー12に取り付
けられた基材13に対して、イオン源14から窒素イオ
ンもしくは窒素及び希ガスの混合ガスイオン20を照射
すると同時に、真空容器11内の下部に設置されている
蒸発源15内の金属ホウ素16を、電子ビーム17によ
り蒸発させて、それによるホウ素蒸気18を基材13に
蒸着させるものである。ここで、19はホウ素蒸気18
の基材への蒸着量を測定するモニターである。FIG. 3 is an enlarged view of the vacuum chamber in the boron nitride coating member forming apparatus used for carrying out the method of the present invention. The apparatus shown in FIG. 3 is applied to the base material 13 attached to the base material holder 12 in the vacuum container 11. On the other hand, at the same time as irradiating nitrogen ions or mixed gas ions 20 of nitrogen and a rare gas from the ion source 14, the metal boron 16 in the evaporation source 15 installed in the lower part of the vacuum container 11 is evaporated by the electron beam 17. Then, the resulting boron vapor 18 is deposited on the substrate 13. Here, 19 is boron vapor 18
It is a monitor for measuring the amount of vapor deposited on the substrate.
【0024】作製手順としては、まず、基材13のとこ
ろに、図2(a)に示す基材1を設置し、真空容器11
を2×10-6Torr以下に予備排気する。As a manufacturing procedure, first, the base material 1 shown in FIG.
Is pre-evacuated to 2 × 10 −6 Torr or less.
【0025】次に、イオン源14に供給した窒素ガスも
しくは窒素及び希ガス(例えばアルゴン)の混合ガスを
イオン源14内でイオン化し、窒素イオンもしくは窒素
及び希ガス混合イオン20を基材13へ照射すると同時
に、蒸発源15より金属ホウ素16を蒸発させたホウ素
蒸気18を基材13上に蒸着させる。Next, the nitrogen gas or a mixed gas of nitrogen and a rare gas (for example, argon) supplied to the ion source 14 is ionized in the ion source 14, and the nitrogen ions or the mixed ions of nitrogen and a rare gas 20 are applied to the base material 13. Simultaneously with the irradiation, the boron vapor 18 obtained by evaporating the metallic boron 16 from the evaporation source 15 is vapor-deposited on the base material 13.
【0026】このとき、混合ガスイオン20のエネルギ
ーを2kev、ホウ素蒸気18の蒸発速度を1Å/se
c、処理時間5分で、図2(b)を得る。このときの真
空度は1×10-4Torrである。At this time, the energy of the mixed gas ions 20 is 2 kev and the evaporation rate of the boron vapor 18 is 1Å / se.
c, the processing time is 5 minutes, and FIG. 2B is obtained. The degree of vacuum at this time is 1 × 10 −4 Torr.
【0027】第3例として、窒化チタン層及びBリッチ
層の2層からなる中間層2を形成した。具体的には、図
2(a)の基材上に第1例と同様に窒化チタン膜を作製
し、その上に第2例と同様にBリッチ層を形成させた。As a third example, an intermediate layer 2 consisting of two layers, a titanium nitride layer and a B-rich layer, was formed. Specifically, a titanium nitride film was formed on the base material of FIG. 2A in the same manner as in the first example, and a B-rich layer was formed thereon in the same manner as in the second example.
【0028】次に、図2(b)の中間層上に、CBN層
4を形成する。CBN層4の形成方法は、基本的にBリ
ッチ層の形成手順と同様である。Next, the CBN layer 4 is formed on the intermediate layer of FIG. 2 (b). The method for forming the CBN layer 4 is basically the same as the procedure for forming the B-rich layer.
【0029】具体的には、混合イオン20の照射エネル
ギーを0.5keV、ホウ素蒸気18の蒸発速度を0.
4Å/secとすることで、図2(c)に示すように、
CBN層4が形成できる。Specifically, the irradiation energy of the mixed ions 20 is 0.5 keV and the evaporation rate of the boron vapor 18 is 0.
By setting 4Å / sec, as shown in FIG. 2 (c),
The CBN layer 4 can be formed.
【0030】次に、図2(c)の部材に希ガスイオンを
注入することにより、中間層2及びCBN層4の一部を
境界層3に変化させる。これは、図4に示す装置を用い
て行なう。Next, by implanting rare gas ions into the member shown in FIG. 2C, a part of the intermediate layer 2 and the CBN layer 4 is changed to the boundary layer 3. This is done using the device shown in FIG.
【0031】図4は本発明方法の実施に用いる窒素ホウ
素被覆部材形成装置の概略図で同装置は、イオン注入装
置31内のイオン源32内でイオン化された希ガスイオ
ンを引き出し電極33でイオン源32内より引き出し、
質量分離器34により所定の希ガスイオンのみ(例えば
Ne+ )を選択し、加速管35により所定のエネルギー
まで希ガスイオンビームを加速し、走査管36で希ガス
イオンビームを注入ターゲットとなる基材13全体に照
射される範囲に走査させ、最終的に真空容器11内の基
材ホルダー12に設置された図2(c)に示す基材13
に希ガスイオンビームを注入させるものである。FIG. 4 is a schematic view of an apparatus for forming a nitrogen-boron coating member used for carrying out the method of the present invention. In the apparatus, noble gas ions ionized in the ion source 32 in the ion implantation apparatus 31 are ionized at the extraction electrode 33. Withdraw from source 32
Only a predetermined rare gas ion (for example, Ne + ) is selected by the mass separator 34, the rare gas ion beam is accelerated to a predetermined energy by the accelerating tube 35, and the rare gas ion beam is used as an implantation target by the scanning tube 36. The material 13 shown in FIG. 2 (c) is made to scan the entire area of the material 13 and finally installed in the material holder 12 in the vacuum container 11.
A rare gas ion beam is injected into the.
【0032】具体的には、例えば約0.3μmのCBN
層4に対し、ネオンイオンを質量分離器34によりNe
+ (質量数:20)に選定し、Ne+ の加速エネルギー
を200keV、注入量を1×1016(イオン個数/c
m2 )とすることで、図2(d)に示すように、中間層
2及びCBN層4がまざり合い、なおかつ傾斜組成を有
する境界層3が形成される。Specifically, for example, a CBN of about 0.3 μm
For the layer 4, the neon ions are separated into Ne by the mass separator 34.
+ (Mass number: 20), the acceleration energy of Ne + is 200 keV, and the implantation amount is 1 × 10 16 (number of ions / c
m 2 ), as shown in FIG. 2D, the intermediate layer 2 and the CBN layer 4 are mixed with each other, and the boundary layer 3 having a graded composition is formed.
【0033】ここで、注入するネオンイオンの加速エネ
ルギーをCBN層4の厚みにより変化させることによ
り、種々の厚みを持つCBN層4が形成されている図2
(c)に示す部材に対し、境界層3を形成させることが
できる。Here, by changing the acceleration energy of the implanted neon ions according to the thickness of the CBN layer 4, the CBN layers 4 having various thicknesses are formed.
The boundary layer 3 can be formed on the member shown in (c).
【0034】また、ネオンイオンの注入量が1×1015
(イオン個数/cm2 )より少ないと、境界層3は形成
されず、さらに1×1017(イオン個数/cm2 )より
多いとCBN層4が破壊され、CBNの持つ高硬度等の
性質が失われてしまう。従って、ネオンイオンの注入量
は1×1015から1×1017(イオン個数/cm2 )の
範囲内に設定する必要がある。Further, the implantation amount of neon ions is 1 × 10 15.
If it is less than (the number of ions / cm 2 ), the boundary layer 3 is not formed, and if it is more than 1 × 10 17 (the number of ions / cm 2 ), the CBN layer 4 is destroyed, and the properties such as high hardness of CBN are increased. Will be lost. Therefore, the implantation amount of neon ions needs to be set within the range of 1 × 10 15 to 1 × 10 17 (number of ions / cm 2 ).
【0035】以上の実施例により作製した、窒化チタン
層及びBリッチ層を中間層に持つ窒化ホウ素被覆部材
を、オージェ電子分光分析により深さ方向の組成分析を
行なった結果、境界層3中の組成は、ホウ素の原子比が
被膜側から中間層側へと連続的に減少し、なおかつ、チ
タンの原子比が連続的に増加しており、境界層3は被膜
材料と中間層材料がまざり合い、さらに傾斜組成を有し
ていることが確認された。The boron nitride coating member having the titanium nitride layer and the B-rich layer as the intermediate layer, which was produced by the above-mentioned example, was subjected to compositional analysis in the depth direction by Auger electron spectroscopy, and as a result, The composition is such that the atomic ratio of boron continuously decreases from the coating side to the intermediate layer side, and the atomic ratio of titanium continuously increases, and the boundary layer 3 is a mixture of the coating material and the intermediate layer material. Further, it was confirmed that it has a graded composition.
【0036】図5は得られた窒化ホウ素被覆部材の密着
力をスクラッチ試験により評価した結果を示す臨界荷重
の関係図で、これは、縦軸に示す臨界荷重(被膜が剥離
するときの荷重)が大きい程、密着力に優れていること
を表している。FIG. 5 is a critical load relationship diagram showing the results of evaluation of the adhesion of the obtained boron nitride coated member by a scratch test. This is the critical load shown on the vertical axis (the load at which the coating peels). The larger the value, the better the adhesion.
【0037】図5から明らかなように、境界層3を形成
させることにより、境界層3がないときと比較して密着
力が4〜15倍増大しており、優れた密着性を有するこ
とが示された。As is clear from FIG. 5, by forming the boundary layer 3, the adhesive force is increased by 4 to 15 times as compared with the case where the boundary layer 3 is not provided, which shows that the adhesive layer has excellent adhesiveness. It was
【0038】また、高エネルギーの希ガスイオンを注入
する際、希ガスイオンとして、アルゴンイオン、クリプ
トンイオン、キセノンイオンを用いても同様な効果が得
られた。When implanting high energy rare gas ions, the same effect was obtained even when argon ions, krypton ions, or xenon ions were used as the rare gas ions.
【0039】以上本発明の実施例について縷々説明した
が、本発明は上記実施例に限定されるものでなく、本発
明技術思想の範囲内において種々変更し得るものであ
り、それらは何れも本発明の技術的範囲に属する。Although the embodiments of the present invention have been briefly described above, the present invention is not limited to the above-mentioned embodiments and can be variously modified within the scope of the technical idea of the present invention. It belongs to the technical scope of the invention.
【0040】[0040]
【発明の効果】以上述べたように本発明方法により製作
された窒化ホウ素被覆部材は、従来のものに比較して優
れた密着性を有するものであり、切削工具に限らず、各
種回転機器の軸受やスライド等の摺動部材などの耐摩耗
部材として極めて優れた効果を奏する。As described above, the boron nitride-coated member manufactured by the method of the present invention has excellent adhesiveness as compared with the conventional one, and is not limited to cutting tools and can be used for various rotary machines. It has an extremely excellent effect as a wear resistant member such as a bearing or a sliding member such as a slide.
【0041】しかもその製法は極めて簡単な操作及び低
コストの装置を用いることにより行なえるので、工業的
に利用価値の大きいものである。Moreover, since the manufacturing method can be carried out by using an extremely simple operation and a low cost device, it is industrially very useful.
【図1】本発明方法により製造される窒化ホウ素被覆部
材の断面模式図である。FIG. 1 is a schematic sectional view of a boron nitride-coated member manufactured by the method of the present invention.
【図2】(a),(b),(c),(d)は本発明によ
る窒化ホウ素被覆部材の形成過程の概略図である。2 (a), (b), (c) and (d) are schematic views of a process for forming a boron nitride coated member according to the present invention.
【図3】本発明方法の実施に用いる窒化ホウ素被覆部材
形成装置における真空槽拡大図である。FIG. 3 is an enlarged view of a vacuum chamber in the boron nitride coating member forming apparatus used for carrying out the method of the present invention.
【図4】本発明方法の実施に用いる窒化ホウ素被覆部材
形成装置の概略図である。FIG. 4 is a schematic view of a boron nitride coated member forming apparatus used for carrying out the method of the present invention.
【図5】本発明方法により得られた各窒化ホウ素被覆部
材とスクラッチ試験による臨界荷重の関係図である。FIG. 5 is a relationship diagram of each boron nitride coated member obtained by the method of the present invention and a critical load by a scratch test.
1 基材 2 中間層 3 境界層 4 CBN層 11 真空容器 12 基材ホルダー 13 基材 14 イオン源 15 蒸発源 16 金属ホウ素 17 電子ビーム 18 ホウ素蒸気 19 モニター 20 窒素+希ガス混合イオンもしくは窒素イオン 31 イオン注入装置 32 イオン源 33 引き出し電極 34 質量分離器 35 加速管 36 走査管 1 Base Material 2 Intermediate Layer 3 Boundary Layer 4 CBN Layer 11 Vacuum Container 12 Base Material Holder 13 Base Material 14 Ion Source 15 Evaporation Source 16 Metal Boron 17 Electron Beam 18 Boron Vapor 19 Monitor 20 Nitrogen + Rare Gas Mixed Ion or Nitrogen Ion 31 Ion implanter 32 Ion source 33 Extraction electrode 34 Mass separator 35 Accelerator tube 36 Scan tube
Claims (2)
上に、直接又は基材上に形成した中間層を介して立方晶
窒化ホウ素膜もしくは立方晶窒化ホウ素を含有する硬質
窒化ホウ素膜を被覆するに際し、該立方晶窒化ホウ素の
薄膜合成後に高エネルギーの希ガスイオンを注入し、こ
れにより上記窒化ホウ素被膜と基材もしくは基材上に形
成された中間層との境界部に、基材もしくは中間層と窒
化ホウ素との混合組成を有し、かつ、基材もしくは中間
層の成分が基材もしくは中間層側から被膜側へと連続的
に減少して行く傾斜組成を有する境界層を形成させるこ
とを特徴とする窒化ホウ素被覆部材の製造方法。1. A cubic boron nitride film or a hard boron nitride film containing cubic boron nitride on a substrate such as a tool and various wear-resistant mechanical parts directly or through an intermediate layer formed on the substrate. Upon coating, high-energy rare gas ions are injected after the thin film synthesis of the cubic boron nitride, thereby forming a base material at the boundary between the boron nitride coating and the base material or the intermediate layer formed on the base material. Alternatively, a boundary layer having a mixed composition of the intermediate layer and boron nitride and having a gradient composition in which the components of the base material or the intermediate layer continuously decrease from the base material or the intermediate layer side to the coating side is formed. A method of manufacturing a boron nitride coated member, comprising:
晶窒素被膜への注入するに際し、希ガスイオンの加速エ
ネルギー、種類は窒化ホウ素被膜の厚さにより選定し、
希ガスイオンの注入量を1×1015〜1×1017(イオ
ン個数/cm2 )の範囲に設定することを特徴とする請
求項1記載の窒化ホウ素被覆部材の製造方法。2. When implanting the high-energy rare gas ions into the cubic nitrogen coating, the acceleration energy of the rare gas ions and the type are selected according to the thickness of the boron nitride coating,
The method for producing a boron nitride-coated member according to claim 1, wherein the implantation amount of the rare gas ions is set in a range of 1 × 10 15 to 1 × 10 17 (number of ions / cm 2 ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6202995A JPH0849065A (en) | 1994-08-05 | 1994-08-05 | Production of boron nitride coated member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6202995A JPH0849065A (en) | 1994-08-05 | 1994-08-05 | Production of boron nitride coated member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0849065A true JPH0849065A (en) | 1996-02-20 |
Family
ID=16466594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6202995A Withdrawn JPH0849065A (en) | 1994-08-05 | 1994-08-05 | Production of boron nitride coated member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0849065A (en) |
-
1994
- 1994-08-05 JP JP6202995A patent/JPH0849065A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weissmantel et al. | Preparation of hard coatings by ion beam methods | |
Colligon | Energetic condensation: Processes, properties, and products | |
Sundgren et al. | Mechanisms of reactive sputtering of titanium nitride and titanium carbide I: Influence of process parameters on film composition | |
US4657774A (en) | Method for thin film formation | |
US4622919A (en) | Film forming apparatus | |
JPH044394B2 (en) | ||
JPH0588310B2 (en) | ||
JP2909248B2 (en) | Boron nitride coated member | |
JPH0351787B2 (en) | ||
Auner et al. | Effect of ion implantation on thin hard coatings | |
Yamashita et al. | Cross-sectional transmission electron microscopy observations of c-BN films deposited on Si by ion-beam-assisted deposition | |
JPH0849065A (en) | Production of boron nitride coated member | |
Iwaki | Formation of metal surface layers with high performance by ion implantation | |
JP3025743B2 (en) | Hard carbon film forming equipment | |
JPS5920465A (en) | Sintered hard alloy tool and its production | |
Wang et al. | Atomic force microscopy study on topography of films produced by ion‐based techniques | |
JP2593441B2 (en) | High-hardness film-coated tool material and its manufacturing method | |
JPS6196721A (en) | Film forming method | |
JP2875892B2 (en) | Method of forming cubic boron nitride film | |
Andre | Monte Carlo modelling of ion-beam-assisted-deposition: application to diamondlike carbon | |
Erck et al. | Study of the microstructure of silver films deposited by ion-assisted deposition onto aluminum-oxide substrates | |
JP2789651B2 (en) | Method for forming boron nitride film | |
JPS6342362A (en) | Production of surface coated steel material | |
JP2952683B2 (en) | Method for producing nitride film-coated substrate and oxide film-coated substrate | |
JPH0794081B2 (en) | Hard carbon coated parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011106 |