JPH084885B2 - In-mold electromagnetic stirring method for continuous casting of slabs - Google Patents

In-mold electromagnetic stirring method for continuous casting of slabs

Info

Publication number
JPH084885B2
JPH084885B2 JP2220575A JP22057590A JPH084885B2 JP H084885 B2 JPH084885 B2 JP H084885B2 JP 2220575 A JP2220575 A JP 2220575A JP 22057590 A JP22057590 A JP 22057590A JP H084885 B2 JPH084885 B2 JP H084885B2
Authority
JP
Japan
Prior art keywords
mold
slab
coils
molten steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2220575A
Other languages
Japanese (ja)
Other versions
JPH04100665A (en
Inventor
保男 貝原
誠一 細谷
洵 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2220575A priority Critical patent/JPH084885B2/en
Publication of JPH04100665A publication Critical patent/JPH04100665A/en
Publication of JPH084885B2 publication Critical patent/JPH084885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スラブの連続鋳造における鋳型内電磁撹拌
方法に関するものである。
The present invention relates to a method for electromagnetic stirring in a mold in continuous casting of a slab.

〔従来の技術〕 スラブの連続鋳造は、タンディッシュから浸漬ノズル
を経て鋳型内に注入された溶鋼を、鋳型壁により周辺か
ら冷却し、凝固シェルを形成発達させつつ引抜いて行わ
れる。この際鋳型内では第8図に示すように、タンディ
ッシュ(図示せず)から注入された溶鋼は浸漬ノズル15
の吐出孔16から流出し、この溶鋼流17は鋳型Mの狭面部
18に衝突して、下降流19が生じ、この下降流19が溶鋼流
の主流となってスラブS内に深く浸入する。
[Prior Art] Continuous casting of a slab is carried out by cooling molten steel injected from a tundish through a dipping nozzle into a mold from the periphery by a mold wall to withdraw while forming and developing a solidified shell. At this time, as shown in FIG. 8, the molten steel injected from the tundish (not shown) is immersed in the casting nozzle 15 in the mold.
The molten steel flow 17 flowing out from the discharge hole 16 of
Upon colliding with 18, a downward flow 19 is generated, and this downward flow 19 becomes the main flow of the molten steel flow and deeply penetrates into the slab S.

このような連続鋳造方法によると、下降流19に巻き込
まれた介在物やアルゴンガスなどの気泡が、凝固シェル
界面において捕捉され、介在物集積帯となって圧延時に
欠陥として露出し、問題となることが知られている。
According to such a continuous casting method, inclusions and bubbles such as argon gas caught in the downward flow 19 are trapped at the interface of the solidified shell and exposed as defects during rolling to form inclusion accumulation zones, which causes a problem. It is known.

そして近年、このような問題を改善するために、電磁
撹拌を適用した連続鋳造方法が行われている。
And in recent years, in order to improve such a problem, the continuous casting method which applied electromagnetic stirring is performed.

例えば、特開昭60−37251号(特願昭58−145765号)
公報には、鋳型の広面内に電磁撹拌装置を左右に分割し
て設け、鋼種および鋳造条件に応じて、左右に分割して
ある電磁撹拌装置の撹拌推力方向を切り換えて使用し、
鋳片の品質改善を図る方法が記載されている。しかし、
この鋳型内電磁撹拌方法では、鋳型の広面内に電磁撹拌
装置を左右に分割して設けているので、溶鋼の撹拌パタ
ーンが増え、鋼種および鋳造条件に応じて撹拌流を選択
しうる有利さはあるけれど、これらの撹拌流がどのよう
な鋳片の品質改善を図るものであるかが明確でない上
に、必ずしも上述したスラブS内に深く浸入する下降流
19を抑えるものではないため、下降流19に巻き込まれた
介在物やアルゴンガスなどの気泡が低減されないという
問題がある。
For example, Japanese Patent Laid-Open No. 60-37251 (Japanese Patent Application No. 58-145765)
In the publication, an electromagnetic stirrer is separately provided on the left and right within a wide surface of a mold, and the stirring thrust direction of the electromagnetic stirrer that is split left and right is used by switching according to the steel type and casting conditions.
A method for improving the quality of the slab is described. But,
In this in-mold electromagnetic stirring method, since the electromagnetic stirring device is provided separately in the wide surface of the mold, the stirring pattern of molten steel increases, and the advantage of being able to select the stirring flow according to the steel type and casting conditions is However, it is not clear what kind of slab the stirring flow is intended to improve the quality of the slab, and the downflow that deeply penetrates into the slab S described above.
Since it does not suppress 19, there is a problem that inclusions entrained in the descending flow 19 and bubbles such as argon gas are not reduced.

一方、本出願人は、上記問題を解決するために鋭意研
究を行い、鋳型の広面内にスラブの引抜方向に推力を発
生する電磁撹拌装置を設け、スラブの引抜方向と同じ方
向に電磁撹拌の推力を与えることにより介在物集積帯が
改善されることを知見し、先にその出願(特願昭63−24
3639号)を行った。ところがその後、この先願による鋳
型内電磁撹拌方法によっても介在物集積帯が改善されな
い場合のあることを知見し、特に可変幅鋳型の使用にお
いてはスラブ寸法によっては改善されない場合が生じ
た。
On the other hand, the present applicant has conducted intensive research to solve the above problems, and provided an electromagnetic stirring device for generating thrust in the drawing direction of the slab within the wide surface of the mold, and the electromagnetic stirring in the same direction as the drawing direction of the slab. It was found that the inclusion accumulation zone is improved by applying thrust, and the application (Japanese Patent Application No. 63-24
No. 3639). However, it was then found that the inclusion accumulation zone may not be improved even by the electromagnetic stirring method in the mold according to this prior application, and in particular, in the case of using a variable width mold, there was a case where it was not improved depending on the slab size.

そこでさらに、本出願人は鋭意研究を重ねた結果、鋳
型の広面内に引抜方向に推力を発生する電磁撹拌装置を
設け連続鋳造しても、電磁撹拌装置によるスラブ広面幅
方向に撹拌推力の分布がスラブ幅に対応しない場合、上
述したスラブS内に深く浸入する下降流19を抑制し得
ず、下降流19に巻き込まれた介在物やアルゴンガスなど
の気泡が低減されないことを突き止め、これを改善し
て、スラブ用鋳型の内外両広面の内少なくとも内側広面
にスラブの引抜方向に推力を発生する電磁撹拌装置を設
けると共に、電磁撹拌装置による引抜方向の推力を、鋳
造されるスラブ広面の左右の側端より所定長さを除いた
範囲に作用させるスラブの連続鋳造における鋳型内電磁
撹拌方法を発明し、特願平1−164875号として出願し
た。
Therefore, as a result of further intensive research by the applicant, even when an electromagnetic stirrer for generating thrust in the drawing direction is provided in the wide surface of the mold and continuous casting is performed, the distribution of the stirring thrust in the wide width direction of the slab by the electromagnetic stirrer Does not correspond to the slab width, it is not possible to suppress the downflow 19 deeply penetrating into the slab S described above, and it is found that inclusions entrained in the downflow 19 and bubbles such as argon gas are not reduced. By improving the electromagnetic stirrer that generates thrust in the drawing direction of the slab on at least the inner wide surface of the inner and outer wide surfaces of the slab mold, the thrust in the drawing direction by the electromagnetic stirrer is adjusted to the left and right of the wide surface of the cast slab. The inventors have invented a method of electromagnetic stirring in a mold in continuous casting of a slab which is operated within a range excluding a predetermined length from the side edge of the above, and filed as Japanese Patent Application No. 1-164875.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、上記特願平1−164875号に示すスラブの連
続鋳造における鋳型内電磁撹拌方法を可変幅鋳型に適用
して、鋳造されるスラブ広面の左右の側端より所定長さ
を除いた範囲に、ある程度の大きさの引抜方向の推力を
作用させるには、例えば800〜1630mmの範囲の可変幅鋳
型においては、可変幅鋳型Mの内外両広面の幅中心軸の
左右対称位置に電磁撹拌装置を各4台づつ、計8台設置
し(第1図参照)、スラブ幅が1630〜1100mmまでは電磁
撹拌装置のコイルa,a′〜d,d′の全てを使用し、スラブ
幅が1100〜800mmまではコイルb,b′,c,c′のみを使用し
て鋳造する必要がある。さらに鋳型M内の突出流17,1
7′は必ずしも左右均一とは限らず、往々にして不均一
であるため、コイルa,a′,b,b′とコイルc,c′,d,d′は
異なった引抜方向の推力を適用する必要があるが、この
ような条件を満たすためには、コイルa′〜d′に電流
を供給する電源は、各コイル個別に設け独立に制御する
必要がある。そこで、本出願人は、第9図に示す如く、
変圧器3とサイクロコンバータ4を組み合わせた電源装
置を各コイルa〜d′毎に配線した例を試みた。しかし
この図のように配線した場合でも、各電源装置の特性の
不均一や周波数制御信号の僅かな違い等から、電流の位
相が各コイルa〜d′毎に不揃いとなり、このため、第
4図(ロ)に示すように鋳型壁表面に磁束が集中した
り、隣のコイルに磁束が漏れ磁束分布が不均一になった
りして、鋳型厚中心にて必要とする磁束密度が得られ
ず、また上述したスラブS内に深く浸入する下降流19
(第8図参照)を抑制する所望の撹拌流が得られず、下
降流19に巻き込まれた介在物やアルゴンガスなどの気泡
が十分低減されないことが度々発生した。また、多くの
電源装置を必要とし、設備が大掛りになり経済的でな
い。
By the way, applying the electromagnetic stirring method in a mold in continuous casting of a slab shown in Japanese Patent Application No. 1-164875 to a variable width mold, in a range excluding a predetermined length from the left and right side ends of the wide surface of the slab to be cast. In order to apply a certain amount of pulling force in the drawing direction, for example, in a variable width mold in the range of 800 to 1630 mm, an electromagnetic stirring device is installed at symmetrical positions of the width center axes of the inner and outer wide surfaces of the variable width mold M. 4 units each, 8 units in total (refer to Fig. 1) are installed. All the coils a, a'-d, d'of the electromagnetic stirrer are used up to the slab width of 1630 ~ 1100 mm, and the slab width is 1100 ~. Up to 800 mm, it is necessary to use only coils b, b ', c, c'for casting. Furthermore, the projecting flow 17,1 in the mold M
7'is not always uniform on the left and right, and is often non-uniform, so coils a, a ', b, b'and coils c, c', d, d'use different thrusts in the pulling direction. However, in order to satisfy such a condition, it is necessary to separately provide a power source for supplying a current to the coils a ′ to d ′ and control each coil independently. Therefore, the applicant of the present invention, as shown in FIG.
An example was tried in which a power supply device in which the transformer 3 and the cycloconverter 4 were combined was wired for each of the coils a to d '. However, even when wiring is performed as shown in this figure, the phases of the currents are not uniform among the coils a to d'due to the nonuniformity of the characteristics of the power supply devices and the slight difference in the frequency control signals. As shown in the figure (b), the magnetic flux is concentrated on the mold wall surface, and the magnetic flux leaks to the adjacent coil, and the magnetic flux distribution becomes uneven, and the required magnetic flux density cannot be obtained at the center of the mold thickness. , The downward flow 19 that deeply penetrates into the slab S described above.
A desired stirring flow for suppressing (see FIG. 8) could not be obtained, and it often occurred that inclusions entrained in the descending flow 19 and bubbles such as argon gas were not sufficiently reduced. Moreover, many power supply devices are required, and the equipment is large, which is not economical.

本発明は、上述した事情に基づいてなされたものであ
って、その目的は、スラブの引抜方向に推力を発生する
電磁撹拌装置を内外両広面の幅中心軸の左右対称位置に
少なくとも2対づつ配設されたスラブ用可変幅鋳型を使
用して、内外両広面に設けた電磁撹拌装置の引抜方向の
推力を、鋳造されるスラブ広面の左右の側端(狭面)よ
り所定長さ除いた範囲に作用させるに際し、各電磁撹拌
装置の各コイルに流れる電流の位相を揃えるとともに、
鋳型厚中心にて必要とする磁束密度を得、鋳型の狭面に
沿ってスラブ内へ浸入する溶鋼流の浸入深さを抑制し、
溶鋼流に巻き込まれた介在物やアルゴンガスなどの気泡
がスラブ内部へ深く浸入することを防止するスラブの連
続鋳造における鋳型内電磁撹拌方法を提供することであ
る。
The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide at least two pairs of electromagnetic stirring devices that generate thrust in the slab drawing direction at symmetrical positions of the width center axes of the inner and outer wide surfaces. Using the variable width mold for slabs, the thrust in the pulling direction of the electromagnetic stirrer installed on both the inner and outer wide surfaces was removed by a predetermined length from the left and right side edges (narrow surface) of the wide surface of the slab to be cast. When acting on the range, while aligning the phase of the current flowing through each coil of each electromagnetic stirring device,
Obtain the required magnetic flux density at the center of the mold thickness, suppress the penetration depth of the molten steel flow that penetrates into the slab along the narrow surface of the mold,
An object of the present invention is to provide a method for electromagnetic stirring in a mold in continuous casting of a slab, which prevents inclusions or bubbles such as argon gas entrained in the molten steel flow from deeply penetrating into the slab.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係わるスラブの
連続鋳造における鋳型内電磁撹拌方法は、スラブ用可変
幅鋳型の内外両広面の幅中心軸の左右対称位置に、スラ
ブの引抜き方向に推力を発生する電磁撹拌装置を少なく
とも2対づつ設けるとともに、電磁撹拌装置のコイルの
磁極の極性を、鋳型を挟んで対向するコイルに対して
は、各磁極が異極となるように、隣り合うコイルに対し
ては、各磁極が同極となるように磁極の位相を揃えて溶
鋼の電磁撹拌を行うものである。
In order to achieve the above object, the electromagnetic stirring method in the mold in the continuous casting of the slab according to the present invention, the symmetric position of the width center axis of the inner and outer wide surfaces of the variable width mold for the slab, thrust in the drawing direction of the slab. At least two pairs of electromagnetic stirrers to be generated are provided, and the polarities of the magnetic poles of the coils of the electromagnetic stirrer are set to the adjacent coils so that the magnetic poles of the coils facing each other with the mold sandwiched are different poles. On the other hand, electromagnetic stirring of molten steel is performed by aligning the phases of the magnetic poles so that the magnetic poles have the same polarity.

〔作 用〕[Work]

本発明の構成では、電磁撹拌装置のコイルの磁極の極
性を、鋳型を挟んで対向するコイルに対しては、各磁極
が異極となるように、同一広面の隣り合うコイルに対し
ては、各磁極が同極となるように磁極の位相を揃えるの
で、隣のコイルに磁束が漏れるなどの不具合がなくなり
磁束分布が比較的均一になることから、磁束が鋳型を貫
通し鋳型の厚さ(内外両広面間)中心まで通るようにな
るため、鋳型の厚さ中心を流れる溶鋼流に対し大きな磁
力を与えることができ、これにより、鋳型の狭面に沿っ
てスラブ内へ侵入する溶鋼流の侵入深さを抑制すること
ができ、溶鋼流に巻き込まれた介在物やアルゴンガスな
どの気泡がスラブ内部へ深く侵入するのを防止すること
ができる。
In the configuration of the present invention, the polarities of the magnetic poles of the coils of the electromagnetic stirring device are set such that, for coils facing each other with the mold sandwiched, for adjacent coils of the same wide surface, each magnetic pole is different. Since the phases of the magnetic poles are aligned so that the magnetic poles are the same pole, there is no problem such as leakage of magnetic flux to the adjacent coil and the magnetic flux distribution becomes relatively uniform, so the magnetic flux penetrates the mold and the thickness of the mold ( Since it passes through to the center (between the inner and outer wide surfaces), a large magnetic force can be applied to the molten steel flow flowing through the thickness center of the mold, which allows the molten steel flow to enter the slab along the narrow surface of the mold. The depth of penetration can be suppressed, and it is possible to prevent bubbles such as inclusions and argon gas caught in the molten steel flow from entering deep inside the slab.

〔実 施 例〕〔Example〕

以下、本発明の実施例について図面を参照して説明す
る。第1図は、本発明のスラブの連続鋳造における鋳型
内電磁撹拌方法に適用される装置の説明図、第2図は、
第1図に示す電磁撹拌装置の配線図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of an apparatus applied to an electromagnetic stirring method in a mold in continuous casting of a slab of the present invention, and FIG. 2 is
It is a wiring diagram of the electromagnetic stirring device shown in FIG.

図において、Mは可変幅鋳型であって、この可変幅鋳
型Mの内外両広面1,1′の幅中心軸の左右対称位置に
は、スラブSの引抜方向に推力を発生する電磁撹拌装置
のコイルa,a′〜d,d′が、鋳造されるスラブ広面の左右
の側端(狭面)2より中央に向かって所定長さLを除い
た範囲に作用するように設けられている。そして、電磁
撹拌装置のコイルa,a′〜d,d′には、コイルa,a′、コ
イルb,b′、コイルc,c′およびコイルd,d′毎に、変圧
器3a〜3dと2相(u相,v相)のサイクロコンバータ4a〜
4bからなる2相電源装置が配線され、一方サイクロコン
バータ4a〜4bには、一つの周波数設定装置5が配線され
ている。そしてさらに、コイルa,a′〜d,d′への巻線構
造は、例えばコイルa,a′,b,b′を例として第3図に示
すように、4極を構成する鉄心6を使用し、コイルa,
a′,b,b′について、各コイルの最上段と3番目の極が
逆極となるように、且つ内側コイルaとbあるいは外側
コイルa′とb′では最上段と3番目の極が同極となる
とともに、内側コイルa,bと外側コイルa′,b′との対
向する最上段と3番目の極は逆極となるようにu相巻線
が行われている。尚、2番目と最下段の極についても図
示省略するが、上記と同要項でv相巻線が行われてい
る。
In the figure, M is a variable width mold, and at the position symmetrical to the width center axis of the inner and outer wide surfaces 1, 1'of the variable width mold M, an electromagnetic stirring device for generating thrust in the drawing direction of the slab S is provided. The coils a, a'to d, d'are provided so as to act from the left and right side ends (narrow surfaces) 2 of the wide surface of the slab to be cast toward the center except a predetermined length L. The coils a, a'-d, d'of the electromagnetic stirrer include transformers 3a-3d for the coils a, a ', coils b, b', coils c, c ', and coils d, d'. And 2-phase (u-phase, v-phase) cycloconverter 4a ~
A two-phase power supply device composed of 4b is wired, while one frequency setting device 5 is wired to the cycloconverters 4a to 4b. Further, the winding structure for the coils a, a 'to d, d' is, for example, as shown in FIG. 3, taking the coils a, a ', b, b' as an example. Use the coil a,
For a ', b, b', the top pole and the third pole of each coil are opposite poles, and the top pole and the third pole of the inner coils a and b or the outer coils a'and b'are The u-phase winding is formed so as to have the same pole, and the uppermost and third poles of the inner coil a, b and the outer coil a ′, b ′ facing each other have opposite poles. Although not shown in the drawings for the second and bottom poles, the v-phase winding is performed in the same manner as above.

上記の如き構成からなる鋳型内電磁撹拌装置であるか
ら、周波数設定装置5に設定された周波数設定値は、同
じタイミングで同じ信号値として各サイクロコンバータ
4a〜4bに対し送信でき、これにより、各サイクロコンバ
ータ4a〜4bのu相,v相を流れる電流は、全く同位相とな
り、同期がとれる。すなわち、第3図に示したように、
鋳型を挟んで対向するコイルは各磁極が異極に、同一広
面の隣り合うコイルは各磁極が同極になるために、磁束
が鋳型を貫通することになり、この磁束が90゜位相の異
なったu相、v相の交流電源を持つサイクロコンバータ
4a〜4bにより、例えば、第3図に示す最上段のN極(ま
たはS極)からスラブの引抜方向である二段目、三段
目、最下段へと移動を繰り返すことになり、この磁束の
移動に伴って鋳型内の溶鋼も推力を受け、引抜方向に移
動、撹拌されることになる。第4図(イ)は、このよう
にして同期がとれた場合のコイルa,a′を例にした磁場
分布を示す。また比較のため、第4図(ロ)に従来の同
期がとれていない場合の磁場分布を示すとともに、両者
の鋳型厚方向の磁束密度を第5図に比較して示す。これ
らの図より明らかなように、後者に比較して前者の方
が、鋳型厚中心まで十分に磁束が通り、その磁束密度は
鋳型厚中心にて十分大きく得られ、これにより、鋳型の
狭面に沿ってスラブ内へ浸入する溶鋼流の浸入深さが抑
制でき、溶鋼流に巻き込まれた介在物やアルゴンガスな
どの気泡がスラブ内部に深く浸入することが防止でき
る。
Since the electromagnetic stirrer in the mold has the above-mentioned configuration, the frequency set value set in the frequency setting device 5 is the same signal value at the same timing as each cycloconverter.
The signals can be transmitted to 4a to 4b, so that the currents flowing through the u-phase and v-phase of the respective cycloconverters 4a to 4b are in the same phase and can be synchronized. That is, as shown in FIG.
The coils facing each other across the mold have different magnetic poles, and adjacent coils on the same wide surface have the same magnetic poles, so magnetic flux penetrates the mold, and the magnetic flux has a 90 ° phase difference. Cycloconverter with u-phase and v-phase AC power supplies
Due to 4a to 4b, for example, the N pole (or S pole) at the uppermost stage shown in FIG. 3 is repeatedly moved to the second stage, the third stage, and the lowermost stage, which are the slab drawing directions. With the movement of the molten steel, the molten steel in the mold also receives the thrust, and is moved and stirred in the drawing direction. FIG. 4 (a) shows a magnetic field distribution taking the coils a and a ′ as an example when the synchronization is achieved in this way. For comparison, FIG. 4B shows the magnetic field distribution when the conventional synchronization is not achieved, and the magnetic flux densities of the two in the mold thickness direction are shown in comparison with FIG. As is clear from these figures, in the former, the magnetic flux is sufficiently passed to the center of the mold thickness as compared with the latter, and its magnetic flux density is sufficiently large at the center of the mold thickness, which results in the narrow surface of the mold. The penetration depth of the molten steel flow penetrating into the slab along can be suppressed, and it is possible to prevent bubbles such as inclusions and argon gas caught in the molten steel flow from deeply entering the slab.

第6図は、上記構成の鋳型内電磁撹拌装置を元に、可
変幅鋳型Mの鋳型内寸法を230mm×800mmに設定した時の
浸漬ノズル7の吐出孔8から吐出された鋳型内溶鋼流れ
を示すもので、第6図(イ)に示す鋳型内溶鋼流れは、
サイクロコンバータ4b,4cを使用し、コイルb,b′とコイ
ルc,c′に400アンペア、5Hzを通電した場合の溶鋼流れ
であり、第6図(ロ)に示す鋳型内溶鋼流れは、比較の
ために行ったもので電磁撹拌を使用しなかった場合の溶
鋼流れである。図より明らかなように、後者に比較して
前者の方が、浸漬ノズル7の吐出孔8から狭面方向に向
いて吐出される溶鋼流9の吐出流速が十分低減され、可
変幅鋳型Mの狭面に沿ってスラブS内へ浸入する溶鋼流
10の浸入深さが抑制されている。
FIG. 6 shows the molten steel flow in the mold discharged from the discharge hole 8 of the immersion nozzle 7 when the size of the variable width mold M is set to 230 mm × 800 mm based on the electromagnetic stirrer in the mold having the above structure. The flow of molten steel in the mold shown in FIG.
The molten steel flow in the mold shown in Fig. 6 (b) is a comparison when the cycloconverters 4b and 4c are used and the coils b and b'and the coils c and c'are energized at 400 amps and 5 Hz. This is the flow of molten steel when the magnetic stirring was not used. As is clear from the figure, in the former case, as compared with the latter case, the discharge flow velocity of the molten steel flow 9 discharged from the discharge hole 8 of the immersion nozzle 7 toward the narrow surface direction is sufficiently reduced, and the variable width mold M Molten steel flow penetrating into slab S along a narrow surface
The penetration depth of 10 is suppressed.

第7図は、上記構成の鋳型内電磁撹拌装置を元に、可
変幅鋳型Mの鋳型内寸法を230mm×1640mmに設定した時
の浸漬ノズル7の吐出孔8から吐出された鋳型内溶鋼流
れを示すもので、第7図(イ)に示す鋳型内溶鋼流れ
は、サイクロコンバータ4a〜4bを使用し、コイルa,a′
とコイルd,d′に200アンペア、5Hz,コイルb,b′とコイ
ルc,c′に400アンペア、5Hzを通電した場合の溶鋼流れ
であり、第7図(ロ)および第7図(ハ)に示す鋳型内
溶鋼流れは、比較のために行ったもので、前者は、通電
条件を上記と同じにし各コイルの電流位相の同期をとら
なかった場合の溶鋼流れ、後者は、電磁撹拌を使用しな
かった場合の溶鋼流れである。この第7図においても、
図より明らかなように、第7図(ハ)に示す溶鋼流れに
比較して第7図(ロ)に示す溶鋼流れの方が、さらに第
7図(ロ)に示す溶鋼流れに比較して第7図(イ)に示
す溶鋼流れのほうが、浸漬ノズル7の吐出孔8から挟面
方向に向いて吐出される溶鋼流9の吐出流速が十分に低
減され、可変幅鋳型Mの狭面に沿ってスラブS内へ浸入
する溶鋼流10の浸入深さが抑制されている。
FIG. 7 shows the molten steel flow in the mold discharged from the discharge hole 8 of the dipping nozzle 7 when the mold size of the variable width mold M is set to 230 mm × 1640 mm based on the electromagnetic stirrer in the mold having the above configuration. The molten steel flow in the mold shown in Fig. 7 (a) uses the cycloconverters 4a to 4b and the coils a, a '
And the coils d and d ′ are 200 amps, 5 Hz, the coils b and b ′ are 400 amps to the coils c and c ′, and 5 Hz is the molten steel flow. The molten steel flow in the mold shown in) is performed for comparison.The former is the molten steel flow in the case where the energization conditions are the same as above and the current phase of each coil is not synchronized, and the latter is electromagnetic stirring. This is the flow of molten steel when not used. Also in FIG. 7,
As is clear from the figure, the molten steel flow shown in FIG. 7 (b) is more compared with the molten steel flow shown in FIG. 7 (b) than the molten steel flow shown in FIG. 7 (c). In the molten steel flow shown in FIG. 7 (a), the discharge flow velocity of the molten steel flow 9 discharged from the discharge holes 8 of the immersion nozzle 7 toward the sandwiching surface direction is sufficiently reduced, and the molten steel flow is narrowed on the narrow surface of the variable-width mold M. The penetration depth of the molten steel flow 10 that penetrates into the slab S is suppressed.

尚、第6図および第7図は、広面から見ると左右対称
となるので、左半分のみを示し説明した。
Since FIGS. 6 and 7 are bilaterally symmetric when viewed from a wide surface, only the left half is shown and described.

〔発明の効果〕〔The invention's effect〕

上述したように、本発明に係わるスラブの連続鋳造に
おける鋳型内電磁撹拌方法によれば、スラブ用可変幅鋳
型の内外両広面に設けた電磁撹拌装置の引抜方向の推力
を、鋳造されるスラブ広面の左右の側端(狭面)より所
定長さ除いた範囲に十分確実に作用させ得るので、鋳型
の狭面に沿ってスラブ内へ浸入する溶鋼流の浸入深さが
抑制され、溶鋼流に巻き込まれた介在物やアルゴンガス
などの気泡がスラブ内部へ深く浸入することが防止さ
れ、品質の良いスラブが得られる。
As described above, according to the electromagnetic stirring method in the mold in the continuous casting of the slab according to the present invention, the thrust in the pulling direction of the electromagnetic stirring device provided on the inner and outer wide surfaces of the variable width mold for the slab is the wide surface of the slab to be cast. Since it can be operated reliably within a range excluding a predetermined length from the left and right side ends (narrow surface) of the mold, the penetration depth of the molten steel flow entering the slab along the narrow surface of the mold is suppressed, and Entrapped inclusions and bubbles such as argon gas are prevented from deeply penetrating into the slab, and a high quality slab is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のスラブの連続鋳造における鋳型内電
磁撹拌方法に適用される装置の説明図、第2図は、第1
図に示す電磁撹拌装置の配線図、第3図は、本発明に係
わる電磁撹拌装置のコイルの巻線構造の説明図、第4図
は、コイルの磁場分布状態の説明図、第5図は、鋳型厚
方向における磁束密度の大きさを示す図、第6図乃至第
7図は、鋳型内溶鋼流れを示す説明図、第8図は、従来
技術の説明図、第9図は、比較例の電磁撹拌装置の配線
図である。 1,1′……鋳型の広面 2……鋳型の狭面 3a〜3d……変圧器 4a〜4b……サイクロコンバータ 5……周波数設定装置 6……鉄心 7……浸漬ノズル 8……吐出孔 9……浸漬ノズルから吐出される溶鋼流 10……狭面に沿ってスラブ内へ浸入する溶鋼流 a〜d′……電磁撹拌装置のコイル M……可変幅鋳型 S……スラブ
FIG. 1 is an explanatory view of an apparatus applied to an electromagnetic stirring method in a mold in continuous casting of a slab of the present invention, and FIG.
FIG. 3 is a wiring diagram of the electromagnetic stirrer shown in the figure, FIG. 3 is an explanatory diagram of a coil winding structure of the electromagnetic stirrer according to the present invention, FIG. 4 is an explanatory diagram of a magnetic field distribution state of the coil, and FIG. FIG. 6 is a diagram showing the magnitude of magnetic flux density in the thickness direction of the mold, FIGS. 6 to 7 are explanatory diagrams showing the flow of molten steel in the mold, FIG. 8 is an explanatory diagram of the prior art, and FIG. 9 is a comparative example. 2 is a wiring diagram of the electromagnetic stirring device of FIG. 1,1 '…… Wide surface of mold 2 …… Narrow surface of mold 3a ~ 3d …… Transformer 4a ~ 4b …… Cycloconverter 5 …… Frequency setting device 6 …… Iron core 7 …… Immersion nozzle 8 …… Discharge hole 9: Molten steel flow discharged from the immersion nozzle 10: Molten steel flow penetrating into the slab along a narrow surface a to d '... Electromagnetic stirrer coil M: Variable width mold S: Slab

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】曲げ型連鋳機におけるスラブ用可変幅鋳型
の内外両広面の幅中心軸の左右対称位置に、スラブの引
抜方向に推力を発生する電磁撹拌装置を少なくとも2対
づつ設けるとともに、電磁撹拌装置のコイルの磁極の極
性を、鋳型を挟んで対向するコイルに対しては、各磁極
が異極となるように、隣り合うコイルに対しては、各磁
極が同極となるように磁極の位相を揃えて溶鋼の電磁撹
拌を行うことを特徴とするスラブの連続鋳造における鋳
型内電磁撹拌方法。
1. At least two pairs of electromagnetic stirrers for generating thrust in the pulling direction of the slab are provided at symmetrical positions of the width center axes of the inner and outer wide surfaces of the variable width mold for the slab in the bending type continuous casting machine, The polarities of the magnetic poles of the coils of the electromagnetic stirrer should be such that the magnetic poles of the coils facing each other with the mold sandwiched are different from each other, and the magnetic poles of the coils adjacent to each other are the same. An electromagnetic stirring method in a mold for continuous casting of a slab, characterized in that molten steel is electromagnetically stirred with the magnetic poles aligned in phase.
JP2220575A 1990-08-21 1990-08-21 In-mold electromagnetic stirring method for continuous casting of slabs Expired - Fee Related JPH084885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220575A JPH084885B2 (en) 1990-08-21 1990-08-21 In-mold electromagnetic stirring method for continuous casting of slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220575A JPH084885B2 (en) 1990-08-21 1990-08-21 In-mold electromagnetic stirring method for continuous casting of slabs

Publications (2)

Publication Number Publication Date
JPH04100665A JPH04100665A (en) 1992-04-02
JPH084885B2 true JPH084885B2 (en) 1996-01-24

Family

ID=16753135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220575A Expired - Fee Related JPH084885B2 (en) 1990-08-21 1990-08-21 In-mold electromagnetic stirring method for continuous casting of slabs

Country Status (1)

Country Link
JP (1) JPH084885B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2325808C (en) 2000-07-10 2010-01-26 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals

Also Published As

Publication number Publication date
JPH04100665A (en) 1992-04-02

Similar Documents

Publication Publication Date Title
CN1112264C (en) Electromagnetic braking device for smelting metal in continuous casting installation
US6712124B1 (en) Method and apparatus for continuous casting of metals
JPS6188950A (en) Molten-metal electromagnetic agitator
KR101332209B1 (en) Method and device for the continuous casting of preliminary steel sections, in particular preliminary double-t sections
JPH10305353A (en) Continuous molding of steel
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
JPH084885B2 (en) In-mold electromagnetic stirring method for continuous casting of slabs
JPH07100223B2 (en) Electromagnetic coil device for continuous casting mold
US5137077A (en) Method of controlling flow of molten steel in mold
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
KR20020086913A (en) Equipment for supplying molten metal to a continuous casting ingot mould and Method for using same
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JPH0333055B2 (en)
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPS63119962A (en) Rolling device for electromagnetic agitation
JPH04319052A (en) Method and apparatus for controlling flow of molten steel in mold
JPH04200849A (en) Electromagnetic stirring method for continuous casting
JP3501997B2 (en) Method for producing continuous cast slab and electromagnetic stirrer in continuous cast mold
US6929055B2 (en) Equipment for supplying molten metal to a continuous casting ingot mould
JPS5939454A (en) Electromagnetic stirrer in continuous casting machine for bloom having large section
JPH10305358A (en) Continuous molding of steel
JPH06297093A (en) Method for continuously casting duplex layer cast slab and apparatus therefor
JPH11347696A (en) Continuos casting equipment
JPH04118160A (en) Method for continuously casting steel and device for impressing static magnetic field thereof
JPS62279060A (en) Electromagnetic stirring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees