JPH084879B2 - Vibration method of continuous casting mold - Google Patents

Vibration method of continuous casting mold

Info

Publication number
JPH084879B2
JPH084879B2 JP2042400A JP4240090A JPH084879B2 JP H084879 B2 JPH084879 B2 JP H084879B2 JP 2042400 A JP2042400 A JP 2042400A JP 4240090 A JP4240090 A JP 4240090A JP H084879 B2 JPH084879 B2 JP H084879B2
Authority
JP
Japan
Prior art keywords
mold
period
continuous casting
pair
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2042400A
Other languages
Japanese (ja)
Other versions
JPH03248746A (en
Inventor
誓司 糸山
健一 反町
祐司 三木
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP2042400A priority Critical patent/JPH084879B2/en
Publication of JPH03248746A publication Critical patent/JPH03248746A/en
Publication of JPH084879B2 publication Critical patent/JPH084879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、堅型連続鋳造用鋳型の振動方法、特に鋳型
面・凝固殻間に溶融モールドパウダーを増加させてブレ
ークアウトの発生を防止し、かつ同時にオシレーション
マーク深さを減少できる鋳型の振動方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a vibrating method for a rigid continuous casting mold, and more particularly, to increase the amount of molten mold powder between the mold surface and the solidified shell to prevent the occurrence of breakout. In addition, the present invention relates to a method of vibrating a mold that can simultaneously reduce the depth of oscillation marks.

〈従来の技術〉 堅型連続鋳造機において、通常鋳型を所定の周期で上下
方向に振動させながら鋳片を一定速度で鋳型下部から引
抜いている。また鋳型を振動させると同時に鋳型内の溶
鋼上にモールドパウダーを添加している。モールドパウ
ダー添加の目的は、溶鋼の酸化防止、溶鋼の保温、
介在物の吸収、鋳型・凝固殻間の摩擦力の低減であ
る。
<Prior Art> In a rigid continuous casting machine, usually, a slab is pulled out from the lower part of the mold at a constant speed while vertically oscillating the mold at a predetermined cycle. At the same time that the mold is vibrated, mold powder is added on the molten steel in the mold. The purpose of adding mold powder is to prevent the oxidation of molten steel, keep it warm,
Absorption of inclusions and reduction of frictional force between the mold and solidified shell.

従来、鋳型の振動方法は、第3図に示すように、鋳型
の振動変位が正弦波となるような方法が一般的にとられ
ている。第3図において、鋳型の振動速度Vmが鋳型引抜
速度Vcより速い時期をネガティブストリップ期TN、遅い
時期をポジティブストリップ期TDと称される。一般に鋳
片表面にはオシレーションマークと称される凹み部分が
観察されるが、これは鋳型の下降時間およびネガティブ
ストリップ期TNと相関が強い。鋳型振動によるメニスカ
ス部の溶融モールドパウダー内圧力の数値解析から、ネ
ガティブストリップ期TNには鋳型の下向きの運動エネル
ギーがモールドパウダーによって伝達し、メニスカス部
のパウダーに正の圧力が発生するために凝固殻先端が曲
げられると考えられている。またオシレーションマーク
部分にはこのオシレーションマーク深さに比例する溶質
元素の濃化層が観察されるため次工程の圧延時にはこれ
を除去することが必要である。
Conventionally, as a method of vibrating the mold, as shown in FIG. 3, a method in which the vibration displacement of the mold is a sine wave is generally adopted. In FIG. 3, a period when the mold vibration speed Vm is faster than the mold drawing speed Vc is called a negative strip period T N , and a slow period is called a positive strip period T D. Generally, a dent portion called an oscillation mark is observed on the surface of the slab, which has a strong correlation with the falling time of the mold and the negative strip period T N. Numerical analysis of the pressure in the molten mold powder in the meniscus due to mold vibration shows that the downward kinetic energy of the mold is transferred by the mold powder during the negative strip period T N , and positive pressure is generated in the powder in the meniscus, causing solidification. It is believed that the tip of the shell can be bent. Further, a concentrated layer of a solute element that is proportional to the depth of the oscillation mark is observed in the oscillation mark portion, so it is necessary to remove this when rolling in the next step.

一般鋼の場合には、熱間圧延の加熱工程でスケールオ
フ量がオシレーションマーク深さ以上に大きく、連続鋳
造スラブの無手入れ圧延が可能であるが、ステンレス鋼
の場合には、上記スケールオフ量が少なくオシレーショ
ンマーク谷部の溶質元素の偏析が製品表面に残存するこ
とがあるため、鋳型スラブの表面をグラインダー手入れ
を施すことが必要となっている。
In the case of general steel, the scale-off amount is larger than the oscillation mark depth in the heating process of hot rolling, and maintenance-free rolling of continuous cast slabs is possible. Since a small amount of segregation of solute elements in the valley portion of the oscillation mark may remain on the product surface, it is necessary to grind the surface of the mold slab.

この対策として前述のようにオシレーションサイクル
を増大させて鋳型の下降期およびネガティブストリップ
期TNを短くすることが有効であるが、この場合にはパウ
ダー消費量の減少につながりブレークアウトの危険性を
増大させることが広く知られている。つまりオシレーシ
ョンマークを浅くし、かつブレークアウトを防止するこ
とを同時に満足させる鋳造は困難であった。
As a countermeasure against this, it is effective to increase the oscillation cycle to shorten the mold falling period and the negative strip period T N as described above, but in this case, the powder consumption is reduced and the risk of breakout is increased. It is widely known to increase. That is, it is difficult to perform casting in which the oscillation mark is shallow and the breakout is prevented at the same time.

〈発明が解決しようとする課題〉 本発明は、前述のように鋳型の下降期およびネガテ
ィブストリップ期にモールドパウダー内圧力が発生し、
鋳片表面のオシレーションマークが深くなり、偏析層深
さも深くなる、ハイサイクルオシレーション時に拘束
性ブレークアウトが増すという問題を解決するために、
鋳型面・凝固殻間距離を鋳型の振動周期に応じて変化さ
せて、モールドパウダー内圧力を低減させ、かつパウダ
ー消費量を増加させるような連続鋳造用鋳型の振動方法
を提供するためになされたものである。
<Problems to be Solved by the Invention> The present invention, as described above, the mold powder internal pressure occurs in the descending period and the negative strip period of the mold,
In order to solve the problem that the oscillation mark on the surface of the slab becomes deeper, the depth of the segregation layer becomes deeper, and the constraint breakout increases during high cycle oscillation,
It was made to provide a vibration method for a continuous casting mold in which the distance between the mold surface and the solidified shell is changed according to the vibration cycle of the mold to reduce the pressure inside the mold powder and increase the powder consumption. It is a thing.

〈課題を解決するための手段〉 本発明は、二対の鋳型面で鋳造空間を作る連続鋳造
用鋳型の振動方法において、上下振動の鋳型下降期に対
応する期間と、それに連続する前あるいはその後の鋳型
上昇期の一時期に少なくとも一対の鋳型面を各々後退さ
せ該鋳型面・鋳片間距離を増加させ、それ以外の時期に
は再び一対の鋳型面を各々前進させ元の位置に戻す動作
を繰り返し行うことを特徴とする連続鋳造用鋳型の振動
方法、二対の鋳型面で鋳造空間を作る連続鋳造用鋳型
の振動方法において、上下振動のネガティブストリップ
期に対応する期間と、その前あるいはその後のポジティ
ブストリップ期の一時期に少なくとも一対に鋳型面を各
々後退させて該鋳型面・鋳片間距離を増加させ、それ以
外の時期には再び一対の鋳型面を各々前進させ元の位置
に戻す動作を繰り返し行うことを特徴とする連続鋳造用
鋳型の振動方法である。
<Means for Solving the Problems> The present invention is a vibration method of a continuous casting mold that creates a casting space with two pairs of mold surfaces, a period corresponding to the mold descending period of vertical vibration, and before or after continuous to it. At least one pair of mold surfaces are retreated during one period of the mold ascending period to increase the distance between the mold surfaces and the slabs, and at other times, the pair of mold surfaces are again moved forward to return to their original positions. In a continuous casting mold vibrating method characterized by being repeatedly performed, in a vibrating method of a continuous casting mold making a casting space with two pairs of mold surfaces, a period corresponding to the negative strip period of vertical vibration, and before or after that. Of the positive strip period, the mold surfaces are retreated to at least one pair to increase the distance between the mold surfaces and the slabs, and at other times, the pair of mold surfaces are moved forward again. Is a method for vibrating a continuous casting mold, which is characterized in that the operation of returning to the position is repeatedly performed.

〈作用〉 本発明では、堅型連続鋳造用鋳型の振動が鋳型の下降
期とそれに連続する前あるいは後の鋳型の上昇期の一時
期、並びに鋳型の上下振動のネガティブストリップ期に
対応する期間と、それに連続する前あるいはその後のポ
ジティブストリップ期の一時期に、少なくとも一対の鋳
型面を各々後方に移動させて該両側の鋳型面・凝固殻間
距離を増大させるので、鋳型面・凝固殻間の両側に充分
な量の溶融モールドパウダーが流入し鋳型面と凝固殻間
の摩擦力を低減させて、パウダー内圧力を低減するので
凝固殻先端の曲げ変形量を低減できた。
<Operation> In the present invention, the vibration of the rigid continuous casting mold is one period of the rising period of the mold before or after the falling period of the mold and continuous therewith, and a period corresponding to the negative strip period of the vertical vibration of the mold, At least one pair of mold surfaces are moved backward to increase the distance between the mold surfaces and the solidified shells on both sides before or after the positive strip period before or after that, so that the mold surface and the solidified shells on both sides are increased. A sufficient amount of molten mold powder flows in to reduce the frictional force between the mold surface and the solidified shell, and the internal pressure of the powder is reduced, so the amount of bending deformation at the tip of the solidified shell can be reduced.

〈実施例〉 本発明に掛る実施例を以下に説明する。<Example> An example according to the present invention will be described below.

堅型連続鋳造鋳型の振動が鋳型の下降期とそれに連続
する前あるいはその後の鋳型の上昇期の一時期、並びに
鋳型のネガティブストリップ期に対応する期間とそれに
連続する前あるいはその後のポジティブストリップ期の
一時期に、第2図の通常の鋳型面・凝固殻間の距離Xmを
増大させるべく、少なくとも一対の水冷鋳型を各々後方
に移動してこの鋳型面・凝固殻間距離を鋳型面・凝固殻
間距離Xnに拡大し、それ以外の時期では再び一対の鋳型
面を各々前進させて通常の位置に戻すように鋳片引抜方
向に直角な水冷鋳型の移動を行わせた。
The vibration of the rigid continuous casting mold is one period before and after the falling period of the mold and before or after that period, and one period before and after the period corresponding to the negative strip period of the mold and before and after that period. In order to increase the distance Xm between the normal mold surface and the solidified shell shown in Fig. 2, at least a pair of water-cooled molds are moved backward and the distance between the mold surface and the solidified shell is set to the distance between the mold surface and the solidified shell. The water-cooled mold was moved at right angles to the slab drawing direction so that the mold surface was expanded to Xn, and at other times, the pair of mold surfaces were again advanced and returned to the normal positions.

第1図に示すように、一般にスラブ連続鋳造機ではモ
ールド短辺2をモールド長辺1でクランプする方法がと
られているので、本発明者らは短辺クランプ用油圧シリ
ンダ4の開閉を油圧回路を通じて行うことによって鋳型
の移動を実現したものである。鋳造中にモールド長辺1
・モールド短辺2間に隙間を余り生じさせると、溶鋼が
隙間に侵入してトラブルを生じ易い。このため本実施例
においては、前記鋳型の後退量(Xn−Xm)は0.5mm以内
となるようにした。
As shown in FIG. 1, generally, in a slab continuous casting machine, a method of clamping the short side 2 of the mold with the long side 1 of the mold is adopted. Therefore, the present inventors open and close the hydraulic cylinder 4 for clamping the short side with a hydraulic pressure. This is achieved by moving the mold through the circuit. Mold long side 1 during casting
-If a gap is formed too much between the short sides 2 of the mold, molten steel easily enters the gap and causes a trouble. Therefore, in this example, the retreat amount (Xn-Xm) of the mold was set to be within 0.5 mm.

第4図(a)〜(f)に本発明の鋳型の動きの例をま
とめて示した。すなわち、堅型鋳型の振動が鋳型の下降
期とそれに連続する前あるいは後の鋳型の上昇期の一時
期、並びに鋳型の上下振動のネガティブストリップ期に
対応する期間とそれに連続する前あるいはその後のポジ
ティブストリップ期の一時期に鋳型面・凝固殻間距離を
人工的に同時に拡大し、それ以外の時期には通常の位置
に戻す方法である。なお、鋳型を拡大ならびに通常の位
置に戻す際の経路パターンは、ステップ状や直線に限る
必要はなく、連続的に変化したパターンでもよいことは
いうまでもない。
4 (a) to (f) collectively show an example of the movement of the mold of the present invention. That is, the vibration of the rigid mold is one period of the mold rising period before or after the falling period of the mold and one period of the rising period of the mold, and the period corresponding to the negative strip period of the vertical vibration of the mold and the positive strip before or after that period. This is a method in which the distance between the mold surface and the solidified shell is artificially expanded at the same time during one of the periods, and then returned to the normal position at other times. Needless to say, the route pattern for expanding the mold and returning it to the normal position is not limited to the step shape or the straight line, and may be a continuously changed pattern.

本発明方法によって鋳型を振動させて鋳片を鋳造した
場合の鋳片オシレーションマーク深さ(d1)と偏析層深
さ(d2)(第5図参照)を従来の正弦波形によって鋳型
を振動させた場合と対比させて第1表並びに第2表に示
した。
The slab oscillation mark depth (d 1 ) and segregation layer depth (d 2 ) (see FIG. 5) in the case of casting a slab by vibrating the mold according to the method of the present invention are determined by a conventional sine waveform. The results are shown in Tables 1 and 2 in comparison with the case of vibrating.

なお、第1表は、鋳型の下降期とその前後の一時期
に、第2表は、鋳型の上下振動のネガティブストリップ
期とその前後の一時期に、それぞれ一対の鋳型面・凝固
殻間距離を人工的に拡大した本発明法および従来法を示
したものである。
Table 1 shows the distance between the pair of mold surfaces and the solidified shells during the falling period of the mold and one period before and after it, and Table 2 shows the distance between the pair of mold faces and the solidified shells during the negative strip period of vertical vibration of the mold and one period before and after it. 2 shows the method of the present invention and the conventional method which have been enlarged.

第1表並びに第2表から明らかなように本発明法によ
って鋳型を振動させた場合にはオシレーションマーク深
さおよび偏析層深さを著しく減少させ、かつ拘束性ブレ
ークアウト発生率を減少させることができた。
As is apparent from Tables 1 and 2, when the mold is vibrated by the method of the present invention, the oscillation mark depth and the segregation layer depth are significantly reduced, and the restraint breakout occurrence rate is reduced. I was able to.

〈発明の効果〉 本発明法によると、鋳片に発生するオシレーションマ
ーク深さを減少し、鋳片表層部の溶質成分偏析を減少す
ることができる。また拘束性ブレークアウト発生部を著
しく低減でき、安定鋳造が達成できる。
<Effects of the Invention> According to the method of the present invention, it is possible to reduce the depth of oscillation marks generated in a slab and to reduce solute component segregation in the surface layer of the slab. Further, the restraint breakout occurrence portion can be remarkably reduced, and stable casting can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施に用いた鋳型などの設備の構成
図(一対の鋳型の片側だけを示した図面)、第2図は、
鋳型・鋳片間の模式図(一対の鋳型の片側だけを示した
図面)、第3図は鋳型の振動速度、鋳片の引抜速度の経
時変化を示すグラフ、第4図は、本発明実施例の特性図
を示す。(a)は、鋳型長辺面を鋳型のTN期とそれに連
続する後のTD期の一時期に、鋳型面・凝固殻間距離をス
テップ状に拡大し、それ以外の時期では、通常の位置に
戻す方法で、TN>0での例、(b)は、鋳型長辺面を鋳
型のTN期とそれに連続する前のTD期の一時期に、鋳型面
・凝固殻間距離をステップ状に拡大し、それ以外の時期
では通常の位置に戻す方法で、TN>0での例、(c)
は、鋳型長辺面を鋳型の下降期とそれに連続する後の鋳
型上昇期の一時期に、鋳型面・凝固殻間距離をステップ
状に拡大し、それ以外の時期では、通常の位置に戻す方
法で、TN>0での例、(d)は、鋳型長辺面を鋳型の下
降期とそれに連続する前の鋳型上昇時期の一時期に、鋳
型面・凝固殻間距離をステップ状に拡大し、それ以外の
時期では、通常の位置に戻す方法で、TN>0での例、
(e)は、鋳型長辺面を鋳型のTN期とそれに連続する後
のTD期の一時期に、鋳型面・凝固殻間距離を直線的に拡
大し、それ以外の時期では、通常の位置に戻す方法で、
TN>0での例、(f)は、TNが存在しない場合の例で、
鋳型長辺面を鋳型の下降期とそれに連続する前の鋳型上
昇期の一時期に、鋳型面・凝固殻間距離をステップ状に
拡大し、それ以外の時期では、通常の位置に戻す方法、
第5図は、オシレーションマーク、偏析層を示す模式図
である。 1…モールド長辺、2…モールド短辺、3…短辺クラン
プ用バネ、4…短辺クランプ用油圧シリンダ、5…上部
クランプ開閉用ソレノイドバルブ、6…下部クランプ開
閉用ソレノイドバルブ、7…油圧モータ、8…油圧タン
ク、9…水冷鋳型、10…モールドパウダー、11…溶鋼、
12…凝固殻、13…オシレーションマーク、14…偏析層、
X…鋳片引抜方向、TD…ポジティブストリップ期、TN
ネガティブストリップ期、Xn…拡大された鋳型面・凝固
殻間距離、Xm…通常の鋳型面・凝固殻間距離、Vm…鋳型
の振動速度、Vc…鋳片の引抜速度、Z…鋳型の振動変
位。
FIG. 1 is a configuration diagram of equipment such as a mold used for carrying out the present invention (drawing showing only one side of a pair of molds), and FIG.
Schematic diagram between the mold and the slab (drawing showing only one side of the pair of molds), FIG. 3 is a graph showing changes with time of the vibration speed of the mold and the withdrawal speed of the slab, and FIG. 4 is the embodiment of the present invention. The characteristic diagram of an example is shown. In (a), the distance between the mold surface and the solidified shell is expanded stepwise during the T N phase of the mold and the subsequent T D phase of the mold on the long side of the mold. In the case of T N > 0, (b) shows the method of returning the position to the position, where the long side of the mold is the T N period of the mold and the T D period before it is continuous, Example of T N > 0 by expanding in steps and returning to the normal position at other times, (c)
Is a method in which the distance between the mold surface and the solidified shell is expanded stepwise during the period in which the long side of the mold descends and the mold ascends after that, and then returns to the normal position at other times. In the case of T N > 0, (d) shows that the distance between the mold surface and the solidified shell is expanded stepwise during the mold descending period and the mold ascending period before the mold descending period. , At other times, the method of returning to the normal position, with T N > 0,
In (e), the distance between the mold surface and the solidified shell is linearly expanded during the T N phase of the mold and the subsequent T D phase of the mold on the long side of the mold. By returning it to the position
An example when T N > 0, (f) is an example when T N does not exist,
A method in which the distance between the mold surface and the solidified shell is expanded stepwise during one period of the mold rising period before the mold long side surface and the mold descending period, and at other times, it is returned to the normal position.
FIG. 5 is a schematic diagram showing an oscillation mark and a segregation layer. 1 ... Mold long side, 2 ... Mold short side, 3 ... Short side clamping spring, 4 ... Short side clamping hydraulic cylinder, 5 ... Upper clamp opening / closing solenoid valve, 6 ... Lower clamping opening / closing solenoid valve, 7 ... Hydraulic pressure Motor, 8 ... Hydraulic tank, 9 ... Water cooling mold, 10 ... Mold powder, 11 ... Molten steel,
12 ... Solidified shell, 13 ... Oscillation mark, 14 ... Segregation layer,
X ... Cast strip drawing direction, T D ... Positive strip period, T N ...
Negative strip period, Xn… expanded distance between mold surface and solidified shell, Xm… normal distance between mold surface and solidified shell, Vm… vibration speed of mold, Vc… drawing speed of slab, Z… vibration displacement of mold .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−3528(JP,A) 特開 昭60−87955(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-52-3528 (JP, A) JP-A-60-87955 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二対の鋳型面で鋳造空間を作る連続鋳造用
鋳型の振動方法において、上下振動の鋳型下降期に対応
する期間と、それに連続する前あるいはその後の鋳型上
昇期の一時期に鋳型を後退させて少なくとも一対の鋳型
面を各々後退させて該鋳型面・鋳片間距離を増加させ、
それ以外の時期には再び一対の鋳型面を各々前進させ元
の位置に戻す動作を繰り返し行うことを特徴とする連続
鋳造用鋳型の振動方法。
1. A method for vibrating a continuous casting mold, wherein a casting space is formed by two pairs of mold surfaces, in a period corresponding to a downward period of vertical vibration and one period before or after the period during which the mold rises. To retreat at least a pair of mold surfaces to increase the distance between the mold surface and the slab,
A vibration method for a continuous casting mold, characterized in that at a time other than that time, the operation of advancing the pair of mold surfaces again and returning them to the original position is repeated.
【請求項2】二対の鋳型面で鋳造空間を作る連続鋳造用
鋳型の振動方法において、上下振動のネガティブストリ
ップ期に対応する期間と、それに連続する前あるいはそ
の後のポジティブストリップ期の一時期に少なくとも一
対の鋳型面を各々後退させて該鋳型面・鋳片間距離を増
加させ、それ以外の時期には再び一対の鋳型面を各々前
進させ元の位置に戻す動作を繰り返し行うことを特徴と
する連続鋳造用鋳型の振動方法。
2. A method of vibrating a continuous casting mold for forming a casting space with two pairs of mold surfaces, wherein at least a period corresponding to a negative strip period of vertical vibration and a period of a positive strip period before or after the negative strip period. It is characterized in that the pair of mold surfaces are respectively retracted to increase the distance between the mold surfaces and the slabs, and at other times, the pair of mold surfaces are again moved forward and returned to their original positions. Vibration method of continuous casting mold.
JP2042400A 1990-02-26 1990-02-26 Vibration method of continuous casting mold Expired - Lifetime JPH084879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042400A JPH084879B2 (en) 1990-02-26 1990-02-26 Vibration method of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042400A JPH084879B2 (en) 1990-02-26 1990-02-26 Vibration method of continuous casting mold

Publications (2)

Publication Number Publication Date
JPH03248746A JPH03248746A (en) 1991-11-06
JPH084879B2 true JPH084879B2 (en) 1996-01-24

Family

ID=12635020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042400A Expired - Lifetime JPH084879B2 (en) 1990-02-26 1990-02-26 Vibration method of continuous casting mold

Country Status (1)

Country Link
JP (1) JPH084879B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579824A (en) * 1993-11-29 1996-12-03 Kawasaki Steel Corporation Continuous casting process with vertical mold oscillation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523528A (en) * 1975-06-28 1977-01-12 Nippon Steel Corp Method of complexly oscillating continuous casting mould
JPS6087955A (en) * 1983-10-18 1985-05-17 Nippon Kokan Kk <Nkk> Oscillating method of vertical type mold for continuous casting

Also Published As

Publication number Publication date
JPH03248746A (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JP2644349B2 (en) Vibration method of vertical continuous casting mold
Li et al. Maximum casting speed for continuous cast steel billets based on sub-mold bulging computation
Thomas et al. Simulation of longitudinal off-corner depressions in continuously cast steel slabs
ATE13828T1 (en) METHOD AND DEVICE FOR COOLING AND SUPPORTING A STRAND IN A PLATE MOLD OF A STEEL CONTINUOUS CASTING PLANT.
JPH084879B2 (en) Vibration method of continuous casting mold
US5579824A (en) Continuous casting process with vertical mold oscillation
Itoyama et al. Control of early solidification in continuous casting by horizontal oscillation in synchronization with vertical oscillation of the mold
EP0618023B1 (en) casting continuous slab in oscillated mold with horizontally retractable walls
RU96117380A (en) CONTINUOUS CASTING DEVICE AND METHOD FOR MANUFACTURING RECTANGULAR THIN FLAT INGOTS
US5103892A (en) Continuous casting of discrete shapes
Sengupta et al. Visualization of hook and oscillation mark formation mechanism in ultra-low carbon steel slabs during continuous casting
EP0470220A4 (en) Process and apparatus for producing molded shapes
CN105828977A (en) Method for producing a casting core and a casting core
JP2539550B2 (en) Continuous casting slab casting method
RU2142864C1 (en) Method for production of continuous deformed castings
JPH0576997A (en) Method for oscillating mold for vertical type continuous casting
M'Hamdi et al. Modeling of solidification in a meniscus free continuous casting
JPS5611134A (en) Solidifying method for metal
JPH0489163A (en) Continuous casting method and mold thereof
JP2720692B2 (en) High-speed casting end method in continuous casting
Lei et al. Numerical simulation of flow field in the slab continuous casting mould by EMBR software
KR100895069B1 (en) The control method of driven roll pressure in mold width change
JPH04143057A (en) Method for oscillating mold for vertical type continuous casting
JPH0692022B2 (en) Light reduction method for continuous cast slab
JPS61296942A (en) Molten steel level control device of continuous casting device for thin sheet