JPH0848508A - Cyclohexa phosphate and its production - Google Patents

Cyclohexa phosphate and its production

Info

Publication number
JPH0848508A
JPH0848508A JP21052094A JP21052094A JPH0848508A JP H0848508 A JPH0848508 A JP H0848508A JP 21052094 A JP21052094 A JP 21052094A JP 21052094 A JP21052094 A JP 21052094A JP H0848508 A JPH0848508 A JP H0848508A
Authority
JP
Japan
Prior art keywords
cyclohexaphosphate
guanidine
soln
phosphate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21052094A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP21052094A priority Critical patent/JPH0848508A/en
Publication of JPH0848508A publication Critical patent/JPH0848508A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce cyclohexaguanidine phosphate dehydrate by allowing cyclohexalithium phosphate to react with guanidine carbonate or guanidine phosphate in an aq. soln. CONSTITUTION:The cyclohexaguanidine phosphate dehydrate is produced by the following method. 85wt.% orthophosphoric acid is mixed with lithium carbonate in a mol. ratio of 10:7 in a porcelain dish and heated with an electric furnace for 1hr at 200 deg.C, for 5hr at 275 deg.C and for 3hr at 420 deg.C at last. The product is ground and mixed with an EDTA soln. adjusted to pH 9 with lithium hydroxide and the soln. is stirred for 2hr. The mixture is filtered and methanol is added to the filtered liq. Then, the mixed liq. is filtered, and lithium chloride is added to this filtered liq. to obtain a white precipitate. This precipitate is made to 10wt.% aq. soln. and passed through a cation exchange resin to remove lithium ion. The white precipitate is obtained by adding the guanidine carbonate or the guanidine phosphate under cooling the soln. with ice and after leaving to stand in a refrigerator for a day. This precipitate is washed with 80vol.% acetone aq. soln. to obtain the object product expressed by the formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なシクロ六リン酸塩
であるシクロ六リン酸グアニジン二水和物、シクロ六リ
ン酸アンモニウム一水和物およびそれらの製造方法に関
する。リン酸塩は古くから化学肥料の原料として用いら
れ、近年、特に縮合リン酸塩は用水処理剤、食品添加
剤、難燃剤、各種セラミックス材料、生体材料、電子材
料として幅広く利用されるようになり、その用途は大き
な広がりを持っている。本発明のシクロ六ルン酸グアニ
ジン二水和物およびシクロ六リン酸アンモニウム一水和
物は上述した分野への新規なリン酸塩として有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel cyclohexaphosphate, guanidine cyclohexaphosphate dihydrate, ammonium cyclohexaphosphate monohydrate and a method for producing them. Phosphate has long been used as a raw material for chemical fertilizers, and in recent years condensed phosphates have become widely used as water treatment agents, food additives, flame retardants, various ceramic materials, biomaterials, and electronic materials. , Its application has a great spread. The guanidine cyclohexaphosphate dihydrate and the ammonium cyclohexaphosphate monohydrate of the present invention are useful as novel phosphates in the above-mentioned fields.

【0002】[0002]

【従来の技術】従来より、縮合リン酸塩の研究は盛んに
行われており、例えばヘテロアトムケミストリー(He
teroat.Chem.)1991年、第2巻5号、
587−592ページで本発明者はシクロ八リン酸ナト
リウム塩の合成とその熱特性について報告している。し
かしながらシクロ六リン酸塩であるシクロ六リン酸グア
ニジン及びシクロ六リン酸アンモニウムの合成方法は確
立されていない。
2. Description of the Related Art Conventionally, condensed phosphates have been extensively studied, for example, heteroatom chemistry (He).
teroat. Chem. ) 1991, Volume 2, Issue 5,
On pages 587-592, we report the synthesis of cyclooctaphosphate sodium salt and its thermal properties. However, a method for synthesizing guanidine cyclohexaphosphate and ammonium cyclohexaphosphate, which are cyclohexaphosphate, has not been established.

【0003】[0003]

【発明が解決しようとする課題】本発明者は用水処理
剤、食品添加剤、難燃剤、各種セラミックス材料、生体
材料、電子材料として有用な新規な縮合リン酸塩である
シクロ六リン酸グアニジン及びシクロ六リン酸アンモニ
ウムを得るべく鋭意研究した。その結果、シクロ六リン
酸リチウムの六水和物を水に溶解し、陽イオン交換樹脂
を介してグアニジン基もしくはアンモニウムイオンと置
換することにより新規な縮合リン酸塩であるシクロ六リ
ン酸グアニジン二水和物またはシクロ六リン酸アンモニ
ウム一水和物が得られることを見いだし、この知見に基
づき、本発明を完成した。以上の記述から明らかなよう
に、本発明の目的は新規な縮合リン酸塩であるシクロ六
リン酸グアニジン二水和物、シクロ六リン酸アンモニウ
ム一水和物及びそれらの製造方法を提供することであ
る。
DISCLOSURE OF THE INVENTION The present inventors have found that a novel condensed phosphate, guanidine cyclohexaphosphate, which is useful as a water treatment agent, food additive, flame retardant, various ceramic materials, biomaterials and electronic materials, and An intensive study was conducted to obtain ammonium cyclohexaphosphate. As a result, by dissolving lithium cyclohexaphosphate hexahydrate in water and substituting it with a guanidine group or an ammonium ion through a cation exchange resin, a novel condensed phosphate, guanidine dicyclohexaphosphate, is obtained. It was found that a hydrate or ammonium cyclohexaphosphate monohydrate was obtained, and based on this finding, the present invention was completed. As is clear from the above description, an object of the present invention is to provide a novel condensed phosphate, guanidine cyclohexaphosphate dihydrate, ammonium cyclohexaphosphate monohydrate, and a method for producing them. Is.

【0004】[0004]

【課題を解決するための手段】本発明は以下の構成を有
する。 (1)下記化3の構造を有するシクロ六リン酸グアニジ
ン二水和物。
The present invention has the following configuration. (1) Guanidine cyclohexaphosphate dihydrate having the structure of the following chemical formula 3.

【化3】 (2)下記化4の構造を有するシクロ六リン酸アンモニ
ウム一水和物。
[Chemical 3] (2) Ammonium cyclohexaphosphate monohydrate having the structure of Chemical formula 4 below.

【化4】 (3)シクロ六リン酸リチウム六水和物と炭酸グアニジ
ンまたはリン酸グアニジンを水溶液中で反応させること
を特徴とするシクロ六リン酸グアニジン二水和物の製造
方法。 (4)シクロ六リン酸リチウムとアンモニウム水溶液を
水溶液中で反応させることを特徴とするシクロ六リン酸
アンモニウム一水和物の製造方法。
[Chemical 4] (3) A method for producing guanidine cyclohexaphosphate dihydrate, which comprises reacting lithium cyclohexaphosphate hexahydrate with guanidine carbonate or guanidine phosphate in an aqueous solution. (4) A method for producing ammonium cyclohexaphosphate monohydrate, which comprises reacting lithium cyclohexaphosphate with an aqueous ammonium solution in an aqueous solution.

【0005】本発明で用いるシクロ六リン酸リチウム六
水和物は次のようにして得ることができる。すなわち、
85重量%のオルソリン酸と炭酸リチウムをモル比1
0:7で磁性皿にて混合し、200℃の電気炉で1時
間、275℃で5時間、最後に420℃で3時間加熱す
る。得られた生成物を粉砕し、水酸化リチウムでPH9
に調製したエチレンジアミンテトラアセテ−ト(EDT
A)溶液に混合し、2時間攪拌する。該EDTA溶液を
混合することによりわずかな沈殿が生じるため、この溶
液をフィルタ−で濾過し、不溶性物質を除去する。氷冷
しながら、得られたろ液にメタノ−ルを加え攪拌する。
ついで、再度該溶液をフィルタ−でろ過して不溶性物質
を除去し、得られたろ液に塩化リチウムを加え白色の沈
殿を得る。得られた白色沈殿を75容積%のアセトン水
溶液(アセトン75:水25)で十分に洗浄し、その後
自然乾燥することによって得ることができる。
The lithium cyclohexaphosphate hexahydrate used in the present invention can be obtained as follows. That is,
85% by weight of orthophosphoric acid and lithium carbonate in a molar ratio of 1
Mix in a magnetic dish at 0: 7 and heat in an electric furnace at 200 ° C. for 1 hour, 275 ° C. for 5 hours, and finally 420 ° C. for 3 hours. The obtained product is pulverized and PH9 is added with lithium hydroxide.
Prepared ethylenediamine tetraacetate (EDT
A) Mix with solution and stir for 2 hours. A slight precipitate occurs upon mixing the EDTA solution, so the solution is filtered to remove insoluble material. While cooling with ice, methanol is added to the obtained filtrate and the mixture is stirred.
Then, the solution is filtered again with a filter to remove insoluble substances, and lithium chloride is added to the obtained filtrate to obtain a white precipitate. It can be obtained by thoroughly washing the obtained white precipitate with a 75% by volume aqueous acetone solution (acetone 75: water 25), and then naturally drying.

【0006】本発明のシクロ六リン酸グアニジン二水和
物及びシクロ六リン酸アンモニウム一水和物は以下の方
法によって得ることができる。すなわち、上述の方法に
よって得られたシクロ六リン酸リチウム六水和物を溶解
した10重量%濃度の水溶液を陽イオン交換樹脂に通し
てリチウムイオンを除去する。その後、試料溶液を氷冷
し、攪拌しながらリン酸グアニジンもしくは炭酸グアニ
ジンまたはアンモニア水溶液を加え、冷蔵庫内に一昼夜
放置することによって白色沈殿が得、得られた沈殿を8
0容積%のアセトン水溶液(アセトン80:水20)で
洗浄し、自然乾燥を行うことによって得られる。
The guanidine cyclohexaphosphate dihydrate and the ammonium cyclohexaphosphate monohydrate of the present invention can be obtained by the following method. That is, the lithium ion is removed by passing a 10 wt% aqueous solution of lithium cyclohexaphosphate hexahydrate obtained by the above method through a cation exchange resin. Then, the sample solution was ice-cooled, guanidine phosphate or guanidine carbonate or an aqueous ammonia solution was added with stirring, and the mixture was allowed to stand overnight in the refrigerator to obtain a white precipitate.
It is obtained by washing with a 0% by volume aqueous acetone solution (acetone 80: water 20) and air-drying.

【0007】[0007]

【実施例】本発明を具体的に説明するために、以下に実
施例を示す。生成物の分析は以下に示した方法により行
った。 (1)X線回折法 試料をメノウ乳鉢で粉砕しガラスホルダーに装着して理
学電機社製RAD−1B型X線回折装置にて測定した。 (2)全リン濃度測定 肥料の公定分析法のバナドモリブデン酸アンモニア法に
準拠して行った。即ち、試料2gを王水40mlで30
分間加熱分解しその一定量をメスフラスコに取り、発色
液であるメタバナジン酸アンモニウム及びモリブデン酸
アンモニウムを溶解させた硝酸水溶液を20ml加え、
波長420nmの吸光度を測定し、標準液であるリン酸
一カリウム水溶液より求めた検量線から全リン濃度を算
出する。 (3)全炭素濃度測定 測定装置 ヤナコ分析工業株式会社製CHNコーダーM
T−5を用いて行った。 (4)全窒素濃度の測定 肥料の公定分析法の硫酸法に準拠して行った。即ち、試
料1gを500mlのケルダールフラスコにとり、濃硫
酸20ml及び硫酸銅1g、硫酸カリウム9gを加え、
2時間強熱分解を行う。冷却後水酸化ナトリウムを加え
強アルカリ性とした後、水蒸気蒸留を行う。流出液を
0.5N硫酸35mlに捕集し、0.5Nの水酸化ナト
リウム水溶液で逆滴定をおこない全窒素濃度を算出す
る。 (5)赤外分光分析 島津製作所製 赤外分析装置 FTIR−8000にて
測定。 (6)水和量測定 理学電気製 TAS100にて昇温速度は5℃/mi
n、乾燥雰囲気中で測定。
EXAMPLES In order to specifically describe the present invention, examples will be shown below. The product was analyzed by the method shown below. (1) X-ray Diffraction Method The sample was crushed in an agate mortar, mounted on a glass holder, and measured by a RAD-1B type X-ray diffractometer manufactured by Rigaku Denki Co. (2) Total Phosphorus Concentration Measurement The measurement was carried out in accordance with the official analytical method for fertilizer, the vanadomolybdate ammonium method. That is, 2 g of sample is 30 ml with 40 ml of aqua regia.
After heating and decomposing for a minute, a fixed amount of the solution is put into a measuring flask, and 20 ml of a nitric acid aqueous solution in which ammonium metavanadate and ammonium molybdate, which are color developing solutions, are dissolved is added,
The absorbance at a wavelength of 420 nm is measured, and the total phosphorus concentration is calculated from a calibration curve obtained from an aqueous solution of monopotassium phosphate as a standard solution. (3) Total carbon concentration measurement measuring device CHN coder M manufactured by Yanako Analytical Industry Co., Ltd.
It was performed using T-5. (4) Measurement of Total Nitrogen Concentration The measurement was performed according to the sulfuric acid method, which is an official analytical method for fertilizers. That is, 1 g of the sample is placed in a 500 ml Kjeldahl flask, 20 ml of concentrated sulfuric acid, 1 g of copper sulfate and 9 g of potassium sulfate are added,
Perform pyrolysis for 2 hours. After cooling, sodium hydroxide is added to make the mixture alkaline and then steam distillation is performed. The effluent is collected in 35 ml of 0.5N sulfuric acid, and back titration is performed with a 0.5N aqueous sodium hydroxide solution to calculate the total nitrogen concentration. (5) Infrared spectroscopic analysis Measured with an infrared analyzer FTIR-8000 manufactured by Shimadzu Corporation. (6) Measurement of hydration amount Rigaku Denki's TAS100 has a heating rate of 5 ° C./mi
n, measured in a dry atmosphere.

【0008】実施例で用いるシクロ六リン酸リチウム六
水和物は次の方法によって得た。85重量%濃度のオル
ソリン酸を20.5mlと炭酸リチウム15.6gを磁
性皿にて混合する。混合によって炭酸ガスが発生するた
めその脱気を十分おこなったあとに200℃の電気炉で
1時間加熱する。これをデシケーター中で冷却後、粉砕
し、再び275℃の電気炉で5時間加熱する。同様に冷
却粉砕後再度420℃で3時間加熱し、冷却後粉砕す
る。このようにして得られた加熱生成物を水酸化リチウ
ムでPH9に調製した1重量%のEDTA溶液100m
lに加え、2時間攪拌した。不溶性物質をG4グラスフ
ィルターにて除去し、氷冷しながら該ろ液にメタノール
110mlを加える。メタノールの添加によって発生し
た沈殿を除去したのち、塩化リチウム18gを加える。
わずかな沈殿が生じるためその沈殿を除去し、再び塩化
リチウム18.5gを加える。しばらく攪拌を続けると
白色の沈殿が生じるのでこの沈殿をろ別し、この白色沈
殿物を75容積%のアセトン水溶液で十分に洗浄したの
ち、大気中にて自然乾燥し、シクロ六リン酸リチウム六
水和物5.5gを得た。
The lithium cyclohexaphosphate hexahydrate used in the examples was obtained by the following method. 20.5 ml of 85 wt% concentration of orthophosphoric acid and 15.6 g of lithium carbonate are mixed in a magnetic dish. Since carbon dioxide gas is generated by the mixing, the carbon dioxide gas is sufficiently deaerated, and then heated in an electric furnace at 200 ° C. for 1 hour. This is cooled in a desiccator, crushed, and heated again in an electric furnace at 275 ° C. for 5 hours. Similarly, after cooling and pulverizing, the mixture is heated again at 420 ° C. for 3 hours, cooled and pulverized. The heated product thus obtained was adjusted to pH 9 with lithium hydroxide, and 100 m of a 1 wt% EDTA solution was prepared.
1 and stirred for 2 hours. Insoluble substances were removed with a G4 glass filter, and 110 ml of methanol was added to the filtrate while cooling with ice. After removing the precipitate generated by the addition of methanol, 18 g of lithium chloride is added.
A slight precipitate forms, which is removed and 18.5 g of lithium chloride are added again. If stirring is continued for a while, a white precipitate is formed. This precipitate is filtered off, washed thoroughly with a 75% by volume aqueous acetone solution, and then naturally dried in the atmosphere to obtain lithium cyclohexaphosphate hexahydrate. 5.5 g of hydrate was obtained.

【0009】実施例1 シクロ六リン酸リチウム六水和物2gを純水20mlに
溶かして水溶液とし、この水溶液を3℃前後に保った陽
イオン交換樹脂を通してリチウムイオンを除去した。陽
イオン交換樹脂を通過させた試料溶液の採取はPH2以
上の範囲で行った。試料溶液を氷冷しながら、炭酸グア
ニジンを2g加えたのち、冷蔵庫内で一昼夜放置するこ
とによって白色沈殿を得た。この白色沈殿を80容積%
のアセトン水溶液で5回洗浄し、さらにアセトンで5回
洗浄した。48時間大気中で自然乾燥させ、シクロ六リ
ン酸グアニジン二水和物を2.5g得た。得られた生成
物の元素分析の結果はC:8.21重量%、P:21.
6重量%、N:28.2重量%(理論値C:8.34重
量%、P:21.4重量%、N:29.0重量%)であ
った。また、X線回折図を図1に、赤外線吸収スペクト
ル図を図4に、熱分析結果を図6に示す。図1のX線回
折図から実施例1で得られた生成物は原料のシクロ六リ
ン酸リチウムとは全く異なったX線回折パターンを示し
ており、また、図4の赤外線吸収スペクトル図から16
70cm-1にグアニジン基に基づく強いピークが確認で
きる。さらに図6の熱分析から二分子の結晶水の脱離に
よる吸熱と重量減少を確認することができた。以上のこ
とより実施例1で得られた生成物は化3で表せられるシ
クロ六リン酸グアニジン二水和物であることが確認でき
た。
Example 1 2 g of lithium cyclohexaphosphate hexahydrate was dissolved in 20 ml of pure water to prepare an aqueous solution, and this aqueous solution was passed through a cation exchange resin kept at about 3 ° C. to remove lithium ions. The sample solution passed through the cation exchange resin was collected in the range of PH2 or higher. While the sample solution was cooled with ice, 2 g of guanidine carbonate was added, and the mixture was allowed to stand in the refrigerator for a whole day and night to obtain a white precipitate. 80% by volume of this white precipitate
Was washed 5 times with an aqueous acetone solution of, and further washed 5 times with acetone. It was naturally dried in the air for 48 hours to obtain 2.5 g of guanidine cyclohexaphosphate dihydrate. The results of elemental analysis of the obtained product were C: 8.21% by weight, P: 21.
6% by weight and N: 28.2% by weight (theoretical value C: 8.34% by weight, P: 21.4% by weight, N: 29.0% by weight). An X-ray diffraction diagram is shown in FIG. 1, an infrared absorption spectrum diagram is shown in FIG. 4, and a thermal analysis result is shown in FIG. From the X-ray diffraction diagram of FIG. 1, the product obtained in Example 1 shows an X-ray diffraction pattern completely different from that of the starting material lithium cyclohexaphosphate, and from the infrared absorption spectrum diagram of FIG.
A strong peak based on a guanidine group can be confirmed at 70 cm -1 . Furthermore, from the thermal analysis of FIG. 6, it was possible to confirm the endotherm and weight loss due to the elimination of bimolecular water of crystallization. From the above, it was confirmed that the product obtained in Example 1 was guanidine cyclohexaphosphate dihydrate represented by Chemical formula 3.

【0010】実施例2 シクロ六リン酸リチウム六水和物2gを純水20mlに
溶かして水溶液とし、この水溶液を3℃前後の保った陽
イオン交換樹脂を通してリチウムイオンを除去した。陽
イオン交換樹脂を通過させた試料溶液の採取はPH2以
上の範囲で行った。試料溶液を氷冷しながら29重量%
のアンモニア水溶液を7g加えたのち、冷蔵庫内で一昼
夜放置し、白色沈殿を得た。この白色沈殿を80容積%
のアセトン水溶液で5回洗浄し、さらにアセトンで5回
洗浄した。48時間大気中で自然乾燥させて生成物1.
6g得た。得られた生成物の元素分析の結果はP:3
0.7重量%、N:14.6重量%(理論値P:31.
6重量%、N:14.3重量%)であった。また、X線
回折図を図2に、赤外線吸収スペクトル図を図5に、熱
分析結果を図7に示す。図2に示されたX線回折図から
実施例2で得られた生成物は原料シクロ六リン酸リチウ
ムとは全く異なったX線回折パターンを示しおり、ま
た、図5の赤外線吸収スペクトル図から1400cm-1
にアンモニウムイオン(NH4 +)に起因する強いピーク
が確認でき、さらに図7の熱分析から一分子の結晶水の
脱離による吸熱と重量減少を確認することができた。以
上のことより実施例2の生成物は化4で表せられるシク
ロ六リン酸ンモニウム一水和物であることが確認され
た。
Example 2 Lithium cyclohexaphosphate hexahydrate (2 g) was dissolved in pure water (20 ml) to prepare an aqueous solution, and the aqueous solution was passed through a cation exchange resin kept at about 3 ° C. to remove lithium ions. The sample solution passed through the cation exchange resin was collected in the range of PH2 or higher. 29% by weight while cooling the sample solution with ice
After adding 7 g of the aqueous ammonia solution in (1), the mixture was allowed to stand in the refrigerator for a whole day and night to obtain a white precipitate. 80% by volume of this white precipitate
Was washed 5 times with an aqueous acetone solution of, and further washed 5 times with acetone. The product was naturally dried for 48 hours in air.
6 g were obtained. The result of elemental analysis of the obtained product is P: 3
0.7% by weight, N: 14.6% by weight (theoretical value P: 31.
6% by weight, N: 14.3% by weight). An X-ray diffraction diagram is shown in FIG. 2, an infrared absorption spectrum diagram is shown in FIG. 5, and a thermal analysis result is shown in FIG. From the X-ray diffraction diagram shown in FIG. 2, the product obtained in Example 2 shows an X-ray diffraction pattern which is completely different from that of the starting material lithium cyclohexaphosphate, and from the infrared absorption spectrum diagram of FIG. 1400 cm -1
In addition, a strong peak due to ammonium ion (NH 4 + ) could be confirmed, and further, from the thermal analysis of FIG. 7, it was possible to confirm the endotherm and weight loss due to the desorption of one molecule of crystal water. From the above, it was confirmed that the product of Example 2 was the ammonium hexamonophosphate monohydrate represented by Chemical formula 4.

【0011】[0011]

【発明の効果】本発明のシクロ六リン酸グアニジン二水
和物およびシクロ六リン酸アンモニウム一水和物は、用
水処理剤、食品添加剤、難燃剤、各種セラミックス材
料、生体材料、電子材料として有用な新規な縮合リン酸
塩である。
Industrial Applicability The guanidine cyclohexaphosphate dihydrate and the ammonium cyclohexaphosphate monohydrate of the present invention are used as water treatment agents, food additives, flame retardants, various ceramic materials, biomaterials and electronic materials. It is a useful novel condensed phosphate.

【図面の簡単な説明】[Brief description of drawings]

図1は実施例1で得られたシクロ六リン酸グアニジン二
水和物のX線回析図を、図2は実施例2で得られたシク
ロ六リン酸アンモニウム一水和物のX線回析図を、図3
は原料シクロ六リン酸リチウムのX線回析図を、図4は
シクロ六リン酸グアニジン二水和物の赤外線吸収スペク
トル図を、図5はシクロ六リン酸アンモニウム一水和物
の赤外線吸収スペクトル図を、図6はシクロ六リン酸グ
アニジン二水和物の熱分析チヤート図を、図7はシクロ
六リン酸アンモニウム一水和物の熱分析チヤート図を、
それぞれ示す。
FIG. 1 is an X-ray diffraction pattern of the guanidine cyclohexaphosphate dihydrate obtained in Example 1, and FIG. 2 is an X-ray diffraction diagram of the ammonium cyclohexaphosphate monohydrate obtained in Example 2. Figure 3
Is an X-ray diffraction diagram of lithium cyclohexaphosphate as a raw material, FIG. 4 is an infrared absorption spectrum diagram of guanidine cyclohexaphosphate dihydrate, and FIG. 5 is an infrared absorption spectrum of ammonium cyclohexaphosphate monohydrate. Fig. 6 shows a thermal analysis chart of guanidine cyclohexaphosphate dihydrate, and Fig. 7 shows a thermal analysis chart of ammonium cyclohexaphosphate monohydrate.
Shown respectively.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】下記化1の構造を有するシクロ六リン酸グ
アニジン二水和物。 【化1】
1. A guanidine cyclohexaphosphate dihydrate having a structure of the following chemical formula 1. Embedded image
【請求項2】下記化2の構造を有するシクロ六リン酸ア
ンモニウム一水和物。 【化2】
2. An ammonium cyclohexaphosphate monohydrate having a structure of the following chemical formula 2. Embedded image
【請求項3】シクロ六リン酸リチウム六水和物と炭酸グ
アニジンまたはリン酸グアニジンを水溶液中で反応させ
ることを特徴とするシクロ六リン酸グアニジン二水和物
の製造方法。
3. A process for producing guanidine cyclohexaphosphate dihydrate, which comprises reacting lithium cyclohexaphosphate hexahydrate with guanidine carbonate or guanidine phosphate in an aqueous solution.
【請求項4】シクロ六リン酸リチウムとアンモニウム水
溶液を水溶液中で反応させることを特徴とするシクロ六
リン酸アンモニウム一水和物の製造方法。
4. A process for producing ammonium cyclohexaphosphate monohydrate, which comprises reacting lithium cyclohexaphosphate with an aqueous ammonium solution in an aqueous solution.
JP21052094A 1994-08-10 1994-08-10 Cyclohexa phosphate and its production Pending JPH0848508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21052094A JPH0848508A (en) 1994-08-10 1994-08-10 Cyclohexa phosphate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21052094A JPH0848508A (en) 1994-08-10 1994-08-10 Cyclohexa phosphate and its production

Publications (1)

Publication Number Publication Date
JPH0848508A true JPH0848508A (en) 1996-02-20

Family

ID=16590734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21052094A Pending JPH0848508A (en) 1994-08-10 1994-08-10 Cyclohexa phosphate and its production

Country Status (1)

Country Link
JP (1) JPH0848508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268494B1 (en) 1998-03-11 2001-07-31 E. I. Du Pont De Nemours And Company Condensed melamine phosphates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268494B1 (en) 1998-03-11 2001-07-31 E. I. Du Pont De Nemours And Company Condensed melamine phosphates

Similar Documents

Publication Publication Date Title
CN103420416B (en) Ammonium metavanadate preparation method
EP2635528B1 (en) Method for producing ammonium sulfate nitrate
CN102336646B (en) A kind of preparation method of Ferrox
JPS60239313A (en) Crystalline zirconium phosphate and its manufacture
CN104891576A (en) Preparation method of manganese sulfate monohydrate
KR20160002577A (en) Mehtod of preparing lithium chloride
JPH0848508A (en) Cyclohexa phosphate and its production
CN1114635A (en) Process for producing potassium sulfate by plaster stone conversion method
RU2384564C2 (en) Method of producing dihydrate of cobalt (ii) oxalate
Teleb et al. Synthesis and infrared spectra of alkaline earth metal carbonates formed by the reaction of metal salts with urea at high temperature
JPH04261189A (en) Production of tin trifluoromethanesulfonate
JPH0255380B2 (en)
JP3211216B2 (en) Method for producing silver-containing crystalline zirconium phosphate
CN100395178C (en) Method of producing zinc phosphate using phosphorus fertilizer
Korchuganova et al. The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts
SU1742207A1 (en) Method for preparation of copper-ammonium phosphate hydrate
RU2051089C1 (en) Method for production of monohydrate of copper-ammonium phosphate
JP2773920B2 (en) Method for producing tetraammine palladium (II) chloride
CN115504442B (en) Preparation method of high-purity optical glass additive lithium phosphate
JPH04927B2 (en)
US3110560A (en) Preparation of alkaline earth metal phosphates
CN111847520A (en) Preparation method of ammonium ferrous sulfate
JP3334312B2 (en) How to collect valuables
JP3464023B2 (en) Method for producing sulfate-containing basic aluminum chloride
SU1706965A1 (en) Method of producing copper-ammonium complexes