JPH0848124A - Damping force controller of vehicle - Google Patents

Damping force controller of vehicle

Info

Publication number
JPH0848124A
JPH0848124A JP18376394A JP18376394A JPH0848124A JP H0848124 A JPH0848124 A JP H0848124A JP 18376394 A JP18376394 A JP 18376394A JP 18376394 A JP18376394 A JP 18376394A JP H0848124 A JPH0848124 A JP H0848124A
Authority
JP
Japan
Prior art keywords
damping force
vehicle
wheel
wheel side
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18376394A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mishio
靖彦 三塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18376394A priority Critical patent/JPH0848124A/en
Publication of JPH0848124A publication Critical patent/JPH0848124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To provide a car damping force controller which is made up so as to reconcile the riding comfortableness and steerability of a car in time of traveling on a rough road. CONSTITUTION:A vertical acceleration G detected by a vertical acceleration sensor built in a car body is subjeted to a band pass filter process, thereby extracting a rough road vibro-component Gb (step 106). On the basis of this rough road vibro-component Gb, a degree of unevenness on a traveling road surface is judged (steps 112 and 114). According to the judged result, the damping force of each shock absorber of both front-wheel and rear-wheel sides is separately controlled, and in proportion as a degree of unevenness growing larger, each damping force at both the front-wheel and the rear-wheel sides is lessened, and the damping force at the front-wheel side is made larger than that at the rear-wheel side (steps 116 to 120). Each damping force at both the front-wheel and the rear-wheel sides is lessened too, whereby the extent of riding comfortablenss of a car is secured and simultaneously the damping force at the front-wheel side is made larger, through which groundability in the front wheels is made so better and thereby steerability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車体の上下動に対する
減衰力を制御する車両の減衰力制御装置に係り、特に車
両の悪路走行時における車両の乗り心地及び操安性の向
上を図る車両の減衰力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle damping force control device for controlling a damping force with respect to a vertical movement of a vehicle body, and particularly to improve ride comfort and steerability of the vehicle when traveling on a bad road. The present invention relates to a damping force control device for a vehicle.

【0002】[0002]

【従来の技術】従来から、例えば特開昭60−1511
11号公報に示されているように、車体の上下方向の振
動を検出するとともに同検出した振動を低域及び高域の
周波数成分に分離し、同分離した各周波数成分のレベル
に基づいて、振動の原因が大きな周期のうねりを有する
路面に関係しているか、細かな凹凸を有する悪路に関係
しているかを判別し、悪路を走行しているときの減衰力
をうねり路を走行しているときの減衰力よりも小さく設
定して、悪路走行時の乗り心地の悪化を避けるようにし
た減衰力制御装置は知られている。
2. Description of the Related Art Conventionally, for example, JP-A-60-1511.
As disclosed in Japanese Patent Publication No. 11, the vertical vibration of the vehicle body is detected, the detected vibration is separated into low-frequency and high-frequency components, and based on the level of each separated frequency component, Determine whether the cause of the vibration is related to the road surface with a large period of swell or the bad road with fine irregularities, and use the damping force when driving on the rough road There is known a damping force control device that is set to be smaller than the damping force when the vehicle is running to avoid deterioration of riding comfort when traveling on a rough road.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の装
置にあっては、悪路走行時における減衰力をあまりに小
さく設定してしまうと、各輪の接地性が悪化して車両の
操安性が良好でなくなる。また、これを避けるために、
悪路走行時における減衰力を大きく設定すると、車両の
乗り心地が悪化する。本発明は上記のように相反する問
題に対処するためになされもので、その目的は、悪路走
行時における車両の乗り心地及び操安性を両立させるよ
うにした車両の減衰力制御装置を提供するものである。
However, in the above-mentioned conventional device, if the damping force during traveling on a bad road is set too small, the ground contactability of each wheel will be deteriorated and the vehicle stability will be improved. Is not good. Also, to avoid this,
If the damping force during traveling on a rough road is set to a large value, the riding comfort of the vehicle deteriorates. The present invention has been made to address the conflicting problems as described above, and an object thereof is to provide a damping force control device for a vehicle that achieves both ride comfort and steerability of the vehicle when traveling on a rough road. To do.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成上の特徴は、走行路面の凹凸の度合を
検出し、同検出した凹凸の度合に応じて前輪側及び後輪
側の減衰力変更機構を独立して制御し、凹凸の度合が大
きくなるにしたがって前輪側及び後輪側の減衰力を共に
小さくし、かつ前輪側の減衰力を後輪側の減衰力に比べ
て大きくするようにしたことにある。
In order to achieve the above object, the structural feature of the present invention is to detect the degree of unevenness of a traveling road surface, and to detect front and rear wheels according to the detected degree of unevenness. Side damping force changing mechanism is controlled independently, the damping force on the front wheel side and the rear wheel side are both reduced as the degree of unevenness increases, and the damping force on the front wheel side is compared to the damping force on the rear wheel side. I tried to make it bigger.

【0005】[0005]

【発明の作用効果】上記のように構成した本発明におい
ては、車両が悪路を走行していて同路面の凹凸の度合が
大きくなると、前輪及び後輪側の減衰力は共に小さくな
るので、路面の凹凸が直接的に車体に影響しなくなって
車両の乗り心地が良好に保たれる。また、前輪側の減衰
力は大きく設定されるので前輪の接地性が良好になって
車両の操安性は良好に保たれ、また前輪に比べて乗員の
座席近くにあり車両の乗り心地に影響を与える後輪側の
減衰力は小さく設定されるので、前記車両の良好な乗り
心地も確保される。
In the present invention constructed as described above, when the vehicle is traveling on a bad road and the degree of unevenness on the road surface increases, the damping force on both the front wheels and the rear wheels decreases. The unevenness of the road surface does not directly affect the vehicle body, and the ride comfort of the vehicle is kept good. Also, since the damping force on the front wheel side is set to a large value, the front wheel's grounding property is good and the vehicle's maneuverability is maintained well.Because it is closer to the passenger's seat than the front wheel, it affects the ride comfort of the vehicle. Since the damping force on the rear wheel side that gives the torque is set to be small, a good riding comfort of the vehicle is also secured.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面を用いて説明
すると、図1は本発明に係る車両の減衰力変更機構とし
てのショックアブソーバ10A〜10Dを概念的に示す
とともに、同アブソーバ10A〜10Dを制御するため
の電気制御装置20をブロック図により示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 conceptually shows shock absorbers 10A to 10D as a vehicle damping force changing mechanism according to the present invention, and the same absorber 10A. 10D is a block diagram showing an electric control device 20 for controlling 10D.

【0007】ショックアブソーバ10A〜10Dは、左
右前輪及び左右後輪の各輪詳しくは各輪に接続したロア
アーム(ばね下部材)と車体(ばね上部材)との間にそ
れぞれ配設されている。各ショックアブソーバ10A〜
10Dはピストン11a〜11dにより上下室に仕切ら
れた油圧シリンダ12a〜12dをそれぞれ備え、同シ
リンダ12a〜12dはロアアームにそれぞれ支持され
ている。ピストン11a〜11dにはピストンロッド1
3a〜13dが下端にてそれぞれ接続され、同ロッド1
3a〜13dは上端にて車体をそれぞれ支承している。
油圧シリンダ12a〜12dの各上下室は電磁バルブ1
4a〜14dを介して連通しており、同バルブ14a〜
14dの開度に応じてショックアブソーバ10A〜10
Dの減衰力が多段階に切り換えられるようになってい
る。油圧シリンダ12a〜12dの各下室には、ピスト
ンロッド13a〜13dの上下動に伴う上下室の体積変
化を吸収するためのガススプリングユニット15a〜1
5dがそれぞれ接続されている。
The shock absorbers 10A to 10D are respectively arranged between the left and right front wheels and the left and right rear wheels, more specifically, between a lower arm (unsprung member) connected to each wheel and a vehicle body (sprung member). Each shock absorber 10A ~
Reference numeral 10D includes hydraulic cylinders 12a to 12d that are partitioned into upper and lower chambers by pistons 11a to 11d, and the cylinders 12a to 12d are supported by lower arms, respectively. The piston rod 1 is attached to the pistons 11a to 11d.
3a to 13d are respectively connected at the lower ends, and the same rod 1
3a to 13d respectively support the vehicle body at the upper end.
The upper and lower chambers of the hydraulic cylinders 12a to 12d are electromagnetic valves 1
4a to 14d are in communication with each other, and the valves 14a to
The shock absorbers 10A to 10A depending on the opening degree of 14d.
The damping force of D can be switched in multiple stages. Each of the lower chambers of the hydraulic cylinders 12a to 12d has a gas spring unit 15a to 1a for absorbing a volume change of the upper and lower chambers due to the vertical movement of the piston rods 13a to 13d.
5d are respectively connected.

【0008】電気制御装置20は車速センサ21及び上
下加速度センサ22を備えている。車速センサ21は車
速Vを検出して同車速Vを表す検出信号を出力する。上
下加速度センサ22は車体の一部例えば右前輪位置の車
体に組み付けられ、車体の振動に伴う上下方向の加速度
Gを検出して同加速度Gを表す検出信号を出力する。こ
れらのセンサ21,22はマイクロコンピュータ23に
接続されている。マイクロコンピュータ23は、図2に
示すフローチャートに対応したプログラムを内蔵のタイ
マ回路の制御の基に所定の短時間毎に繰り返し実行し
て、ショックアブソーバ10A〜10Dの減衰力を切り
換え制御する。また、マイクロコンピュータ23内に
は、ショックアブソーバ10A〜10Dに関し、車速V
に応じて変化する前輪用ベース段数BSF(図3の実
線)及び後輪用ベース段数BSR(図3の破線)を記憶
したベース段数テーブルが設けられているとともに、悪
路走行時における路面の凹凸の度合に応じて変化する前
輪用目標段数TSF(図5(A)(B)の実線)及び後輪用
目標段数TSR(図5(A)(B)の破線)を記憶した目標
段数テーブルが設けられている。なお、図5(A)は低車
速時の目標段数TSF,TSRを表し、図5(B)は高車
速時の目標段数TSF,TSRを表す。このマイクロコ
ンピュータ23には各ショックアブソーバ10A〜10
Dにそれぞれ対応した駆動回路24a〜24dが接続さ
れており、各駆動回路24a〜24dはマイクロコンピ
ュータ23からの制御信号に応答して電磁バルブ14a
〜14dの開度をそれぞれ切り換え制御する。
The electric control unit 20 includes a vehicle speed sensor 21 and a vertical acceleration sensor 22. The vehicle speed sensor 21 detects the vehicle speed V and outputs a detection signal indicating the vehicle speed V. The vertical acceleration sensor 22 is attached to a part of the vehicle body, for example, the vehicle body at the right front wheel position, detects the vertical acceleration G due to the vibration of the vehicle body, and outputs a detection signal indicating the same acceleration G. These sensors 21 and 22 are connected to the microcomputer 23. The microcomputer 23 repeatedly executes a program corresponding to the flowchart shown in FIG. 2 at a predetermined short time under the control of a built-in timer circuit to switch and control the damping forces of the shock absorbers 10A to 10D. Further, in the microcomputer 23, regarding the shock absorbers 10A to 10D, the vehicle speed V
A base step number table that stores the front wheel base step number BSF (solid line in FIG. 3) and the rear wheel base step number BSR (dashed line in FIG. 3) that changes in accordance with The target stage number table that stores the target stage number TSF for front wheels (solid line in FIGS. 5A and 5B) and the target stage number TSR for rear wheels (broken line in FIGS. 5A and 5B) that change according to the degree of It is provided. Note that FIG. 5A shows the target speeds TSF and TSR at low vehicle speeds, and FIG. 5B shows the target speeds TSF and TSR at high vehicle speeds. The microcomputer 23 includes shock absorbers 10A to 10A.
Drive circuits 24a to 24d corresponding to D are respectively connected, and each drive circuit 24a to 24d responds to a control signal from the microcomputer 23 to the electromagnetic valve 14a.
The opening degree of 14d is controlled by switching.

【0009】次に、上記のように構成した実施例の動作
を説明する。イグニッションスイッチの投入により、マ
イクロコンピュータ23は作動を開始して図2のステッ
プ100〜128からなるプログラムを所定時間毎に繰
り返し実行する。このプログラムにおいては、ステップ
102にて車速センサ21及び上下加速度センサ22か
ら車速V及び上下加速度Gをそれぞれ入力し、ステップ
104にてベース段数テーブルを参照して車速Vに応じ
た前輪用ベース段数BSF(図3の実線)及び後輪用ベ
ース段数BSR(図3の破線)を決定する。次に、ステ
ップ106にて前記入力した上下加速度Gに約1〜2H
z及び約3〜8Hzを各通過帯域とするバンドパスフィ
ルタ処理を施すことにより、あおり振動成分Ga及び悪
路振動成分Gbをそれぞれ計算する。あおり振動成分Ga
は周期の長い路面のうねりに関係するとともに車体の
共振周波数に関係した車体のゆっくりした上下振動を表
し、悪路振動成分Gb は路面に細かな凹凸を有する悪路
に関係した車体の上下振動を表している。
Next, the operation of the embodiment configured as described above will be described. When the ignition switch is turned on, the microcomputer 23 starts its operation and repeatedly executes the program including steps 100 to 128 in FIG. 2 every predetermined time. In this program, in step 102, the vehicle speed V and the vertical acceleration G are input from the vehicle speed sensor 21 and the vertical acceleration sensor 22, respectively, and in step 104, the base stage number table for the front wheels BSF corresponding to the vehicle speed V is referred by referring to the base stage number table. (Solid line in FIG. 3) and the rear wheel base stage number BSR (broken line in FIG. 3) are determined. Next, in step 106, about 1 to 2H is applied to the input vertical acceleration G.
A tilt vibration component Ga and a rough road vibration component Gb are calculated by performing band-pass filter processing with z and about 3 to 8 Hz as each pass band. Shaking vibration component Ga
Represents slow vertical vibration of the vehicle body related to the swell of the road surface having a long cycle and the resonance frequency of the vehicle body, and the bad road vibration component Gb represents vertical vibration of the vehicle body related to the bad road having fine unevenness on the road surface. It represents.

【0010】前記ステップ106の処理後、ステップ1
08にてあおり振動成分Gaが所定の小さな値Ga0未満
であるか否かを判定するとともに、ステップ110にて
あおり振動成分Gaが所定の大きな値Ga1(>Ga0)以
上であるか否かを判定する。車体のあおり振動が小さく
てあおり振動成分Gaが所定値Ga0未満であれば、ステ
ップ108にて「YES」と判定して、プログラムをス
テップ126に進める。なお、車両が悪路を走行すれ
ば、車体には若干のあおり振動も発生するので、この場
合には悪路振動成分Gbもきわめて小さい。ステップ1
26においては、前記ステップ104の処理により決定
した前輪用ベース段数BSFを表す制御信号を駆動回路
24a,24bに出力するとともに、後輪用ベース段数
BSRを表す制御信号を駆動回路24c,24dに出力
する。駆動回路24a〜24dはこれらの供給された制
御信号をそれぞれ記憶して、前記記憶した制御信号に基
づいて電磁バルブ14a〜14dの開度を設定するの
で、前輪用のショックアブソーバ10A,10Bは前輪
用ベース段数BSFに設定され、かつ後輪用のショック
アブソーバ10C,10Dは後輪用ベース段数BSRに
設定される。
After the processing of step 106, step 1
At 08, it is determined whether or not the swing vibration component Ga is less than a predetermined small value Ga0, and at step 110, it is determined whether the swing vibration component Ga is a predetermined large value Ga1 (> Ga0) or more. To do. If the swing vibration of the vehicle body is small and the swing vibration component Ga is less than the predetermined value Ga0, it is determined to be "YES" in step 108 and the program proceeds to step 126. It should be noted that when the vehicle travels on a bad road, some swinging vibration is also generated in the vehicle body, and in this case, the bad road vibration component Gb is also extremely small. Step 1
In 26, the control signal representing the front wheel base stage number BSF determined by the process of step 104 is output to the drive circuits 24a and 24b, and the control signal representing the rear wheel base stage number BSR is output to the drive circuits 24c and 24d. To do. The drive circuits 24a to 24d store these supplied control signals, respectively, and set the opening degrees of the electromagnetic valves 14a to 14d based on the stored control signals. Therefore, the shock absorbers 10A and 10B for the front wheels are the front wheels. Is set to the base stage number BSF for rear wheels, and the shock absorbers 10C and 10D for rear wheels are set to the base stage number BSR for rear wheels.

【0011】これらのベース段数BSF,BSRは共に
ショックアブソーバ10A〜10Dの比較的低い段数す
なわち低減衰力側に対応しているので、同アブソーバ1
0A〜10Dの減衰力は低く設定されて車両の乗り心地
が良好に保たれる。また、前記ベース段数BSF,BS
Rは車速Vが増加するにしたがって徐々に大きくなるの
で(図3参照)、ショックアブソーバ10A〜10Dに
よる各減衰力は車速Vの増加にしたがって大きくなり、
車速Vの増加にしたがって操安性が重視される。さら
に、前輪用ベース段数BSFは後輪用ベース段数BSR
より大きな値に設定されているので(図3参照)、前輪
側の減衰力が後輪側の減衰力より大きく設定され、前輪
側の接地性が良好なことにより車両の操安性が良好に保
たれるとともに、前輪に比べて乗員の座席近くにあり車
両の乗り心地に影響を与える後輪側の減衰力は小さく設
定されるので、車両の乗り心地はきわめて良好に保たれ
る。
Since both of the base stages BSF and BSR correspond to the relatively low stage numbers of the shock absorbers 10A to 10D, that is, the low damping force side, the absorber 1 is the same.
The damping force of 0A to 10D is set low, and the ride comfort of the vehicle is kept good. Also, the number of base stages BSF, BS
Since R increases gradually as the vehicle speed V increases (see FIG. 3), each damping force by the shock absorbers 10A to 10D increases as the vehicle speed V increases,
As the vehicle speed V increases, safety is emphasized. Further, the front wheel base stage number BSF is the rear wheel base stage number BSR.
Since it is set to a larger value (see FIG. 3), the damping force on the front wheel side is set to be larger than the damping force on the rear wheel side, and the grounding property on the front wheel side is good, so that the vehicle maneuverability is improved. The damping force on the rear wheel side, which is closer to the occupant's seat than the front wheels and affects the riding comfort of the vehicle, is set smaller than that of the front wheels, so that the riding comfort of the vehicle is maintained extremely excellent.

【0012】車体のあおり振動が大きくてあおり振動成
分Ga が所定値Ga1以上であれば、ステップ110にて
「YES」と判定して、プログラムをステップ116に
進める。ステップ116においては前輪用及び後輪用の
目標段数TSF,TSRを車速Vも考慮した段数CMF
1,CMR1に設定する。この場合、低車速用の目標段
数テーブル(図5(A))と高車速用の目標段数テーブル
(図5(B))の両者を参照し、両テーブルから読み出し
た各段数を車速Vに応じて補間して段数CMF1,CM
R1を決定する。前記ステップ116の処理後、ステッ
プ122にて、前記設定した前輪用目標段数TSFを表
す制御信号を駆動回路24a,24bに出力するととも
に、後輪用目標段数TSRを表す制御信号を駆動回路2
4c,24dに出力する。したがって、ショックアブソ
ーバ10A〜10Dは、前記と同様に、目標段数TSF
(=CMF1),TSR(=CMR1)に設定される。
前記段数CMF1,CMR1は図5に示すように極めて
大きな値であるので、ショックアブソーバ10A〜10
Dの減衰力は極めて大きなものとなる。
If the swinging vibration of the vehicle body is large and the swinging vibration component Ga is equal to or larger than the predetermined value Ga1, it is judged "YES" in step 110 and the program proceeds to step 116. In step 116, the target number of stages TSF and TSR for the front wheels and the rear wheels are set to the number of stages CMF in consideration of the vehicle speed V as well.
1, set to CMR1. In this case, both the target speed table for low vehicle speed (FIG. 5 (A)) and the target speed table for high vehicle speed (FIG. 5 (B)) are referred to, and the speeds read from both tables are set according to the vehicle speed V. And interpolate the number of stages CMF1, CM
Determine R1. After the processing in step 116, in step 122, the control signal representing the set front wheel target stage number TSF is output to the drive circuits 24a and 24b, and the control signal representing the rear wheel target stage number TSR is provided in the drive circuit 2.
Output to 4c and 24d. Therefore, the shock absorbers 10A to 10D have the target number of stages TSF in the same manner as described above.
(= CMF1) and TSR (= CMR1).
Since the step numbers CMF1 and CMR1 are extremely large values as shown in FIG. 5, the shock absorbers 10A to 10A-10
The damping force of D becomes extremely large.

【0013】前記ステップ122の処理後、ステップ1
24の処理により所定の保持時間を待ってプログラムを
ステップ126に進める。ステップ126においては、
上述したように、ショックアブソーバ10A〜10Dは
前輪用及び後輪用のベース段数BSF,BSRに対応し
た小さな減衰力に設定される。このようなステップ11
6〜124の処理により、ショックアブソーバ10A〜
10Dの減衰力は所定の保持時間だけ大きい側に切り換
えられるので、車体のあおり振動は速やかに減衰する。
After the processing of step 122, step 1
The program proceeds to step 126 after waiting a predetermined holding time by the processing of 24. In step 126,
As described above, the shock absorbers 10A to 10D are set to have small damping forces corresponding to the front wheel and rear wheel base stage numbers BSF and BSR. Step 11 like this
By the processing of 6 to 124, the shock absorber 10A to
Since the damping force of 10D is switched to the larger side for a predetermined holding time, the swing vibration of the vehicle body is quickly damped.

【0014】また、車体のあおり振動がある程度の大き
さであって同振動成分Gaが所定値Ga0以上かつ所定値
Ga1未満であれば、ステップ108,110にて共に
「NO」と判定してプログラムをステップ112,11
4に進める。ステップ112,114においては、路面
(悪路)の凹凸の度合を検出する。ステップ112にお
いては悪路振動成分Gbが所定の小さな値Gb1未満であ
るか否かを判定し、ステップ114においては同振動成
分Gbが所定の大きな値Gb2未満であるか否かを判定す
る。
If the swinging vibration of the vehicle body is large to some extent and the vibration component Ga is equal to or more than the predetermined value Ga0 and less than the predetermined value Ga1, both are determined to be "NO" in steps 108 and 110, and the program is executed. Through steps 112 and 11
Go to 4. In steps 112 and 114, the degree of unevenness on the road surface (bad road) is detected. In step 112, it is determined whether the rough road vibration component Gb is less than a predetermined small value Gb1, and in step 114 it is determined whether the vibration component Gb is less than a predetermined large value Gb2.

【0015】悪路振動成分Gbが所定値Gb1未満であれ
ば、ステップ112にて「YES」と判定してプログラ
ムをステップ116に進めて、同ステップ116にて前
記と同様に車速Vも考慮して前輪用及び後輪用の目標段
数TSF,TSRを段数CMF1,CMR1に設定す
る。悪路振動成分Gbが所定値Gb1以上かつ所定値Gb2
未満であれば、ステップ112にて「NO」、ステップ
114にて「YES」と判定してプログラムをステップ
118に進めて、同ステップ118にて前記ステップ1
16の処理と同様に車速Vも考慮して前輪用及び後輪用
の目標段数TSF,TSRを段数CMF2,CMR2に
設定する。悪路振動成分Gbが所定値Gb2以上であれ
ば、ステップ114にて「NO」と判定してプログラム
をステップ120に進めて、同ステップ120にて前記
ステップ116の処理と同様に車速Vも考慮して前輪用
及び後輪用の目標段数TSF,TSRを段数CMF3,
CMR3に設定する(図5参照)。
If the rough road vibration component Gb is less than the predetermined value Gb1, it is judged "YES" at step 112 and the program is advanced to step 116. At step 116, the vehicle speed V is also taken into consideration as described above. Then, the target step numbers TSF and TSR for the front wheels and the rear wheels are set to the step numbers CMF1 and CMR1. The rough road vibration component Gb is greater than or equal to the predetermined value Gb1 and the predetermined value Gb2
If it is less than the above, "NO" is determined in step 112 and "YES" is determined in step 114, and the program is advanced to step 118.
Similar to the process of 16, the target speeds TSF and TSR for the front wheels and rear wheels are set to the speeds CMF2 and CMR2 in consideration of the vehicle speed V. If the rough road vibration component Gb is greater than or equal to the predetermined value Gb2, it is determined to be "NO" in step 114 and the program is advanced to step 120. In step 120, the vehicle speed V is also considered as in the processing of step 116. Then, the target number of stages TSF and TSR for the front wheels and the rear wheels are set to the number of stages CMF3.
Set to CMR3 (see FIG. 5).

【0016】前記ステップ116〜120の処理後、ス
テップ122にてショックアブソーバ10A,10Bを
前輪用目標段数TSFに設定するとともに、ショックア
ブソーバ10C,10Dを後輪用目標段数TSRに設定
する。そして、ステップ124,126の処理によりシ
ョックアブソーバ10A〜10Dを前記設定状態に所定
の保持時間だけ保持した後、同アブソーバ10A〜10
Dを前述した前輪用及び後輪用のベース段数BSF,B
SRに戻す。
After the steps 116 to 120, the shock absorbers 10A and 10B are set to the front wheel target step number TSF and the shock absorbers 10C and 10D are set to the rear wheel target step number TSR at step 122. After the shock absorbers 10A to 10D are held in the set state for a predetermined holding time by the processing of steps 124 and 126, the shock absorbers 10A to 10D are held.
D is the number of base stages BSF, B for the front and rear wheels described above.
Return to SR.

【0017】これらのステップ112〜124の処理に
より、図5からも明かなように、悪路振動成分Gbが大
きくなるにしたがってショックアブソーバ10A〜10
Dの設定段数は低くなるように設定、すなわち同アブソ
ーバ10A〜10Dの減衰力が小さくなるように設定さ
れる。したがって、車両が悪路を走行中に走行路面の凹
凸が激しくなるにしたがって、車体が走行路面の凹凸に
応答しなくなって車体の上下動が少なくなり、車両の乗
り心地が良好に保たれる。また、前輪用のショックアブ
ソーバ10A,10Bの設定段数は後輪用のショックア
ブソーバ10C,10Dの設定段数より大きいので、前
輪側のショックアブソーバ10A,10Bの減衰力が高
く設定されるとともに後輪側のショックアブソーバ10
C,10Dの減衰力が低く設定される。したがって、車
両が悪路を走行しているときにも、前輪の接地性が良好
になって車両の操安性は良好に保たれるとともに、前輪
に比べて乗員の座席近くにあり車両の乗り心地に影響を
与える後輪側の減衰力は小さく設定されるので、前記車
両の良好な乗り心地も確保される。さらに、図5の(A)
(B)の比較により、ショックアブソーバ10A〜10D
の各減衰力は車速Vの増加にしたがって大きくなるの
で、車速Vの増加にしたがって操安性が重視される。
By the processing of these steps 112 to 124, as is clear from FIG. 5, the shock absorbers 10A to 10A as the rough road vibration component Gb increases.
The setting step number of D is set to be low, that is, the damping force of the absorbers 10A to 10D is set to be small. Therefore, as the unevenness of the traveling road surface becomes more severe while the vehicle is traveling on a bad road, the vehicle body does not respond to the unevenness of the traveling road surface, the vertical movement of the vehicle body is reduced, and the riding comfort of the vehicle is kept good. Further, since the set number of steps of the front wheel shock absorbers 10A, 10B is larger than the set number of steps of the rear wheel shock absorbers 10C, 10D, the damping force of the front wheel side shock absorbers 10A, 10B is set high and the rear wheel side is set. Shock absorber 10
The damping force of C and 10D is set low. Therefore, even when the vehicle is traveling on a rough road, the front wheels are well grounded and the steering stability of the vehicle is kept good. Since the damping force on the rear wheel side that affects the comfort is set to be small, a good riding comfort of the vehicle is also ensured. Furthermore, FIG. 5 (A)
By comparing (B), shock absorbers 10A-10D
Since each damping force of 1 becomes larger as the vehicle speed V increases, the maneuverability becomes more important as the vehicle speed V increases.

【0018】なお、上記実施例においては車体の上下方
向の振動を検出するための振動センサとして上下加速度
センサ22を用いるようにしたが、上下加速度センサ2
2に代えて、車体に組み付けられて路面からの高さを検
出する車高センサ、サスペンション装置内に設けられて
車体(ばね上部材)と車輪側部材(ばね下部材)との相
対的な変位を検出するストロークセンサ、ショックアブ
ソーバ内に設けられて同アブソーバに付与される荷重を
検出する荷重センサ、減衰力変更機構としてエアサスペ
ンションを用いた場合におけるエアサスペンション内の
空気圧、ショックアブソーバ内の油圧を検出する減衰力
センサなどを前記振動センサとして用いることもでき
る。
Although the vertical acceleration sensor 22 is used as the vibration sensor for detecting the vertical vibration of the vehicle body in the above embodiment, the vertical acceleration sensor 2 is used.
Instead of 2, a vehicle height sensor mounted on the vehicle body to detect the height from the road surface, and a relative displacement between the vehicle body (sprung member) and the wheel side member (unsprung member) provided in the suspension device. A stroke sensor that detects the A damping force sensor for detecting may be used as the vibration sensor.

【0019】また、上記実施例においては、上下加速度
センサ出力に基づいて悪路判定を行うようにしたが、こ
れに代えて車輪速の変動に基づいて悪路判定を行うよう
にしてもよい。この場合、図1に破線で示すように車輪
速を検出する車輪速センサ25をマイクロコンピュータ
23に接続し、マイクロコンピュータ23がこの検出車
輪速を微分して車輪速の変動を計算し、同車輪速の変動
を表す信号に通過帯域を3〜8Hzとするバンドパスフ
ィルタ処理を施して、同処理の施された信号値の大きさ
に応じて路面の凹凸の度合を判定するようにする。
Further, in the above embodiment, the bad road is determined based on the output of the vertical acceleration sensor, but instead of this, the bad road may be determined based on the fluctuation of the wheel speed. In this case, the wheel speed sensor 25 for detecting the wheel speed is connected to the microcomputer 23 as shown by the broken line in FIG. 1, and the microcomputer 23 differentiates the detected wheel speed to calculate the fluctuation of the wheel speed, A bandpass filter process with a pass band of 3 to 8 Hz is applied to the signal representing the speed variation, and the degree of unevenness of the road surface is determined according to the magnitude of the processed signal value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示すショックアブソーバ
と同アブソーバのための電気制御装置のブロック図であ
る。
FIG. 1 is a block diagram of a shock absorber and an electric control device for the shock absorber according to an embodiment of the present invention.

【図2】 図1のマイクロコンピュータにて実行される
プログラムを示すフローチャートである。
FIG. 2 is a flowchart showing a program executed by the microcomputer of FIG.

【図3】 前輪及び後輪用のベース段数の車速に対する
変化特性を示すグラフである。
FIG. 3 is a graph showing a change characteristic of the number of base stages for front wheels and rear wheels with respect to a vehicle speed.

【図4】 車体のあおり振動成分と悪路振動成分を分離
するためのフィルタ処理の周波数特性グラフである。
FIG. 4 is a frequency characteristic graph of a filtering process for separating the tilting vibration component and the rough road vibration component of the vehicle body.

【図5】 (A)は低車速時の悪路振動レベルに対する前
輪及び後輪用の目標段数の変化特性を示すグラフであ
り、(B)は高車速時の悪路振動レベルに対する前輪及び
後輪用の目標段数の変化特性を示すグラフである。
FIG. 5A is a graph showing the change characteristics of the target number of steps for the front wheels and the rear wheels with respect to the rough road vibration level at low vehicle speed, and FIG. 5B is the front and rear wheels with respect to the rough road vibration level at high vehicle speed. It is a graph which shows the change characteristic of the number of target steps for wheels.

【符号の説明】[Explanation of symbols]

10A〜10D…ショックアブソーバ、12a〜12d
…油圧シリンダ、14a〜14d…電磁バルブ、20…
電気制御装置、21…車速センサ、22…上下加速度セ
ンサ、23…マイクロコンピュータ、25…車輪速セン
サ。
10A to 10D ... Shock absorbers, 12a to 12d
... hydraulic cylinders, 14a to 14d ... electromagnetic valves, 20 ...
Electric control device, 21 ... Vehicle speed sensor, 22 ... Vertical acceleration sensor, 23 ... Microcomputer, 25 ... Wheel speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前輪及び後輪の各輪と車体との間にそれ
ぞれ設けられて車体の上下動に対する減衰力を変更可能
な減衰力変更機構を制御するための車両の減衰力制御装
置において、 車両が走行している路面の凹凸の度合を検出する検出手
段と、 前記検出した凹凸の度合に応じて前輪側及び後輪側の減
衰力変更機構を独立して制御し、前記凹凸の度合が大き
くなるにしたがって前輪側及び後輪側の減衰力を共に小
さくし、かつ前輪側の減衰力を後輪側の減衰力に比べて
大きくする減衰力制御手段とを設けたことを特徴とする
車両の減衰力制御装置。
1. A damping force control device for a vehicle for controlling a damping force changing mechanism, which is provided between each of front wheels and rear wheels and a vehicle body and is capable of changing a damping force with respect to vertical movement of the vehicle body, The detection means for detecting the degree of unevenness of the road surface on which the vehicle is running, and the damping force changing mechanism on the front wheel side and the rear wheel side are independently controlled according to the detected degree of unevenness, and the degree of unevenness is A vehicle provided with damping force control means for decreasing both the damping force on the front wheel side and the damping force on the rear wheel side as the damping force increases and increasing the damping force on the front wheel side compared to the damping force on the rear wheel side. Damping force control device.
JP18376394A 1994-08-04 1994-08-04 Damping force controller of vehicle Pending JPH0848124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18376394A JPH0848124A (en) 1994-08-04 1994-08-04 Damping force controller of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18376394A JPH0848124A (en) 1994-08-04 1994-08-04 Damping force controller of vehicle

Publications (1)

Publication Number Publication Date
JPH0848124A true JPH0848124A (en) 1996-02-20

Family

ID=16141550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18376394A Pending JPH0848124A (en) 1994-08-04 1994-08-04 Damping force controller of vehicle

Country Status (1)

Country Link
JP (1) JPH0848124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103014A1 (en) * 2005-03-30 2006-10-05 Daimlerchrysler Ag Device and method for influencing the damping characteristics of a vehicle suspension
JP2015047907A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Suspension control device
US11279196B2 (en) 2018-05-16 2022-03-22 Toyota Jidosha Kabushiki Kaisha Damping force control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103014A1 (en) * 2005-03-30 2006-10-05 Daimlerchrysler Ag Device and method for influencing the damping characteristics of a vehicle suspension
JP2015047907A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Suspension control device
US11279196B2 (en) 2018-05-16 2022-03-22 Toyota Jidosha Kabushiki Kaisha Damping force control device

Similar Documents

Publication Publication Date Title
EP2022655B1 (en) Control apparatus of a variable damping force damper
JP3084054B2 (en) Vehicle suspension device
KR930009380B1 (en) Controller for suspension stabilizer
US5400245A (en) Shock absorber having controlled damping force characteristics for use in a suspension system of a vehicle
JP3342622B2 (en) Loading status judgment device
JPH07117435A (en) Suspension control device
JPH0848124A (en) Damping force controller of vehicle
JP5162283B2 (en) Control device and control method for damping force variable damper
JP3250380B2 (en) Roll rigidity control device for vehicle
JP3396117B2 (en) Vehicle suspension system
JPH08207541A (en) Electric controller for vehicle damping force imparting mechanism
JP3206315B2 (en) Vehicle damping force control device
JP2000211337A (en) Control device of vehicle
JP3194451B2 (en) Vehicle suspension system
JP2956054B2 (en) Shock absorber damping force control device
JP2956055B2 (en) Shock absorber damping force control device
JP3085075B2 (en) Roll rigidity control device for vehicle
JPH06270631A (en) Suspension control device
JP3358117B2 (en) Vehicle suspension system
JP3533914B2 (en) Control device for vehicle suspension system
JPH07246819A (en) Suspension controller
JP3189176B2 (en) Vehicle suspension system
JPH08324221A (en) Suspension device for vehicle
JPH08175146A (en) Suspension prediction control device
JP3366920B2 (en) Loading status judgment device