JPH084797B2 - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPH084797B2
JPH084797B2 JP62302141A JP30214187A JPH084797B2 JP H084797 B2 JPH084797 B2 JP H084797B2 JP 62302141 A JP62302141 A JP 62302141A JP 30214187 A JP30214187 A JP 30214187A JP H084797 B2 JPH084797 B2 JP H084797B2
Authority
JP
Japan
Prior art keywords
sludge
concentration
water supply
flow rate
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62302141A
Other languages
Japanese (ja)
Other versions
JPH01143696A (en
Inventor
正太郎 漆原
章 熊田
誠一 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP62302141A priority Critical patent/JPH084797B2/en
Publication of JPH01143696A publication Critical patent/JPH01143696A/en
Publication of JPH084797B2 publication Critical patent/JPH084797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は汚泥等沈澱物を含む混合水の流速制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a flow velocity control device for mixed water containing sludge and other precipitates.

B.発明の概要 本発明は汚泥のように沈澱物を含む混合水槽内の汚泥
混合水をポンプを作動させて送水管路に供給すると共
に、送水管路に設けた濃度検出器からの検出信号により
ポンプを制御する流速制御装置において、 前記送水管路の上面と下面に第1及び第2の濃度検出
器を設け、汚泥混合水の流速をこれらの検出器の差によ
る沈澱物の沈澱状況によって求め前記ポンプを制御し、
また断面積の異なる送水管路に送水が到達したときの送
水到達位置信号と、流速変更信号から断面積に応じたポ
ンプ駆動制御信号を選択するようにしたことにより、送
泥管路内の流量を連続的に制御することができ、また送
水管路に応じた最適な制御をすることができるようにし
たものである。
B. Summary of the Invention The present invention operates a pump to supply sludge mixed water in a mixed water tank containing sediment such as sludge to a water supply pipeline, and a detection signal from a concentration detector provided in the water pipeline. In the flow rate control device for controlling the pump by means of the above, the first and second concentration detectors are provided on the upper surface and the lower surface of the water supply pipe, and the flow velocity of the sludge mixed water is changed according to the difference between these detectors. Control the pump,
In addition, by selecting the feed water arrival position signal when the water arrives at the water pipes with different cross-sectional areas and the pump drive control signal according to the cross-sectional area from the flow velocity change signal, the flow rate in the mud pipe It is possible to control continuously, and to perform optimum control according to the water supply pipeline.

C.従来の技術 例えば下水処理場、特に活性汚泥法による下水処理を
行っている処理場では、汚泥の管理が重要である。下水
の有機物はエアレーションタンク内で活性汚泥中の微生
物と反応するが、その有機物の一部は微生物にとり込ま
れるので汚泥の増加が生ずる。汚泥と上澄水は次段の最
終沈澱池で分離されるが、沈澱した汚泥が増加している
ためにその汚泥の全部を前記エアレーションタンクに戻
す訳にはいかなくなる。それ故に、余った汚泥は余剰汚
泥として引き抜き、濃縮、消化、脱水、焼却等によって
処理されている。この余剰汚泥と対応するのがエアレー
ションタンクに返送される返送汚泥で、返信汚泥は余剰
汚泥の引き抜き量の増大に伴って低下する。従って、か
かる下水の処理、汚泥の処理過程においては、余剰汚泥
及び返送汚泥の量を制御するためにその流量と濃度を測
定する必要がある。また、汚泥処理の方法としては、各
下水処理場で行う方式と、複数の下水処理場で発生する
汚泥を集中して処理する方式の2種類があるが、近年で
は用地、環境及び効率等の問題から集中処理方式が多く
用いられている。
C. Conventional technology For example, sludge management is important in a sewage treatment plant, especially a sewage treatment plant using the activated sludge method. The sewage organic matter reacts with the microorganisms in the activated sludge in the aeration tank, but a part of the organic matter is taken up by the microorganisms, so that the sludge increases. Sludge and supernatant water are separated in the final settling basin in the next stage, but because the amount of settled sludge is increasing, the whole sludge cannot be returned to the aeration tank. Therefore, excess sludge is treated as excess sludge by extracting, concentrating, digesting, dehydrating, incinerating, etc. Corresponding to this excess sludge is return sludge returned to the aeration tank, and the return sludge decreases as the amount of excess sludge withdrawn increases. Therefore, in the process of treating sewage and sludge, it is necessary to measure the flow rate and the concentration of surplus sludge and return sludge in order to control the amount. In addition, there are two types of sludge treatment methods: one that is performed at each sewage treatment plant and one that concentrates sludge generated at multiple sewage treatment plants. In recent years, such as land, environment and efficiency. Due to problems, the centralized processing method is often used.

第3図は集中処理方式を用いた従来の流速制御装置の
一例を示す構成図である。この図において、符号Tは汚
泥を送る送泥側を示し、Bは汚泥を受けて汚泥処理する
受泥側である。送泥側Tには汚泥を一時貯留する汚泥槽
100、ポンプの作動で汚泥槽100の汚泥を送泥管路102に
送る送泥ポンプ101、処理水を貯留する処理水槽110、ポ
ンプの作動で処理水槽110内の処理水を送泥管路102に送
る送水ポンプ111が設けられている。
FIG. 3 is a block diagram showing an example of a conventional flow velocity control device using a centralized processing system. In this figure, reference symbol T indicates a sludge sending side for sending sludge, and B indicates a sludge receiving side for receiving sludge and treating it. A sludge tank that temporarily stores sludge on the mud sending side T
100, a sludge pump 101 for sending the sludge in the sludge tank 100 to the mud feed line 102 by the operation of the pump, a treated water tank 110 for storing the treated water, and a sludge pipe line 102 for the treated water in the treated water tank 110 by the operation of the pump. A water supply pump 111 is provided for sending to.

送泥管路102は送泥側Tと受泥側Rを接続し、汚泥を
受泥側Rに送る管である。103は送泥管路102に取り付け
られ、汚泥の濃度を測定するための濃度計である。ま
た、受泥側Rはバルブの作動で汚泥を着泥層103に供給
する汚泥バルブ104、バルブの作動で処理水を処理水槽
に供給する処理水バルブ105、水処理設備に用いる処理
水を一時貯留する処理水槽106及び汚泥処理設備に用い
る着泥を一時貯留する着泥槽107から成る。濃度計103は
弁の切換え操作を行うための活性濃度変化に対して出力
応答時間が短く、かつ低濃度から、高濃度(処理水濃度
から濃縮活性濃度)までの広い検出感度領域を有するよ
うになっている。この送泥管路102における汚泥濃度の
測定方法としては、一般に超音波方式と光散乱方式があ
り、前者は超音波の汚泥による減衰を利用した濃度測定
方法であり、また後者は光散乱を利用した濃度測定方法
である。
The mud sending line 102 is a pipe that connects the mud sending side T and the mud receiving side R and sends sludge to the mud receiving side R. Reference numeral 103 is a densitometer attached to the mud-sending conduit 102 for measuring the sludge concentration. Further, the sludge receiving side R temporarily supplies the sludge valve 104 that supplies sludge to the sludge layer 103 by operating the valve, the treated water valve 105 that supplies treated water to the treated water tank by operating the valve, and the treated water used in the water treatment facility. It comprises a treated water tank 106 for storing and a mud tank 107 for temporarily storing mud used in sludge treatment equipment. The densitometer 103 should have a short output response time to changes in the active concentration for switching the valve, and have a wide detection sensitivity range from low concentration to high concentration (concentration of treated water to concentrated active concentration). Has become. As a method for measuring the sludge concentration in the sludge pipe line 102, there are generally an ultrasonic method and a light scattering method.The former is a concentration measuring method using attenuation of ultrasonic waves by sludge, and the latter uses light scattering. This is a method of measuring the concentration.

この光散乱方式では、ガラス面近くの汚泥を測定する
ため、全体的に気泡が混入していても、比較的その影響
が少なくなる。それ故、光散乱方式では連続測定が可能
であり、処理場内の返送汚泥、余剰汚泥のインライン監
視、汚泥集中処理システムにおけるバルブ制御のための
測定用として多用されている。
In this light scattering method, since sludge near the glass surface is measured, even if air bubbles are mixed in, the effect thereof is relatively small. Therefore, the light scattering method enables continuous measurement, and is widely used for measurement for returning sludge in a treatment plant, in-line monitoring of excess sludge, and valve control in a sludge centralized treatment system.

D.発明が解決しようとする問題点 かかる従来の流速制御装置では、第3図に示すように
送泥管路102内における汚泥の腐敗を防ぐために常時は
送泥管102に処理水(下水を処理した比較的きれいな
水)が満たされている。そして、汚泥槽102に汚泥が蓄
積され、送泥の時間になったとき、送泥ポンプ101が始
動して汚泥槽100内の汚泥を送泥管路102に圧送される
が、このとき送泥管路102内の処理水は、押されて移動
する。この時、汚泥バルブ104は閉じ、処理水バルブ105
が開になり、送泥管路102中にあった処理水が受泥側R
の処理水槽106に貯留される。送泥側Tでは汚泥槽100の
汚泥がなくなると、送泥ポンプ101が停止し、送水ポン
プ111が始動し、処理水槽110の処理水が送り出されるよ
うになる。また、受泥側Rでは送泥管路102に設けられ
た濃度計103により、汚泥の到達が検出されると、汚泥
バルブ104が開で、処理水バルブ105ガ閉となり、汚泥が
着泥槽107に送られる。その後、濃度計103で汚泥の通過
が終了したことを汚泥濃度から測定する。このようにし
て再び送泥管路102内が処理水のみとなると、送水ポン
プ111が停止して汚泥バルブ104を閉じる。
D. Problems to be Solved by the Invention In such a conventional flow velocity control device, as shown in FIG. 3, in order to prevent the sludge from spoiling in the sludge pipe line 102, the treated water (the sewage is kept in It is filled with treated relatively clean water. Then, when sludge is accumulated in the sludge tank 102 and it is time to send mud, the mud sending pump 101 is started and the sludge in the sludge tank 100 is pressure-fed to the mud sending line 102. The treated water in the pipeline 102 is pushed and moves. At this time, the sludge valve 104 is closed and the treated water valve 105
Is opened, and the treated water in the mud transport line 102 is the mud receiving side R
It is stored in the treated water tank 106. When the sludge tank 100 runs out of sludge on the mud sending side T, the mud sending pump 101 is stopped, the water sending pump 111 is started, and the treated water in the treated water tank 110 is sent out. On the receiving side R, when the arrival of sludge is detected by the densitometer 103 provided in the mud sending line 102, the sludge valve 104 is opened, the treated water valve 105 is closed, and the sludge is deposited on the sludge tank. Sent to 107. After that, the concentration meter 103 measures the completion of the sludge passage from the sludge concentration. In this way, when the inside of the mud-sending conduit 102 becomes only treated water again, the water-sending pump 111 is stopped and the sludge valve 104 is closed.

上記流量制御装置では、汚泥等の混合液を長距離の汚
泥管路102を通過する場合にその流体の流速を最適に選
んでシステム全体の効率を向上させる必要がある。しか
し、例えば管内の流速が大きすぎる場合には、汚泥管路
102内の摩擦抵抗による損失が大きくなるためにポンプ
の負荷が過大になり、電気代が嵩んでしまい、また汚泥
管路102内面あるいはバルブ等の消耗を早めてしまうと
いう不都合がある。そのためにかかる制御装置では送泥
側Tの圧力上昇を伴うので、それに耐えうる設備にしな
ければならない。また、流速が小さ過ぎる場合には、送
泥に時間がかかり、かつ沈澱し易い物質が含まれている
ときは送泥中に沈澱して管路を狭めたり、また成分の変
化をきたてしまうという不都合がある。
In the above flow rate control device, when a mixed liquid such as sludge passes through the long-distance sludge pipeline 102, it is necessary to optimize the flow velocity of the fluid to improve the efficiency of the entire system. However, for example, if the flow velocity in the pipe is too high, the sludge pipeline
Since the loss due to the frictional resistance in 102 becomes large, the load of the pump becomes excessive, the electricity cost is increased, and the inner surface of the sludge pipeline 102, the valve, etc. are consumed quickly. Therefore, in such a control device, the pressure on the mud sending side T is increased, and therefore the equipment must be able to withstand it. If the flow velocity is too low, it takes a long time to send the mud, and if it contains a substance that easily precipitates, it precipitates during the mud sending to narrow the pipeline or change the composition. There is an inconvenience.

そこで、本発明は送泥管路の上面と下面の濃度検出器
を設けること等により、両検出器の濃度検出差を得て、
送泥管路内の汚泥状況を把握して送泥管路内の流速制御
を行うことができる流速制御装置を提供することを目的
とする。
Therefore, the present invention obtains the concentration detection difference between both detectors by providing concentration detectors on the upper surface and the lower surface of the mud transport line,
An object of the present invention is to provide a flow velocity control device capable of grasping the sludge condition in the mud transport line and controlling the flow velocity in the mud transport line.

E.問題点を解決するための手段 上記問題点を解決するための手段として本発明は、混
合水槽内の汚泥混合水をポンプを作動させて送水管路に
供給し、この送水管路に設けた濃度検出器で送られた汚
泥混合水の濃度を検出し、その混合水濃度検出により前
記ポンプを制御し、送水管路に流れる汚泥混合水の流量
を制御する流速制御装置において、前記送水管路の上面
に設けた第1の濃度検出器と、前記送水管路の下面に設
けた第2の濃度検出器と、前記送水管路に設けた流量計
と、前記第1及び第2の濃度検出器より検出された濃度
検出信号の差を求める演算器と、この演算器からの演算
出力信号と前記流量計から送出される流量信号によりポ
ンプ駆動制御信号を出力する制御回路と、この制御回路
から送出されるポンプ駆動制御信号で前記ポンプを駆動
するポンプ駆動装置、及び前記第1又は第2の濃度検出
器より第1又は第2の信号変換器を経て得られる断面積
の異なる前記送水管路に汚泥混合水が到達したときの位
置を示す汚泥混合水到達位置信号と、前記流量計から送
出される流量の変更を示す流量変更信号に基づいて前記
送水管路の断面積に応じたポンプ駆動制御信号を選択す
る選択回路から成ることを特徴とする。
E. Means for Solving the Problems As a means for solving the above problems, the present invention provides a sludge mixed water in a mixed water tank by operating a pump to supply it to a water supply pipeline, and to provide the water supply pipeline. In the flow velocity control device, which detects the concentration of the sludge mixed water sent by the concentration detector, controls the pump by detecting the concentration of the mixed water, and controls the flow rate of the sludge mixed water flowing in the water pipe. A first concentration detector provided on the upper surface of the passage, a second concentration detector provided on the lower surface of the water supply conduit, a flow meter provided on the water supply conduit, the first and second concentrations An arithmetic unit for obtaining the difference between the concentration detection signals detected by the detector, a control circuit for outputting a pump drive control signal by the arithmetic output signal from the arithmetic unit and the flow rate signal sent from the flow meter, and this control circuit The pump drive control signal sent from Pump drive device for driving a pump, and when sludge mixed water reaches the water supply pipes having different cross-sectional areas obtained from the first or second concentration detector via the first or second signal converter, It comprises a selection circuit for selecting a pump drive control signal corresponding to the cross-sectional area of the water supply line based on a sludge mixed water arrival position signal indicating a position and a flow rate change signal indicating a change in flow rate sent from the flow meter. It is characterized by

F.作用 本装置では送水管路の上面と下面の濃度検出器の濃度
検出差を求め、この濃度検出差から送水管路内の汚泥混
合水の流れを把握して送泥管路内の流速を連続的に制御
して最適な流速になし、また断面積の異なる送泥管路に
汚泥混合水が到達したときの位置を示す汚泥混合水到達
位置信号と、前記流量計から送出される流量の変更を示
す流量変更信号に基づいて前記送泥管路の断面積に応じ
たポンプ駆動制御信号を選択し、送泥管路に応じた最適
な流量制御をする。
F. Action In this device, the concentration detection difference between the concentration detectors on the upper and lower surfaces of the water supply pipeline is calculated, and the flow of sludge mixed water in the water supply pipeline is grasped by grasping the flow of sludge mixed water in the water supply pipeline from this concentration detection difference. To achieve an optimum flow velocity, and the sludge mixed water arrival position signal indicating the position when the sludge mixed water arrives at the sludge conduits with different cross-sectional areas, and the flow rate sent from the flowmeter. The pump drive control signal corresponding to the cross-sectional area of the mud feeding line is selected on the basis of the flow rate changing signal indicating the change of No. 1, and the optimum flow rate control according to the mud feeding line is performed.

G.実施例 次に、本発明の実施例を第1図に基づいて説明する。
第1図は本発明の第1の実施例を示す回路図である。こ
の図において、符号1は汚泥槽で、この汚泥槽1には汚
泥が貯留されている。2はポンプで、ポンプ2を後述す
るポンプ駆動装置12により駆動させて、汚泥槽1内の汚
泥を送泥管路3に送る。この送泥管路3は第3図に示す
ように汚泥バルブを介して着泥槽と処理水バルブを介し
て処理水槽に配管され、この送泥管路3の途中には流量
計4、濃度検出器5,6が設けられている。流量計4はポ
ンプ2が駆動中の送泥管路3を通過する汚泥の流量を管
断面積Sと平均流速Vから測定し、流量信号S4を得る。
濃度検出器5は送泥管路3の上面に取り付けられた検出
器で、濃度検出器6は汚泥管路3の下面に取り付けられ
た検出器で、これらの検出器5,6は例えば交散乱方式に
よって汚泥濃度を検出するものである。符号7は流量変
換器で、この変換器7では流量計4で測定した汚泥の流
量を流量に比例した電気信号に変換し流量信号Qを出力
する。8,9は濃度変換器で、この変換器8,9では濃度検出
器5,6で検出された検出信号を濃度検出信号C8,S9に変換
する。10は演算器で、この演算部10では濃度検出信号S
8,S9に応じた演算出力信号αを得る。11は制御回路で、
この回路11では演算出力信号αと流量信号Qに基づいて
ポンプ駆動制御信号rを得る。ポンプ制御装置12はポン
プ2の出力制御をする。
G. Example Next, an example of the present invention will be described with reference to FIG.
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In this figure, reference numeral 1 is a sludge tank, and sludge is stored in this sludge tank 1. Reference numeral 2 denotes a pump, which drives the pump 2 by a pump drive device 12 which will be described later to feed the sludge in the sludge tank 1 to the sludge feeding line 3. As shown in FIG. 3, this mud-sending conduit 3 is piped to a treated water tank via a sludge tank and a treated-water valve via a sludge valve. Detectors 5 and 6 are provided. The flow meter 4 measures the flow rate of sludge passing through the mud-sending conduit 3 in which the pump 2 is driven from the pipe cross-sectional area S and the average flow velocity V, and obtains a flow signal S4.
The concentration detector 5 is a detector mounted on the upper surface of the sludge pipeline 3, the concentration detector 6 is a detector mounted on the lower surface of the sludge pipeline 3, and these detectors 5, 6 are, for example, cross-scatterers. The sludge concentration is detected by the method. Reference numeral 7 is a flow rate converter, which converts the flow rate of sludge measured by the flow meter 4 into an electric signal proportional to the flow rate and outputs a flow rate signal Q. Reference numerals 8 and 9 denote concentration converters. The converters 8 and 9 convert the detection signals detected by the concentration detectors 5 and 6 into concentration detection signals C8 and S9. Reference numeral 10 is a calculator, and in this calculator 10, the density detection signal S
The operation output signal α corresponding to 8, S9 is obtained. 11 is a control circuit,
In this circuit 11, a pump drive control signal r is obtained based on the operation output signal α and the flow rate signal Q. The pump controller 12 controls the output of the pump 2.

次に、本第1の実施例の動作について説明する。今、
送泥管路3の流速が遅くなると流体内の懸濁物が沈澱
し、管路の下側は透明度を失い上側は透明度が増し、濃
度検出信号S8と信号S9に差が現れる。この場合には、ポ
ンプ駆動装置12を駆動させて送泥管路3内の汚泥流速を
はやめる制御が行われ、この制御回路11のポンプ駆動制
御信号rによって行われる。今、ポンプが駆動していて
ある流量Q(管断面積S,,平均流速V)で汚泥が流れて
いるとする。このとき濃度検出信号S8,S9は演算器10に
よりα=f(SA,SB)なる演算が行われる。制御回路11
には濃度検出信号αと流量計4の出力信号Qが入力さ
れ、この入力に従った出力:rが出されポンプ駆動装置12
に送られる。
Next, the operation of the first embodiment will be described. now,
When the flow velocity in the mud transport line 3 becomes slow, the suspension in the fluid precipitates, the lower part of the line loses transparency and the upper part becomes transparent, and a difference appears between the concentration detection signals S8 and S9. In this case, control is performed to drive the pump drive device 12 to stop the sludge flow velocity in the mud feed line 3, and this is performed by the pump drive control signal r of the control circuit 11. Now, it is assumed that the sludge is flowing at a flow rate Q (pipe cross-sectional area S, average flow velocity V) that the pump is driving. At this time, the concentration detection signals S8, S9 are calculated by the calculator 10 as α = f (S A , S B ). Control circuit 11
The concentration detection signal α and the output signal Q of the flow meter 4 are input to the pump, and the output: r corresponding to this input is output to the pump drive device 12
Sent to

S8およびS9に差の現れる場合は、流速が遅すぎるため
流体内の懸濁物が沈澱していることを示す。従って、こ
れを防ぐための制御の1例を次います。
The difference between S8 and S9 indicates that the suspension in the fluid is settled because the flow rate is too slow. Therefore, the following is an example of control to prevent this.

(ポンプ駆動装置は、入力信号rに対しポンプ出力流量 の特性をもっていると仮定する。) α=f(SA,SB)=K1(SB−SA) もしも α>αならば r=K2(Q+β) α≦αならば r=K2(Q−β) K1,K2,α,β,r,αは正数 Qminは送泥に許される、最長の時間、あるいはポンプ
特性、によりQmaxは、各機器の保護、あるいはポンプ特
性から、決められる定数である。
(Pump drive is pump output flow rate for input signal r Suppose that it has the property of. ) Α = f (S A , S B ) = K 1 (S B −S A ) If α> α 0 then r = K 2 (Q + β) If α ≦ α 0 then r = K 2 (Q−β) K 1 , K 2 , α, β, r, α 0 are positive numbers Qmin is the longest time allowed for mud transport, or pump characteristics. Qmax is a constant determined from the protection of each device or pump characteristics. Is.

従って管路内の沈澱状況を把握し、平均流速V(=Q/
S)を制御することができる。
Therefore, the average flow velocity V (= Q /
S) can be controlled.

次に、本発明の第2の実施例を第2図に基づいて説明
する。第2図は本発明の第2の実施例を示す回路図でこ
の回路図は管断面積Sが異なる場合(S1,S2…)に流量
制御をする回路を示す。第1図と同様の構成については
同じ符号を付して詳しい説明を省略する。符号S1〜S3は
断面積が異なる送泥管路で、A〜Cは第1図の流速制御
回路と同一構成から成る濃度検出、演算及び制御回路か
ら成るユニットである。符号20は選択回路でこの選択回
路20にはユニットAの制御回路11から送出される流量変
更信号riと汚泥到達位置信号(信号S8または信号S9より
得る)x1が入力する。またこの選択回路20からはユニッ
トBより流量変更信号r2と汚泥到達位置の信号x2が入力
し、またユニットCから流量変更信号r3と汚泥到達位置
の信号x3が入力するようなっている。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a circuit diagram showing a second embodiment of the present invention. This circuit diagram shows a circuit for controlling the flow rate when the tube cross-sectional areas S are different (S1, S2 ...). The same components as those in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted. Reference symbols S1 to S3 are mud-sending conduits having different cross-sectional areas, and A to C are units composed of a concentration detection, calculation and control circuit having the same structure as the flow velocity control circuit of FIG. Reference numeral 20 denotes a selection circuit to which the flow rate change signal ri sent from the control circuit 11 of the unit A and the sludge arrival position signal (obtained from the signal S8 or the signal S9) x 1 are input. The selection circuit 20 inputs the flow rate change signal r 2 and the sludge arrival position signal x 2 from the unit B, and the flow rate change signal r 3 and the sludge arrival position signal x 3 from the unit C. There is.

次に、本第2実施例の動作について説明する。例え
ば、汚泥を処理水で押し流されている状態であるとす
る。ここでこの位置に汚泥が到達したことをS8またはS9
で検出し、上述と同様にα>αのとき α≦αのとき ただし S0はポンプ出口断面積 S1は測定位置(汚泥到達位置)の断面積 すなわち汚泥到達位置の信号x1(S8またはS9より得
る)および流量変更のための信号r1を選択回路と入力
し、rを出力する。次に汚泥が異なった断面積S2の位置
に設けられた検出ユニットからの位置信号x2が選択回路
に入力するまではx1のときに得られた最適流量を保持す
る。x2では同様に断面積S2に対したr2が得られr=r2
して流量が制御される。
Next, the operation of the second embodiment will be described. For example, assume that sludge is being washed away with treated water. Here, S8 or S9 indicates that the sludge has reached this position.
And when α> α 0 as described above, When α ≦ α However, S 0 is the cross-sectional area of the pump outlet S 1 is the cross-sectional area of the measurement position (sludge arrival position), that is, the signal x 1 of the sludge arrival position (obtained from S8 or S9) and the signal r 1 for changing the flow rate are input to the selection circuit. And outputs r. Next, the optimum flow rate obtained at x 1 is maintained until the position signal x 2 from the detection unit provided at the position where the sludge has a different cross-sectional area S 2 is input to the selection circuit. flow rate of r = r 2 r 2 is obtained that against the cross-sectional area S 2 in the same manner in x 2 is controlled.

以下同様に各位置の断面積に応じて最適の流速が得ら
れる様にポンプ出力が制御される。
Similarly, the pump output is controlled so that the optimum flow velocity is obtained according to the cross-sectional area at each position.

以上のように本実施例によれば、送泥管路内の上下に
濃度の差がでて、その差が設定値以内であれば沈澱を生
じていないものとして流速を減じ、また濃度が大きくな
ったときは沈澱を生じたものとして流速を増すようにし
ているので送泥管路内の流量を常に最適に保つことがで
きる。
As described above, according to the present embodiment, there is a difference in concentration between the upper and lower sides in the mud transport line, and if the difference is within the set value, it is considered that no precipitation has occurred, the flow velocity is reduced, and the concentration is increased. When it occurs, the flow rate in the mud-sending pipeline can be kept optimum because the flow rate is increased as if precipitation had occurred.

尚、上記実施例においては下水汚泥を送泥する場合に
ついて述べたが、これのみに限定されるものではなく、
この他に上水汚泥、化学薬品及び食品材料等の沈澱物を
含む混合水の流速制御にも同様に適用される。この場
合、汚泥に相当するものが混合水であり、また送泥管路
は混合水を送る送水管路となる。
Incidentally, in the above embodiment, the case of sending the sewage sludge was described, but the present invention is not limited to this.
In addition to this, it is similarly applied to flow rate control of mixed water containing sediment such as tap water sludge, chemicals and food materials. In this case, what corresponds to sludge is mixed water, and the mud-sending conduit becomes a water-sending conduit for sending the mixed water.

H.発明の効果 上記のように本発明によれば、送泥管路の上面と下面
の濃度検出器の濃度検出差から送泥管路内の汚泥の沈澱
状況を把握して送泥管路内の流速を連続的に制御するこ
とができる。また、送泥管路の断面積が一様でない場合
にも送泥管路に応じた最適な流速制御をすることができ
る。
H. Effect of the Invention As described above, according to the present invention, the sludge settling condition in the sludge feeding line can be grasped from the concentration detection difference between the concentration detectors on the upper surface and the lower surface of the sludge feeding line. It is possible to continuously control the flow rate inside. Further, even when the cross-sectional area of the mud transport line is not uniform, it is possible to perform optimum flow velocity control according to the mud transport line.

従って、送泥管路内の流速が過大になって、管路内ロ
スを増加させてポンプを過負荷にしたり、また流速が過
大となることがないので、装置の消耗を早めたり耐圧を
上げる必要がない。更に、管路内流速が過小となって管
路内に懸濁物が沈澱することもないので、管路が閉塞さ
れたり、管路内の流体の成分が変質することがない最適
な流速制御が行われる。
Therefore, the flow velocity in the mud transmission line will not be too high, which will increase the loss in the line and overload the pump, and the flow velocity will not be too high, so that the equipment will be consumed faster and the pressure resistance will be increased. No need. Furthermore, because the flow velocity in the pipeline does not become too small and the suspension does not settle in the pipeline, optimal flow velocity control that does not block the pipeline or alter the fluid components in the pipeline Is done.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す回路図、第2図は
本発明の第2の実施例を示す回路図、第3図は従来の流
速制御装置の一例を示す構成図である。 1……汚泥槽、2……ポンプ、3……送泥管路、4……
流量計、5,6……濃度検出器、10……演算器、11……制
御回路、12……ポンプ駆動装置、S1〜S3……異なる断面
積の送泥管路、20……選択回路。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. 3 is a configuration diagram showing an example of a conventional flow velocity control device. is there. 1 …… Sludge tank, 2 …… Pump, 3 …… Mudging pipeline, 4 ……
Flowmeter, 5,6 ... Concentration detector, 10 ... Calculator, 11 ... Control circuit, 12 ... Pump drive device, S1 to S3 ... Sludging lines with different cross sections, 20 ... Selection circuit .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】混合水槽内の汚泥混合水をポンプを作動さ
せて送水管路に供給し、この送水管路に設けた濃度検出
器で送られた汚泥混合水の濃度を検出し、その汚泥混合
水濃度検出により前記ポンプを制御し、送水管路に流れ
る汚泥混合水の流量を制御する流速制御装置において、
前記送水管路の上面に設けた第1の濃度検出器と、前記
送水管路の下面に設けた第2の濃度検出器と、前記送水
管路に設けた流量計と、前記第1及び第2の濃度検出器
により検出された濃度検出信号の差を求める演算器と、
この演算器からの演算出力信号と前記流量計から送出さ
れる流量信号によりポンプ駆動制御信号を出力する制御
回路と、この制御回路から送出されるポンプ駆動制御信
号で前記ポンプを制御するポンプ駆動装置から成ること
を特徴とする流速制御装置。
1. A sludge mixed water in a mixed water tank is supplied to a water supply pipe by operating a pump, and the concentration of the sludge mixed water sent by a concentration detector provided in the water supply pipe is detected to detect the sludge. In the flow velocity control device for controlling the pump by detecting the concentration of the mixed water, and controlling the flow rate of the sludge mixed water flowing in the water supply pipe,
A first concentration detector provided on the upper surface of the water supply conduit, a second concentration detector provided on the lower surface of the water supply conduit, a flow meter provided on the water supply conduit, and the first and second An arithmetic unit for obtaining the difference between the concentration detection signals detected by the second concentration detector;
A control circuit that outputs a pump drive control signal according to a calculation output signal from this arithmetic unit and a flow rate signal sent from the flow meter, and a pump drive device that controls the pump with the pump drive control signal sent from this control circuit. A flow velocity control device comprising:
【請求項2】混合水槽内の汚泥混合水をポンプを作動さ
せて送水管路に供給し、この送水管路に設けた濃度検出
器で送られた汚泥混合水の濃度を検出し、その混合濃度
検出により前記ポンプ制御し、送水管路に流れる汚泥混
合水の流量を制御する流速制御装置において、前記送水
管路の上面に設けた第1の濃度検出器と、前記汚泥管路
の下面に設けた第2の濃度検出器と、前記送水管路に設
けた流量計と、前記第1及び第2の濃度検出器より検出
された濃度検出信号の差を求める演算器と、この演算器
からの演算出力信号と前記流量計から送出される流量信
号によりポンプ駆動制御信号を出力する制御回路と、前
記第1又は第2の濃度検出器より得られる断面積の異な
る前記送水管路に汚泥混合水が到達したときの位置を示
す汚泥混合水到達位置信号と、前記流量計から送出され
る流量の変更を示す流量変更信号に基づいて前記送水管
路の断面積に応じたポンプ駆動制御信号を選択する選択
回路から成ることを特徴とする流速制御装置。
2. A sludge mixed water in a mixed water tank is supplied to a water supply pipe by operating a pump, the concentration of sludge mixed water sent by a concentration detector provided in the water supply pipe is detected, and the mixture is mixed. In the flow velocity control device for controlling the pump by controlling the concentration to control the flow rate of the sludge mixed water flowing in the water supply conduit, a first concentration detector provided on the upper surface of the water supply conduit and a lower surface of the sludge conduit. A second concentration detector provided, a flow meter provided in the water supply conduit, a calculator for obtaining the difference between the concentration detection signals detected by the first and second concentration detectors, and from this calculator And a control circuit for outputting a pump drive control signal in accordance with the flow rate signal sent from the flowmeter and the sludge mixture in the water supply conduits having different cross-sectional areas obtained from the first or second concentration detector. Sludge mixed water arrival indicating the position when water arrives Flow rate control, which comprises a position signal and a selection circuit for selecting a pump drive control signal according to the cross-sectional area of the water supply line based on a flow rate change signal indicating a change in flow rate sent from the flow meter. apparatus.
JP62302141A 1987-11-30 1987-11-30 Flow rate controller Expired - Lifetime JPH084797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302141A JPH084797B2 (en) 1987-11-30 1987-11-30 Flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302141A JPH084797B2 (en) 1987-11-30 1987-11-30 Flow rate controller

Publications (2)

Publication Number Publication Date
JPH01143696A JPH01143696A (en) 1989-06-06
JPH084797B2 true JPH084797B2 (en) 1996-01-24

Family

ID=17905401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302141A Expired - Lifetime JPH084797B2 (en) 1987-11-30 1987-11-30 Flow rate controller

Country Status (1)

Country Link
JP (1) JPH084797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080366A1 (en) * 2011-12-01 2013-06-06 株式会社エーゼット Sterilizer, oral sterilizer, sterilization method, sterilization apparatus, and sterilizer evaluation method

Also Published As

Publication number Publication date
JPH01143696A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US6110382A (en) Automated effluence conditioning and treatment
CN109293128A (en) A kind of Sewage from Ships processing system
CN110255808A (en) The sewage disposal system being integrated based on Internet of Things and artificial intelligence
JPH084797B2 (en) Flow rate controller
KR100978706B1 (en) Apparatus for treating waste water
CN206645936U (en) A kind of water treatment by membrane oxydixing sterilization deoxidation precisely controlling system
KR100897438B1 (en) Control apparatus for Sewage treatment system
Burchett et al. Facilities for controlling the activated sludge process by mean cell residence time
JPH0827267B2 (en) Concentration detector
Balmer et al. Oxygen transfer in gravity flow sewers
Chapman Final settler performance during transient loading
CN110117112A (en) A kind of biochemical sewage process performance experimental rig
JPH06296958A (en) Device for supporting operation of purification equipment in stored water
Toerber Full Scale Parallel Activated Sludge Process Evaluation
JP3676397B2 (en) Waste water treatment equipment in landfills
SU861338A1 (en) Automatic unit for rendering harmless waste water
JPS5815027B2 (en) Method and device for detecting and controlling BOD value in wastewater based on wastewater turbidity
SU1154215A1 (en) Device for automatic monitoring of waste and natural water quality
SU1291557A1 (en) Method of checking operation of primary vertical settling tank of waste water
CN206308077U (en) A kind of reverse osmosis concentrated water recycling device
Ulieru Application of fiber optic sensors in waste water management from microelectronics fabrication processes
RU2071953C1 (en) Automatized galvanocoagulation purification process complex
JPS62286594A (en) Apparatus for distribution control of inflow load of water treatment plant
Ulieru Application of fiber optic sensors to wastewater management using microelectronics fabrication processes
CN113010518A (en) Method and device for processing pipeline cleaning data