JPH0847602A - Vacuum evaporating method and vacuum evaporator - Google Patents

Vacuum evaporating method and vacuum evaporator

Info

Publication number
JPH0847602A
JPH0847602A JP20603394A JP20603394A JPH0847602A JP H0847602 A JPH0847602 A JP H0847602A JP 20603394 A JP20603394 A JP 20603394A JP 20603394 A JP20603394 A JP 20603394A JP H0847602 A JPH0847602 A JP H0847602A
Authority
JP
Japan
Prior art keywords
sample
container
vacuum
concentration
concentration operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20603394A
Other languages
Japanese (ja)
Other versions
JP3150540B2 (en
Inventor
Masami Arakawa
雅巳 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomy Seiko Co Ltd
Original Assignee
Tomy Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomy Seiko Co Ltd filed Critical Tomy Seiko Co Ltd
Priority to JP20603394A priority Critical patent/JP3150540B2/en
Publication of JPH0847602A publication Critical patent/JPH0847602A/en
Priority to JP2000163870A priority patent/JP3432480B2/en
Application granted granted Critical
Publication of JP3150540B2 publication Critical patent/JP3150540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To effectively heat a sample during concentration operation to shorten the concentration time by introducing gas which becomes a heat transfer medium during the sample concentration operation around the sample to eliminate the vacuum condition around the sample. CONSTITUTION:After a tube containing a sample to be concentrated or dried is fitted to a rotor 1 and a cover 3 is closed, the rotor 1 is rotated by a driving motor 7 to give centrifugal force to the sample. Next, a vacuum pump and a heater are turned on to make the inside of a vessel 2 in vacuum condition, and also the temp. of an atmosphere is raised to evaporate liquid components in the sample. When the liquid components in the sample are evaporated, the sample temp. is lowered because the temp. of the sample is deprived as the heat of vaporization. Then, the vacuum pump is once stopped during the sample concentration operation, and a stop valve 17 is operated to introduce air into the vessel 2, and operation for temporarily releasing the vacuum condition in the vessel 2 is repeated every elapse of prescribed time. In this way, the sample is temporarily heated during concentration operation to shorten the concentration time of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空濃縮方法及び真空
濃縮装置に関し、特に試料を収納した容器に回転による
遠心力を与えながら、該試料を減圧下において加熱する
試料の真空濃縮方法及び真空濃縮装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum concentrating method and a vacuum concentrating apparatus, and more particularly to a sample vacuum concentrating method and a vacuum concentrating method for heating a sample containing a sample under reduced pressure while applying a centrifugal force by rotation. The present invention relates to a concentrating device.

【0002】[0002]

【従来の技術】従来より、有機溶媒或いは水等の液体成
分を含んだ試料を濃縮、或いは乾燥する為に、該試料を
収納したチューブに回転による遠心力を与えながら、該
試料を減圧下において加熱し、試料の液体成分を突沸さ
せることなく効率的に蒸発させる試料の真空濃縮方法が
存在する。かかる真空濃縮方法を実施する装置として
は、例えば図5に示した如き構造の装置が現在使用され
ている。
2. Description of the Related Art Conventionally, in order to concentrate or dry a sample containing a liquid component such as an organic solvent or water, the sample is stored under reduced pressure while applying a centrifugal force to the tube containing the sample by rotation. There is a method of vacuum concentration of a sample which heats and efficiently evaporates the liquid component of the sample without bumping. As an apparatus for carrying out such a vacuum concentration method, for example, an apparatus having a structure as shown in FIG. 5 is currently used.

【0003】ここで、図5中101は、試料に遠心力を
与える回転体、102は該回転体101を収納する容
器、103は前記容器102の上部開口102aを開閉
する蓋体である。容器102内は、前記蓋体103によ
って密閉状態とされ、該容器102の側壁に形成された
真空ポンプ接続口104に接続された真空ポンプ(図示
せず)によって、試料の濃縮操作中において減圧状態と
される。
Here, in FIG. 5, 101 is a rotating body for applying a centrifugal force to the sample, 102 is a container for housing the rotating body 101, and 103 is a lid for opening and closing the upper opening 102a of the container 102. The inside of the container 102 is hermetically closed by the lid 103, and a vacuum pump (not shown) connected to a vacuum pump connection port 104 formed on the side wall of the container 102 reduces the pressure during a sample concentration operation. It is said that

【0004】また、図5中105は、上記回転体101
を回転させる駆動手段であって、該駆動手段105は、
上記容器102内の密閉性を高める為に磁気継手による
間接駆動方式が採用され、容器102内の中央付近に回
転可能に支持された回転軸106と、容器102外の下
方に配置された駆動モーター107の出力軸108と
を、容器102の底面の一部を構成する板体109を挟
んで対向配置させられた磁石110,111によって間
接的に接続した構造のものである。
Reference numeral 105 in FIG. 5 designates the rotating body 101.
Which is a drive means for rotating the
An indirect drive system using a magnetic coupling is adopted to improve the airtightness inside the container 102, a rotating shaft 106 rotatably supported near the center inside the container 102, and a drive motor arranged below the container 102. The output shaft 108 of 107 is indirectly connected to the output shaft 108 by magnets 110 and 111 which are arranged to face each other with a plate 109 forming a part of the bottom surface of the container 102 interposed therebetween.

【0005】さらに、図5において112は、上記容器
102の外周壁面に装着された加熱ヒーターであって、
該加熱ヒーター112によって試料に含まれる液体成分
の蒸発を促進させる為の熱が加えられ、また113は、
減圧状態に供された上記容器102内に空気を導入する
ための配管であって、該配管113の基端には開閉弁1
14が設けられている。
Further, reference numeral 112 in FIG. 5 denotes a heater mounted on the outer peripheral wall surface of the container 102,
The heating heater 112 applies heat for promoting evaporation of the liquid component contained in the sample, and 113 is
A pipe for introducing air into the container 102 that has been subjected to a depressurized state, and an opening / closing valve 1 is provided at the base end of the pipe 113.
14 are provided.

【0006】上記のように構成された従来の真空濃縮装
置は、次の如く操作される。先ず、濃縮或いは乾燥すべ
き試料を入れたチューブを上記回転体101に装着し、
蓋体103を閉めた後に回転体101を上記駆動モータ
ー107によって回転させ、試料に回転による遠心力を
付加する。これは、後記する試料の急激な減圧下におけ
る加熱操作によって、試料が突沸、或いは飛散するのを
防止するために行なわれる。
The conventional vacuum concentrator having the above structure is operated as follows. First, attach a tube containing a sample to be concentrated or dried to the rotating body 101,
After closing the lid 103, the rotator 101 is rotated by the drive motor 107 to apply a centrifugal force due to the rotation to the sample. This is performed in order to prevent the sample from bumping or scattering due to the heating operation of the sample to be described later under a rapid depressurization.

【0007】次に、試料に遠心力を付加した状態で上記
真空ポンプ及び加熱ヒーターをONとし、容器102内を
減圧状態とすると共にその雰囲気温度を上昇させ、試料
中に含まれる液体成分を効率的に蒸発させる。
Next, while the centrifugal force is applied to the sample, the vacuum pump and the heater are turned on to depressurize the inside of the container 102 and raise the ambient temperature to efficiently remove the liquid component contained in the sample. Vaporize.

【0008】所定の時間が経過した後に、上記駆動モー
ター、真空ポンプ及び加熱ヒーターを OFFとし、上記真
空濃縮操作を停止すると共に、上記開閉弁114を操作
することにより容器102内の減圧状態を解除し、蓋体
103を開けて濃縮或いは乾燥された試料を得る。
After a lapse of a predetermined time, the drive motor, the vacuum pump and the heater are turned off to stop the vacuum concentration operation and operate the on-off valve 114 to release the depressurized state in the container 102. Then, the lid 103 is opened to obtain a concentrated or dried sample.

【0009】[0009]

【発明が解決しようとする課題】しかしながらここで、
先ず、上述した従来の真空濃縮装置を使用した試料の濃
縮或いは乾燥方法においては、試料の濃縮操作中におい
て容器102の外周壁面に装着された上記加熱ヒーター
112によって減圧下、即ち熱伝達媒体となる気体(空
気)が希薄、或いは存在しない状態で試料を間接的に加
熱しようとするものであるため、該加熱ヒーター112
による試料の加熱は効果的には行なわれず、試料の気化
熱による温度低下を招いて試料が凍結し、試料の濃縮効
率が下がって濃縮時間が長くなるという課題があった。
However, here,
First, in the method for concentrating or drying a sample using the conventional vacuum concentrating device described above, the heating heater 112 mounted on the outer peripheral wall surface of the container 102 is used under reduced pressure, that is, a heat transfer medium during the sample concentrating operation. The heater 112 is intended to indirectly heat the sample when the gas (air) is diluted or does not exist.
However, there is a problem that the sample is not effectively heated, the temperature is lowered by the heat of vaporization of the sample, the sample is frozen, the concentration efficiency of the sample is lowered, and the concentration time is prolonged.

【0010】これを防止するために、試料の加熱方法と
して容器102内に赤外線ヒーターを設置したり、或い
は容器の蓋体103を耐熱ガラスとし、該耐熱ガラスの
上部に赤外線ヒーターを設置したりすることにより、該
赤外線ヒーターからの輻射熱により減圧下においても試
料を効果的に加熱する試みがなされている。しかし、容
器102内に赤外線ヒーターを設置する方法において
は、試料の濃縮操作が終了して該試料を容器内より取出
す為に、空気を容器内に導入して減圧状態を解除した
際、容器102内に設置した上記赤外線ヒーターの表面
温度が高いために気化した試料中の液体成分、例えばア
セトン、エタノール等が、導入された空気の存在によっ
て発火、或いは爆発する恐れがあった。また、耐熱ガラ
ス製の蓋体103の上部に赤外線ヒーターを設置する方
法においては、蓋体が高価なものとなると共に、上部か
らの赤外線照射は試料に赤外線が直接当たってしまい、
試料の表面部分の温度が上がり過ぎてしまうこととな
り、特に生物学的な試料の場合には、試料が変質してし
まうためその採用には課題があった。
In order to prevent this, as a method of heating the sample, an infrared heater is installed in the container 102, or the lid 103 of the container is made of heat-resistant glass and the infrared heater is installed on the heat-resistant glass. Therefore, it has been attempted to effectively heat the sample even under reduced pressure by the radiant heat from the infrared heater. However, in the method of installing an infrared heater in the container 102, when air is introduced into the container to release the depressurized state in order to remove the sample from the container after the concentration operation of the sample is completed, Due to the high surface temperature of the infrared heater installed inside, the liquid components in the vaporized sample, such as acetone and ethanol, may ignite or explode due to the presence of the introduced air. In addition, in the method of installing the infrared heater on the upper portion of the lid 103 made of heat-resistant glass, the lid becomes expensive, and the infrared irradiation from the top directly hits the sample with infrared rays,
The temperature of the surface portion of the sample becomes too high, and in the case of a biological sample in particular, there is a problem in its adoption because the sample is altered.

【0011】また、上記した従来の真空濃縮装置を使用
した試料の濃縮或いは乾燥方法においては、使用する試
料の液体成分の種類、及び量によって異なる濃縮操作の
終了を確認するために、先ず使用者側は、一度ストップ
ウォッチ等で時間を計測しながら上記濃縮操作を行い、
それ以降の濃縮操作は、前記経験値に基づいて操作時間
をタイマー等で設定するという状況であり、使用者側に
とっては、濃縮操作の終了を確認するために根気を強い
られる作業を行なわなければならないという課題も存在
した。
In the above-mentioned conventional method for concentrating or drying a sample using a vacuum concentrating device, the user first confirms the end of the concentrating operation which differs depending on the type and amount of the liquid component of the sample used. The side performs the above concentration operation while measuring the time with a stopwatch etc.
The subsequent concentration operation is a situation in which the operation time is set by a timer or the like based on the experience value, and on the user side, it is necessary to take patience to confirm the end of the concentration operation. There was also the issue of not becoming.

【0012】さらに、真空濃縮装置を使用して濃縮或い
は乾燥しようとする試料の中には、該試料の液体成分と
して腐蝕性気体が発生する有機溶媒、例えばアセトン、
エタノール等を使用している試料が多いにもかかわら
ず、上記した従来の真空濃縮装置においては、回転体1
01、及び該回転体101を収納する容器102等は耐
蝕性材料にて形成し、その耐蝕性が確保されているもの
の、回転体101の駆動手段である回転軸106を回転
可能に収納する駆動部室115内の耐蝕性については、
単に回転軸106をシール部材116を介在させて駆動
部室115内に収納し、該駆動部室115を密閉構造と
することにより腐蝕性気体の侵入を阻止し、その耐蝕性
が保たれているのみであった。そのため、該真空濃縮装
置によって試料の濃縮或いは乾燥作業を繰り返した場
合、回転軸106に接する上記シール部材116は当然
摩耗及び劣化によってそのシール性が衰え、ついには腐
蝕性気体の侵入を阻止し得なくなって該駆動部室115
内にも腐蝕性気体が侵入し、駆動部室115の内壁面、
或いは駆動部室115内に存在する軸受等を腐蝕し、装
置として使用できない状況になる場合も存在した。
Further, in a sample to be concentrated or dried by using a vacuum concentrator, an organic solvent such as acetone, which generates a corrosive gas as a liquid component of the sample,
Although many samples use ethanol or the like, in the conventional vacuum concentrator described above, the rotor 1
01 and the container 102 for accommodating the rotating body 101 are made of a corrosion-resistant material, and the corrosion resistance is ensured, a drive for rotatably accommodating the rotating shaft 106 that is the driving means of the rotating body 101. Regarding the corrosion resistance in the room 115,
The rotary shaft 106 is simply housed in the drive chamber 115 with the seal member 116 interposed therebetween, and the drive chamber 115 is hermetically sealed to prevent invasion of corrosive gas and maintain its corrosion resistance. there were. Therefore, when the concentration or drying operation of the sample is repeated by the vacuum concentrator, the sealing property of the seal member 116 in contact with the rotary shaft 106 is naturally deteriorated due to wear and deterioration, and finally the corrosive gas can be prevented from entering. The drive chamber 115
The corrosive gas also invades into the inside of the drive unit chamber 115,
Alternatively, there is a case where the bearing or the like existing in the drive unit chamber 115 is corroded so that it cannot be used as a device.

【0013】本発明は、上述した従来の真空濃縮方法及
び真空濃縮装置が有する種々の課題に鑑み成されたもの
であって、その目的の第1は、濃縮操作中における試料
の加熱を効果的に行い、濃縮時間の短縮を可能とする真
空濃縮方法を提供することにある。また、本発明の第2
の目的は、濃縮操作の終了時期を的確に判断することが
可能な真空濃縮方法を提供することにある。更に、本発
明の第3の目的は、回転軸を収納する駆動部室内への腐
蝕性気体の侵入を、完全に阻止し得る真空濃縮装置を提
供することにある。
The present invention has been made in view of various problems of the above-described conventional vacuum concentration method and vacuum concentration apparatus, and the first purpose thereof is to effectively heat the sample during the concentration operation. The purpose of the present invention is to provide a vacuum concentration method capable of shortening the concentration time. The second aspect of the present invention
It is an object of the present invention to provide a vacuum concentration method capable of accurately determining the end time of the concentration operation. Further, a third object of the present invention is to provide a vacuum concentrating device which can completely prevent invasion of corrosive gas into the drive chamber containing the rotary shaft.

【0014】[0014]

【課題を解決するための手段】本発明は、先ず上記した
第1の目的を達成するため、濃縮或いは乾燥すべき試料
に遠心力を与えながら、該試料を減圧下において加熱
し、試料に含まれる液体成分を突沸させることなく効率
的に蒸発させる試料の真空濃縮方法において、上記試料
周囲の減圧状態を、試料の濃縮操作中において熱伝達媒
体となる気体を少なくとも1度は試料周囲に導入するこ
とにより解除し、試料の濃縮操作中における加熱を効果
的に行なうようにした真空濃縮方法とした。
[Means for Solving the Problems] In order to achieve the first object described above, the present invention comprises heating a sample to be concentrated or dried under reduced pressure while applying a centrifugal force to the sample, and In a vacuum concentration method of a sample for efficiently evaporating a liquid component to be evaporated without bumping, a reduced pressure state around the sample is introduced into the periphery of the sample at least once by a gas serving as a heat transfer medium during the concentration operation of the sample. By doing so, a vacuum concentration method was adopted in which heating was effectively performed during the concentration operation of the sample.

【0015】また、本発明は、上記第2の目的を達成す
るために、濃縮或いは乾燥すべき試料に遠心力を与えな
がら、該試料を減圧下において加熱し、試料に含まれる
液体成分を突沸させることなく効率的に蒸発させる試料
の真空濃縮方法において、該真空濃縮方法による試料の
濃縮操作の終了を、濃縮操作中における試料周囲の温度
の所定時間当たりの変化量から判断するようにした真空
濃縮方法とした。
Further, in order to achieve the second object, the present invention heats the sample to be concentrated or dried while applying a centrifugal force to the sample under reduced pressure to bump the liquid component contained in the sample. In a vacuum concentration method of a sample for efficiently evaporating without performing a vacuum, the end of the concentration operation of the sample by the vacuum concentration method is judged from the amount of change in the temperature around the sample per predetermined time during the concentration operation. The concentration method was used.

【0016】更に、本発明は、上記した第3の目的を達
成するために、試料に遠心力を与える回転体と、該回転
体を収納する密閉状態となる容器と、該容器内を減圧状
態とする真空ポンプと、上記回転体を回転させる駆動部
と、該駆動部を収納する駆動部室と、上記容器内を加熱
する加熱手段とを有する真空濃縮装置において、上記容
器に、該容器内に熱伝達媒体となる気体を導入する開閉
弁付き配管を接続すると共に、該配管を上記駆動部室に
も接続し、減圧状態となった上記容器内及び駆動部室内
に同時に熱伝達媒体となる気体を導入し得るようにした
真空濃縮装置とした。
Further, in order to achieve the above-mentioned third object, the present invention provides a rotating body for imparting a centrifugal force to a sample, a container for accommodating the rotating body in a sealed state, and a depressurized state in the container. In a vacuum concentrating device having a vacuum pump, a drive unit that rotates the rotating body, a drive unit chamber that houses the drive unit, and heating means that heats the inside of the container, in the container, in the container While connecting a pipe with an on-off valve for introducing a gas serving as a heat transfer medium, the pipe is also connected to the drive unit chamber, and a gas serving as a heat transfer medium is simultaneously supplied into the depressurized container and the drive unit chamber. A vacuum concentrator was prepared so that it could be introduced.

【0017】[0017]

【作用】上記した本発明にかかる真空濃縮方法によれ
ば、試料を常に減圧下、即ち熱伝達媒体となる気体(空
気)が希薄、或いは存在しない状態で試料を加熱してい
た従来の真空濃縮方法に比して、少なくとも一度は熱伝
達媒体となる気体が試料周囲に存在する状態でその加熱
が行なわれるため、試料は濃縮操作中において一時的で
はあるが効果的に加熱され、試料の濃縮時間の短縮を図
ることが可能となる作用が生じる。
According to the above-described vacuum concentration method according to the present invention, the sample is heated under reduced pressure, that is, the sample is heated in a state where the gas (air) serving as the heat transfer medium is dilute or absent. Compared with the method, since the heating is performed at least once in the presence of the gas serving as the heat transfer medium around the sample, the sample is heated temporarily but effectively during the concentration operation, and the sample is concentrated. There is an effect that the time can be shortened.

【0018】また、上記した本発明にかかる真空濃縮方
法によれば、試料の液体成分が蒸発して濃縮操作が終了
に近づくと、試料温度は気化熱により低下することが少
なくなることに着目し、試料の濃縮操作の終了を、濃縮
操作中における試料周囲の温度の所定時間当たりの変化
量から判断することとしたため、従来の真空濃縮方法の
如く、使用者がストップウォッチ等で濃縮操作時間をい
ちいち確認する必要がなくなり、濃縮操作の終了時期を
的確に、しかも容易に判断することが可能となる作用が
生じる。
Further, according to the above-described vacuum concentration method according to the present invention, when the liquid component of the sample evaporates and the concentration operation approaches the end, the sample temperature is less likely to decrease due to the heat of vaporization. Since the end of the sample concentration operation is judged from the amount of change in the ambient temperature of the sample during a predetermined time during the concentration operation, the user can adjust the concentration operation time with a stopwatch etc. as in the conventional vacuum concentration method. Since it is not necessary to check each time, there is an effect that the end time of the concentration operation can be accurately and easily determined.

【0019】さらに、上記した本発明にかかる真空濃縮
装置においては、回転体を収納する容器に熱伝達媒体と
なる気体を導入する開閉弁付き配管を接続すると共に、
該配管を駆動部室にも接続し、減圧状態となった上記容
器内及び駆動部室内に同時に熱伝達媒体となる気体を導
入し得るように構成したため、駆動部室内の圧力は、常
に容器内の圧力よりも低くなることはなく、容器内にお
いて試料から発生した腐蝕性気体が、駆動部室内へ侵入
することを完全に阻止し得る装置となる作用が生じる。
Further, in the above-described vacuum concentrating apparatus according to the present invention, a pipe with an opening / closing valve for introducing a gas serving as a heat transfer medium is connected to a container for accommodating the rotating body, and
Since the pipe is also connected to the drive chamber so that the gas serving as the heat transfer medium can be simultaneously introduced into the depressurized container and the drive chamber, the pressure inside the drive chamber is always the same. The pressure does not become lower than the pressure, and there is an effect of a device that can completely prevent the corrosive gas generated from the sample in the container from entering the drive unit chamber.

【0020】[0020]

【実施例】以下、上記した本発明にかかる真空濃縮方法
及び真空濃縮装置を、実施例を挙げて詳細に説明する。
EXAMPLES The vacuum concentrating method and the vacuum concentrating apparatus according to the present invention will be described in detail below with reference to examples.

【0021】ここで、図1は本発明にかかる真空濃縮方
法を実施する装置、及び本発明にかかる真空濃縮装置の
一実施例を示した縦断面図であって、図中1は、試料に
遠心力を与える回転体、2は該回転体1を収納する容
器、3は前記容器2の上部開口2aを開閉する蓋体であ
る。容器2内は、前記蓋体3によって密閉状態とされ、
該容器2の側壁に形成された真空ポンプ接続口4に接続
された真空ポンプ(図示せず)によって、試料の濃縮操
作中において減圧状態とされる。
Here, FIG. 1 is a vertical cross-sectional view showing an embodiment of an apparatus for carrying out a vacuum concentration method according to the present invention and a vacuum concentration apparatus according to the present invention, in which 1 is a sample. A rotary body 2 for giving a centrifugal force is a container for accommodating the rotary body 1, and 3 is a lid body for opening and closing the upper opening 2a of the container 2. The inside of the container 2 is sealed by the lid 3,
A vacuum pump (not shown) connected to a vacuum pump connection port 4 formed on the side wall of the container 2 makes a depressurized state during the concentration operation of the sample.

【0022】また、図中5は、上記回転体1を回転させ
る駆動手段であって、該駆動手段5は、上記容器2内の
密閉性を高める為に磁気継手による間接駆動方式が採用
され、容器2内の中央付近に回転可能に支持された回転
軸6と、容器2外の下方に配置された駆動モーター7の
出力軸8とを、容器2の底板9を挟んで対向配置させら
れた磁石10,11によって間接的に接続した構造のも
のである。
Reference numeral 5 in the drawing denotes a drive means for rotating the rotating body 1. The drive means 5 employs an indirect drive system using a magnetic coupling in order to enhance the airtightness in the container 2. A rotary shaft 6 rotatably supported in the vicinity of the center of the container 2 and an output shaft 8 of a drive motor 7 arranged below the container 2 are arranged to face each other with a bottom plate 9 of the container 2 interposed therebetween. It has a structure in which the magnets 10 and 11 are indirectly connected.

【0023】さらに、図において12は、上記容器2の
外周壁面に装着された加熱ヒーターであって、該加熱ヒ
ーター12によって試料に含まれる液体成分の蒸発を促
進させる為の熱が加えられ、また13は、減圧状態に供
された上記容器2内に空気を導入するための配管であっ
て、該配管13の容器2への接続部付近には、配管13
内の圧力を容器2内の圧力よりも僅かに高く維持する弁
装置14が設けられていると共に、配管13はその途中
において枝分かれしており、枝管15は、容器2内に存
在する上記回転軸6を収納する駆動部室16に接続され
ている。
Further, in the figure, 12 is a heating heater mounted on the outer peripheral wall surface of the container 2, and heat for promoting evaporation of the liquid component contained in the sample is applied by the heating heater 12, and Reference numeral 13 denotes a pipe for introducing air into the container 2 that has been subjected to a depressurized state, and the pipe 13 is provided near the connecting portion of the pipe 13 to the container 2.
A valve device 14 for maintaining the pressure inside the container 2 slightly higher than the pressure inside the container 2 is provided, and the pipe 13 is branched in the middle thereof, and the branch pipe 15 is the above-mentioned rotary unit existing inside the container 2. It is connected to a drive chamber 16 that houses the shaft 6.

【0024】また、図中17は、上記配管13の基端に
設けられた開閉弁であり、該開閉弁17を操作すること
により、容器2内及び駆動部室16内に同時に空気を導
入するように構成されている。また18は、上記蓋体3
に取付けられた温度センサーであって、該温度センサー
18により、濃縮操作中における試料周囲の温度を検出
する。
Reference numeral 17 in the drawing denotes an on-off valve provided at the base end of the pipe 13, and by operating the on-off valve 17, air is introduced into the container 2 and the drive chamber 16 at the same time. Is configured. 18 is the lid 3
The temperature sensor attached to the temperature sensor 18 detects the temperature around the sample during the concentration operation.

【0025】上記のように構成された本発明にかかる真
空濃縮装置を用いて、本発明にかかる真空濃縮方法を実
施するにあたっては、先ず、濃縮或いは乾燥すべき試料
を入れたチューブを上記回転体1に装着し、蓋体3を閉
めた後に回転体1を上記駆動モーター7によって回転さ
せ、試料に回転による遠心力を付加する。
In carrying out the vacuum concentration method according to the present invention using the vacuum concentration device according to the present invention configured as described above, first, a tube containing a sample to be concentrated or dried is placed in the rotary body. 1 and after closing the lid 3, the rotating body 1 is rotated by the drive motor 7 to apply a centrifugal force due to the rotation to the sample.

【0026】次に、試料に遠心力を付加した状態で、上
記真空ポンプ及び加熱ヒーターをONとし、容器2内を減
圧状態とすると共にその雰囲気温度を上昇させ、試料中
に含まれる液体成分を蒸発させる。
Next, while the centrifugal force is applied to the sample, the vacuum pump and the heater are turned on to depressurize the inside of the container 2 and raise the ambient temperature to remove the liquid components contained in the sample. Evaporate.

【0027】試料中の液体成分が、上記した減圧下にお
ける加熱操作によって活発に蒸発すると、試料温度は気
化熱として奪われその温度が低下するため、該試料の濃
縮操作中において上記真空ポンプを一旦止め、開閉弁1
7を操作することにより容器2内に空気を導入し、該容
器2内の減圧状態を一時的に解除する操作を所定時間の
経過毎に繰り返す。これにより、濃縮操作中において一
時的に容器2内に導入された上記空気は、ヒーター12
で加熱された容器2の壁面と熱交換して加熱され、この
加熱された空気の熱伝達により回転体1、及び該回転体
1に装着された上記試料を濃縮操作中において効果的に
加熱し、低下し始めた試料温度を再び上昇させ、試料中
の液体成分を活発に蒸発させることができる。
When the liquid component in the sample is actively evaporated by the heating operation under reduced pressure as described above, the sample temperature is deprived as heat of vaporization and the temperature is lowered, so that the vacuum pump is temporarily operated during the concentration operation of the sample. Stop, open / close valve 1
The operation of introducing air into the container 2 by operating 7 and temporarily releasing the depressurized state in the container 2 is repeated every time a predetermined time elapses. As a result, the air that is temporarily introduced into the container 2 during the concentration operation is not
It is heated by exchanging heat with the wall surface of the container 2 heated by the above, and the heat transfer of this heated air effectively heats the rotor 1 and the sample mounted on the rotor 1 during the concentration operation. The temperature of the sample, which has begun to decrease, can be raised again to actively evaporate the liquid component in the sample.

【0028】なお、この際、本発明にかかる真空濃縮装
置は、上記したように容器2内に空気を導入する配管1
3の容器2への接続部付近に、配管13内の圧力を容器
2内の圧力よりも僅かに高く維持する弁装置14を設け
ると共に、配管13はその途中において枝分かれしてお
り、枝管15は、容器2内に存在する上記回転軸6を収
納する駆動部室16に接続されているため、開閉弁17
を操作して容器2内に空気を導入する操作を行なった場
合、同時にシール部材19の劣化等によって減圧状態と
なった駆動部室16内にも空気が導入され、常に駆動部
室16内は容器2内より高い圧力状態を維持することと
なり、頻繁に容器2内の減圧、及び該減圧の解除が繰り
返されても、容器2内において試料から発生した腐蝕性
気体が、駆動部室16内へ侵入することはない。
At this time, in the vacuum concentrating device according to the present invention, the pipe 1 for introducing air into the container 2 as described above.
A valve device 14 for maintaining the pressure in the pipe 13 slightly higher than the pressure in the container 2 is provided near the connection portion of the pipe 3 to the container 2, and the pipe 13 is branched in the middle thereof. Is connected to the drive chamber 16 that accommodates the rotary shaft 6 existing in the container 2, so that the on-off valve 17
When the operation for introducing air into the container 2 is performed by operating, the air is also introduced into the drive chamber 16 that is in a depressurized state due to deterioration of the seal member 19 at the same time, and the interior of the drive chamber 16 is always Therefore, even if the depressurization in the container 2 and the release of the depressurization are frequently repeated, the corrosive gas generated from the sample in the container 2 invades into the drive unit chamber 16. There is no such thing.

【0029】上記操作によって試料の濃縮が進み、試料
中の液体成分が少なくなると、上記所定時間の経過毎に
繰り返していた減圧状態の解除後(空気導入による加熱
後)の試料温度の低下量が少なくなるため、この試料温
度の低下量の変化を上記温度センサー18により検知
し、試料温度の低下が所望の変化量となったところで上
記駆動モーター、真空ポンプ及び加熱ヒーターを OFFと
し、上記真空濃縮操作を停止する。
When the concentration of the sample is increased by the above operation and the liquid component in the sample is reduced, the amount of decrease in the sample temperature after releasing the depressurized state (after heating by introducing air), which has been repeated every time the above predetermined time elapses, The decrease in the sample temperature is detected by the temperature sensor 18, and when the decrease in the sample temperature reaches a desired change, the drive motor, the vacuum pump and the heating heater are turned off, and the vacuum concentration is performed. Stop the operation.

【0030】本発明は、上記した操作中において、試料
周囲の減圧状態を、試料の濃縮操作中において熱伝達媒
体となる空気を試料周囲に導入することにより解除し、
試料の濃縮操作中における加熱を効果的に行なうように
したことを先ず特徴とするものであるが、その効果を確
認するために、上記実施例装置を用いて下記する試験1
〜4を行なった。
In the present invention, during the above-mentioned operation, the depressurized state around the sample is released by introducing air, which is a heat transfer medium during the sample concentration operation, into the sample periphery,
The first feature of the present invention is that heating is effectively performed during the concentration operation of the sample. In order to confirm the effect, the following test 1 is performed using the apparatus of the above-mentioned embodiment.
~ 4 were performed.

【0031】また本発明は、上記操作中において、試料
の濃縮操作の終了を、試料周囲の温度の所定時間当たり
の変化量から判断するようにしたことを特徴とするもの
であるが、その可能性を確認するために、上記実施例装
置を用いて下記する試験5を行なった。
The present invention is also characterized in that during the above operation, the end of the sample concentration operation is judged from the amount of change in the temperature around the sample per predetermined time, which is possible. In order to confirm the property, the following test 5 was conducted using the apparatus of the above-mentioned example.

【0032】更に本発明は、容器内に熱伝達媒体となる
気体を導入する開閉弁付き配管を接続すると共に、該配
管を回転軸を収納する駆動部室にも接続し、減圧状態と
なった上記容器内及び駆動部室内に同時に熱伝達媒体と
なる気体を導入し得るように構成し、容器内において試
料より発生した腐蝕性気体が、駆動部室内に侵入するこ
とを完全に阻止する構成としたことを特徴とするもので
あるが、その効果を確認するために、上記実施例装置に
おいてシール部材19の摩耗及び劣化を想定し、該シー
ル部材19に微細な穴を開けた状態で、下記する試験6
を行なった。
Further, according to the present invention, a pipe with an on-off valve for introducing a gas serving as a heat transfer medium is connected to the container, and the pipe is also connected to a drive unit chamber for accommodating a rotary shaft, so that the pressure is reduced. It is configured so that a gas serving as a heat transfer medium can be introduced into the container and the driving chamber at the same time, and the corrosive gas generated from the sample in the container is completely blocked from entering the driving chamber. In order to confirm the effect, wear and deterioration of the seal member 19 in the apparatus of the above-described embodiment is assumed, and the following will be performed in the state in which fine holes are formed in the seal member 19. Exam 6
Was performed.

【0033】(試験1)試料を収納するチューブに、一
本当たりに5mlの水を入れ、該チューブを24本上記回
転体1に装着し、回転数1200rpmで回転させた状
態で、真空ポンプによって容器2内を5Torr程度の
真空度とし、容器2の壁面を加熱ヒーター12によって
45°程度に加熱し、試料の真空濃縮操作を開始した。
試料の濃縮操作開始から、9分経過毎に真空ポンプを2
分間止め、その真空ポンプの停止時に開閉弁17を操作
して容器2内に空気を導入し、容器2内の減圧状態を濃
縮操作中において一時的に解除する操作を繰り返した。
濃縮開始から90分経過した後に、上記濃縮操作を終了
し、試料である水の残り量を測定した。その測定結果
を、表1に試験1として記載する。また、温度センサー
18による上記濃縮操作中における試料温度の検出デー
ター、及び真空ポンプ接続口4付近に設けた圧力センサ
ーによる容器2内の真空度の検出データーを、図2に試
験1として記載する。
(Test 1) Into a tube containing a sample, 5 ml of water was placed per tube, 24 tubes were attached to the above-mentioned rotor 1, and the tube was rotated at 1200 rpm by a vacuum pump. The inside of the container 2 was set to a vacuum degree of about 5 Torr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started.
A vacuum pump is turned on every 9 minutes from the start of the sample concentration operation.
The operation was stopped for a minute, the opening / closing valve 17 was operated when the vacuum pump was stopped, air was introduced into the container 2, and the depressurized state in the container 2 was temporarily released during the concentration operation.
After 90 minutes had elapsed from the start of the concentration, the concentration operation was terminated and the residual amount of water as a sample was measured. The measurement result is described in Table 1 as Test 1. Further, the detection data of the sample temperature during the concentration operation by the temperature sensor 18 and the detection data of the degree of vacuum in the container 2 by the pressure sensor provided near the vacuum pump connection port 4 are shown as Test 1 in FIG.

【0034】(試験2)試料を収納するチューブに、一
本当たりに5mlの水を入れ、該チューブを24本上記回
転体1に装着し、回転数1200rpmで回転させた状
態で、真空ポンプによって容器2内を5Torr程度の
真空度とし、容器2の壁面を加熱ヒーター12によって
45°程度に加熱し、試料の真空濃縮操作を開始した。
濃縮開始から90分経過した後に、上記濃縮操作を終了
し、試料である水の残り量を測定した。その測定結果
を、表1に試験2として併記する。また、温度センサー
18による上記濃縮操作中における試料温度の検出デー
ター、及び真空ポンプ接続口4付近に設けた圧力センサ
ーによる容器2内の真空度の検出データーを、図2に試
験2として併記する。
(Test 2) 5 ml of water was put in each tube containing the sample, 24 tubes were attached to the rotating body 1, and the tube was rotated at 1200 rpm by a vacuum pump. The inside of the container 2 was set to a vacuum degree of about 5 Torr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started.
After 90 minutes had elapsed from the start of the concentration, the concentration operation was terminated and the residual amount of water as a sample was measured. The measurement results are also shown in Table 1 as Test 2. Further, the detection data of the sample temperature during the concentration operation by the temperature sensor 18 and the detection data of the degree of vacuum in the container 2 by the pressure sensor provided near the vacuum pump connection port 4 are also shown in FIG.

【0035】(試験3)試料を収納するチューブに、一
本当たりに1mlの50%水溶液のエタノールを入れ、該チ
ューブを60本上記回転体1に装着し、回転数1200
rpmで回転させた状態で、真空ポンプによって容器2
内を5Torr程度の真空度とし、容器2の壁面を加熱
ヒーター12によって45°程度に加熱し、試料の真空
濃縮操作を開始した。試料の濃縮操作開始から、9分経
過毎に真空ポンプを2分間止め、その真空ポンプの停止
時に開閉弁17を操作して容器2内に空気を導入し、容
器2内の減圧状態を濃縮操作中において一時的に解除す
る操作を繰り返した。濃縮開始から60分経過した後
に、上記濃縮操作を終了し、試料である50%水溶液のエ
タノールの残り量を測定した。その測定結果を、表1に
試験3として記載する。また、温度センサー18による
上記濃縮操作中における試料温度の検出データー、及び
真空ポンプ接続口4付近に設けた圧力センサーによる容
器2内の真空度の検出データーを、図3に試験3として
記載する。
(Test 3) 1 ml of a 50% aqueous solution of ethanol was put in each tube containing the sample, and 60 tubes were mounted on the rotor 1, and the rotation speed was 1200.
Container 2 by vacuum pump while rotating at rpm
The inside was set to a vacuum degree of about 5 Torr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started. The vacuum pump is stopped for 2 minutes every 9 minutes from the start of the sample concentration operation, and when the vacuum pump is stopped, the on-off valve 17 is operated to introduce air into the container 2 to concentrate the depressurized state in the container 2. The operation of temporarily releasing it was repeated. After the lapse of 60 minutes from the start of the concentration, the concentration operation was terminated and the remaining amount of ethanol in the 50% aqueous solution as a sample was measured. The measurement result is shown in Table 1 as Test 3. Further, the detection data of the sample temperature during the concentration operation by the temperature sensor 18 and the detection data of the degree of vacuum in the container 2 by the pressure sensor provided near the vacuum pump connection port 4 are shown as test 3 in FIG.

【0036】(試験4)試料を収納するチューブに、一
本当たりに1mlの50%水溶液のエタノールを入れ、該チ
ューブを60本上記回転体1に装着し、回転数1200
rpmで回転させた状態で、真空ポンプによって容器2
内を5Torr程度の真空度とし、容器2の壁面を加熱
ヒーター12によって45°程度に加熱し、試料の真空
濃縮操作を開始した。濃縮開始から60分経過した後
に、上記濃縮操作を終了し、試料である50%水溶液のエ
タノールの残り量を測定した。その測定結果を、表1に
試験4として併記する。また、温度センサー18による
上記濃縮操作中における試料温度の検出データー、及び
真空ポンプ接続口4付近に設けた圧力センサーによる容
器2内の真空度の検出データーを、図3に試験4として
併記する。
(Test 4) 1 ml of a 50% aqueous solution of ethanol was put in each tube containing the sample, and 60 tubes were attached to the above-mentioned rotor 1, and the rotation speed was 1200.
Container 2 by vacuum pump while rotating at rpm
The inside was set to a vacuum degree of about 5 Torr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started. After the lapse of 60 minutes from the start of the concentration, the concentration operation was terminated and the remaining amount of ethanol in the 50% aqueous solution as a sample was measured. The measurement results are also shown in Table 1 as Test 4. Further, the detection data of the sample temperature during the concentration operation by the temperature sensor 18 and the detection data of the degree of vacuum in the container 2 by the pressure sensor provided in the vicinity of the vacuum pump connection port 4 are also shown in FIG.

【0037】(試験5)試料を収納するチューブに、一
本当たりに1mlの水を入れ、該チューブを60本上記回
転体1に装着し、回転数1200rpmで回転させた状
態で、真空ポンプによって容器2内を5Torr程度の
真空度とし、容器2の壁面を加熱ヒーター12によって
45°程度に加熱し、試料の真空濃縮操作を開始した。
試料の濃縮操作開始から、9分経過毎に真空ポンプを2
分間止め、その真空ポンプの停止時に開閉弁17を操作
して容器2内に空気を導入し、容器2内の減圧状態を一
時的に解除する操作を10回繰り返し、試料の濃縮操作
を終了した。上記濃縮操作中における、温度センサー1
8による試料温度の検出データー、及び真空ポンプ接続
口4付近に設けた圧力センサーによる容器2内の真空度
の検出データーを、図4に記載する。また、温度センサ
ー18による試料温度の検出データーから、一サイクル
毎の試料温度の変化量を読み取り、その値を表2に記載
する。
(Test 5) 1 ml of water was put in each tube containing the sample, and 60 tubes were attached to the above-mentioned rotor 1 and rotated by a vacuum pump while rotating at 1200 rpm. The inside of the container 2 was set to a vacuum degree of about 5 Torr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started.
A vacuum pump is turned on every 9 minutes from the start of the sample concentration operation.
The operation of stopping for a minute, operating the open / close valve 17 when the vacuum pump was stopped to introduce air into the container 2, and temporarily releasing the depressurized state in the container 2 was repeated 10 times, and the sample concentration operation was completed. . Temperature sensor 1 during the above concentration operation
FIG. 4 shows the detection data of the sample temperature by 8 and the detection data of the degree of vacuum in the container 2 by the pressure sensor provided near the vacuum pump connection port 4. Further, the amount of change in the sample temperature for each cycle is read from the detected data of the sample temperature by the temperature sensor 18, and the value is shown in Table 2.

【0038】(試験6)試料を収納するチューブに、一
本当たりに1mlのクロロホルムを入れ、該チューブを6
0本上記回転体1に装着し、回転数1200rpmで回
転させた状態で、真空ポンプによって容器2内を10T
orr程度の真空度とし、容器2の壁面を加熱ヒーター
12によって45°程度に加熱し、試料の真空濃縮操作
を開始した。試料の濃縮操作開始から、9分経過毎に真
空ポンプを2分間止め、その真空ポンプの停止時に開閉
弁17を操作して容器2内に空気を導入し、容器2内の
減圧状態を一時的に解除する操作を100回繰り返し、
試料の濃縮操作を終了した。上記濃縮操作の終了後に、
駆動部室16内の腐蝕の有無を目視により検査したとこ
ろ、腐蝕の存在は認められなかった。
(Test 6) 1 ml of chloroform was put in each tube containing the sample, and the tube was replaced with 6 tubes.
0 pieces are attached to the rotating body 1 and are rotated at a rotation speed of 1200 rpm, and the inside of the container 2 is heated to 10T by a vacuum pump.
The vacuum degree was set to about orr, the wall surface of the container 2 was heated to about 45 ° by the heater 12, and the vacuum concentration operation of the sample was started. The vacuum pump is stopped for 2 minutes every 9 minutes from the start of the sample concentration operation, and when the vacuum pump is stopped, the on-off valve 17 is operated to introduce air into the container 2 to temporarily reduce the depressurized state in the container 2. Repeat the operation to release to 100 times,
The sample concentration operation was completed. After completion of the concentration operation,
When the presence or absence of corrosion in the drive unit chamber 16 was visually inspected, the presence of corrosion was not recognized.

【0039】[0039]

【表1】 [Table 1]

【表2】 [Table 2]

【0040】上記試験1〜4によって、濃縮操作中にお
いて試料周囲の減圧状態を、熱伝達媒体となる空気を導
入することにより一時的に解除すると、試料の加熱が効
果的に行なわれ、濃縮操作時間の短縮が図れることが分
かる。また、上記試験5によって、試料の濃縮が進み、
試料中の液体成分が少なくなると、上記所定時間の経過
毎に繰り返していた減圧状態の解除後(空気導入による
加熱後)の試料温度の低下量が少なくなり、この低下量
の変化を検出すれば、試料の濃縮操作の終了を判断する
ことが可能であることが分かる。更に、上記試験6によ
って、駆動部室内にも容器内と同時に空気を導入する構
成を採れば、シール部材が摩耗或いは劣化しても駆動部
室内への腐蝕性気体の侵入を完全に阻止でき、腐蝕が生
じ難い構造となることが分かる。
According to the above tests 1 to 4, when the decompressed state around the sample during the concentration operation is temporarily released by introducing air as a heat transfer medium, the sample is effectively heated, and the concentration operation is performed. It can be seen that the time can be shortened. In addition, the concentration of the sample is increased by the above test 5,
When the liquid component in the sample decreases, the decrease in the sample temperature after releasing the depressurized state (after heating by introducing air), which has been repeated every time the predetermined time has elapsed, decreases, and if the change in this decrease is detected It is understood that it is possible to judge the end of the concentration operation of the sample. Further, according to Test 6 above, if the air is introduced into the drive chamber at the same time as the inside of the container, even if the seal member is worn or deteriorated, it is possible to completely prevent the corrosive gas from entering the drive chamber. It can be seen that the structure is such that corrosion is unlikely to occur.

【0041】以上、本発明の一実施例につき説明した
が、本発明は既述の実施例に限定されるものではなく、
本発明の技術的思想に基づいて、各種の変形及び変更が
可能である。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment,
Various modifications and changes can be made based on the technical idea of the present invention.

【0042】例えば、上記実施例においては、試料周囲
の減圧状態を、試料の濃縮操作中において所定時間の経
過毎に繰り返し解除する真空濃縮方法につき説明した
が、試料の濃縮操作中において、例え1度でも試料周囲
の減圧状態を解除して熱伝達媒体である気体を試料周囲
に導入すれば、試料の加熱は常に減圧状態で行なう従来
技術より効果的に行なわれるため、そのような1度の減
圧状態の解除、或いは不定期な減圧状態の解除を行なっ
た真空濃縮方法としても良い。
For example, in the above-mentioned embodiment, the vacuum concentration method in which the depressurized state around the sample is repeatedly released at every elapse of a predetermined time during the concentration operation of the sample has been described. Even if the depressurized state around the sample is released and the gas as the heat transfer medium is introduced around the sample, the heating of the sample is performed more effectively than the conventional technique which is always performed under the depressurized state. A vacuum concentration method in which the depressurized state is released or the depressurized state is released irregularly may be used.

【0043】また、上記実施例においては、試料の濃縮
操作の終了時期を、所定時間の経過毎に繰り返していた
減圧状態の解除後(空気導入による加熱後)の試料温度
の変化量から判断する真空濃縮方法につき説明したが、
図3の試験4の試料温度の検出データーから分かるよう
に、常に減圧状態で試料を加熱した場合においても、試
料の濃縮操作が進むにつれてその試料周囲の温度の所定
時間当たりの変化量が変わるため、この変化量を検出し
て試料の濃縮操作の終了時期を判断することとしても良
い。
In the above embodiment, the end time of the sample concentration operation is judged from the amount of change in the sample temperature after the depressurized state, which has been repeated every predetermined time, is released (after heating by introducing air). I explained the vacuum concentration method,
As can be seen from the sample temperature detection data of Test 4 in FIG. 3, even when the sample is constantly heated under reduced pressure, the amount of change in the temperature around the sample over a predetermined period of time changes as the sample concentration operation proceeds. The amount of change may be detected to determine the end time of the sample concentration operation.

【0044】更に、上記実施例装置においては、容器2
内に空気を導入する配管13の容器2への接続部付近
に、配管13内の圧力を容器2内の圧力よりも僅かに高
く維持する弁装置14を設けると共に、該配管13に設
けられた枝管15を、容器2内に存在する回転軸6を収
納する駆動部室16に接続した構造とすることにより、
開閉弁17を操作して容器2内に空気を導入した際、同
時にシール部材19の劣化等によって減圧状態となった
駆動部室16内にも空気が導入され、常に駆動部室16
内の圧力を容器2内の圧力より高い圧力状態に維持する
ようにしたが、上記配管13に設けられた弁装置14が
無い構造としても、少なくとも駆動部室16内の圧力
は、常に容器2内の圧力よりも低くなることはなく、容
器2内において試料から発生した腐蝕性気体が、駆動部
室16内へ侵入することを阻止し得る構造となるため、
このように弁装置14が無い構造の真空濃縮装置として
も効果はある。
Further, in the apparatus of the above embodiment, the container 2
A valve device 14 for maintaining the pressure in the pipe 13 slightly higher than the pressure in the container 2 is provided in the vicinity of a connection portion of the pipe 13 for introducing air into the container 2, and is provided in the pipe 13. By having the structure in which the branch pipe 15 is connected to the drive chamber 16 that houses the rotary shaft 6 existing in the container 2,
When the on-off valve 17 is operated to introduce air into the container 2, at the same time, air is also introduced into the drive unit chamber 16 which is in a depressurized state due to deterioration of the seal member 19 or the like, and is constantly driven.
The internal pressure is kept higher than the internal pressure of the container 2. However, even if the valve device 14 provided in the pipe 13 is not provided, at least the internal pressure of the drive chamber 16 is always the internal pressure of the internal container 2. Since the corrosive gas generated from the sample in the container 2 can be prevented from entering into the drive part chamber 16, the pressure does not become lower than the pressure of
As described above, the vacuum concentrator having the structure without the valve device 14 is also effective.

【0045】[0045]

【発明の効果】以上、説明した本発明にかかる真空濃縮
方法によれば、試料を常に減圧下、即ち熱伝達媒体とな
る気体(空気)が希薄、或いは存在しない状態で試料を
加熱していた従来の真空濃縮方法に比して、少なくとも
一度は熱伝達媒体となる気体が存在する状態で試料の加
熱が行なわれるため、試料は濃縮操作中において一時的
ではあるが効果的に加熱され、試料の濃縮時間の短縮を
図る効果がある。
According to the above-described vacuum concentration method of the present invention, the sample is always heated under reduced pressure, that is, in the state where the gas (air) serving as the heat transfer medium is diluted or does not exist. Compared to the conventional vacuum concentration method, since the sample is heated at least once in the presence of the gas that serves as the heat transfer medium, the sample is heated temporarily but effectively during the concentration operation. It is effective in shortening the concentration time.

【0046】また、上記した本発明にかかる真空濃縮方
法によれば、試料の液体成分が蒸発して濃縮操作が終了
に近づくと、試料温度は気化熱により低下することが少
なくなることに着目し、試料の濃縮操作の終了を、試料
周囲の温度の所定時間当たりの変化量から判断すること
としたため、従来の真空濃縮方法の如く、使用者がスト
ップウォッチ等で濃縮操作時間をいちいち確認する必要
がなくなり、濃縮操作の終了時期を的確に、しかも容易
に判断することが可能となる効果がある。
It should be noted that according to the above-described vacuum concentration method of the present invention, when the liquid component of the sample evaporates and the concentration operation approaches the end, the sample temperature is less likely to decrease due to the heat of vaporization. Since the end of the sample concentration operation is judged from the amount of change in the temperature around the sample per predetermined time, it is necessary for the user to confirm the concentration operation time with a stopwatch etc., as in the conventional vacuum concentration method. The effect is that the end time of the concentration operation can be accurately and easily determined.

【0047】さらに、上記した本発明にかかる真空濃縮
装置においては、回転体を収納する容器に熱伝達媒体と
なる気体を導入する開閉弁付き配管を接続すると共に、
該配管を駆動部室にも接続し、減圧状態となった上記容
器内及び駆動部室内に同時に熱伝達媒体となる気体を導
入し得るように構成したため、駆動部室内の圧力は、常
に容器内の圧力よりも低くなることはなく、容器内にお
いて試料から発生した腐蝕性気体が、駆動部室内へ侵入
することを完全に阻止でき、駆動部室の耐蝕性を飛躍的
に向上できる効果がある。
Further, in the above-described vacuum concentrating apparatus according to the present invention, a pipe with an opening / closing valve for introducing a gas serving as a heat transfer medium is connected to a container accommodating the rotating body, and
Since the pipe is also connected to the drive chamber so that the gas serving as the heat transfer medium can be simultaneously introduced into the depressurized container and the drive chamber, the pressure inside the drive chamber is always the same. The pressure does not become lower than the pressure, and the corrosive gas generated from the sample in the container can be completely prevented from entering the drive unit chamber, and the corrosion resistance of the drive unit chamber can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる真空濃縮方法を実施する装置、
及び本発明にかかる真空濃縮装置の一実施例を示した縦
断面図である。
FIG. 1 is an apparatus for carrying out a vacuum concentration method according to the present invention,
FIG. 2 is a vertical sectional view showing an embodiment of a vacuum concentrating device according to the present invention.

【図2】試験1及び試験2を行なった場合の、温度セン
サーによる濃縮操作中における試料温度の検出データ
ー、及び真空ポンプ接続口付近に設けた圧力センサーに
よる容器内の真空度の検出データーを示すグラフであ
る。
FIG. 2 shows the detection data of the sample temperature during the concentration operation by the temperature sensor and the detection data of the degree of vacuum in the container by the pressure sensor provided in the vicinity of the vacuum pump connection port when the test 1 and the test 2 are performed. It is a graph.

【図3】試験3及び試験4を行なった場合の、温度セン
サーによる濃縮操作中における試料温度の検出データ
ー、及び真空ポンプ接続口付近に設けた圧力センサーに
よる容器内の真空度の検出データーを示すグラフであ
る。
FIG. 3 shows detection data of the sample temperature during the concentration operation by the temperature sensor and data of the degree of vacuum in the container by the pressure sensor provided near the connection port of the vacuum pump when the tests 3 and 4 are performed. It is a graph.

【図4】試験5を行なった場合の、温度センサーによる
濃縮操作中における試料温度の検出データー、及び真空
ポンプ接続口付近に設けた圧力センサーによる容器内の
真空度の検出データーを示すグラフである。
FIG. 4 is a graph showing the detection data of the sample temperature during the concentration operation by the temperature sensor and the detection data of the degree of vacuum in the container by the pressure sensor provided in the vicinity of the vacuum pump connection port when Test 5 is performed. .

【図5】従来の真空濃縮方法を実施する際に使用してい
た真空濃縮装置の一例を示した縦断面図である。
FIG. 5 is a vertical cross-sectional view showing an example of a vacuum concentrating device used when performing a conventional vacuum concentrating method.

【符号の説明】[Explanation of symbols]

1 試料に遠心力を与える回転体 2 回転体を収納する容器 2a 容器の上部開口 3 容器の蓋体 4 容器の側壁に形成された真空ポンプ接続口 5 回転体を回転させる駆動手段 6 容器内の中央付近に回転可能に支持された回転
軸 7 容器外の下方に配置された駆動モーター 8 駆動モーターの出力軸 9 容器の底板 10 磁石 11 磁石 12 容器の外周壁面に装着された加熱ヒーター 13 容器内に空気を導入するための配管 14 配管内の圧力を容器内の圧力よりも僅かに高く
維持する弁装置 15 配管に設けられた枝管 16 回転軸を収納する駆動部室 17 配管の基端に設けられた開閉弁 18 蓋体に取付けられた温度センサー 19 駆動部室のシールー部材
1 Rotating body for giving centrifugal force to sample 2 Container for storing rotating body 2a Upper opening of container 3 Lid of container 4 Vacuum pump connection port formed on side wall of container 5 Driving means for rotating rotating body 6 Inside container Rotating shaft rotatably supported near the center 7 Drive motor disposed below the outside of the container 8 Output shaft of the drive motor 9 Bottom plate of the container 10 Magnet 11 Magnet 12 Heater mounted on the outer peripheral wall of the container 13 Inside the container Piping for introducing air into the pipe 14 Valve device for maintaining the pressure in the pipe slightly higher than the pressure in the container 15 Branch pipe provided in the pipe 16 Drive part chamber 17 for accommodating the rotary shaft 17 Provided at the base end of the pipe Opened / closed valve 18 Temperature sensor attached to lid 19 Sealing member for drive unit chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 濃縮或いは乾燥すべき試料に遠心力を与
えながら、該試料を減圧下において加熱し、試料に含ま
れる液体成分を突沸させることなく効率的に蒸発させる
試料の真空濃縮方法において、上記試料周囲の減圧状態
を、試料の濃縮操作中において熱伝達媒体となる気体を
少なくとも1度は試料周囲に導入することにより解除
し、試料の濃縮操作中における加熱を効果的に行なうよ
うにしたことを特徴とする、真空濃縮方法。
1. A vacuum concentration method for a sample, wherein a sample to be concentrated or dried is heated under reduced pressure while a centrifugal force is applied to the sample to efficiently evaporate a liquid component contained in the sample without bumping. The depressurized state around the sample is released by introducing a gas serving as a heat transfer medium at least once around the sample during the concentration operation of the sample so that the heating during the concentration operation of the sample is effectively performed. A vacuum concentration method, which is characterized in that
【請求項2】 上記試料周囲の減圧状態の解除を、試料
の濃縮操作中において所定時間の経過毎に繰り返し行な
うようにしたことを特徴とする、請求項1記載の真空濃
縮方法。
2. The vacuum concentration method according to claim 1, wherein the release of the reduced pressure state around the sample is repeated every a predetermined time during the concentration operation of the sample.
【請求項3】 濃縮或いは乾燥すべき試料に遠心力を与
えながら、該試料を減圧下において加熱し、試料に含ま
れる液体成分を突沸させることなく効率的に蒸発させる
試料の真空濃縮方法において、該真空濃縮方法による試
料の濃縮操作の終了を、濃縮操作中における試料周囲の
温度の所定時間当たりの変化量から判断するようにした
ことを特徴とする、真空濃縮方法。
3. A vacuum concentration method for a sample, wherein a sample to be concentrated or dried is heated under reduced pressure while a centrifugal force is applied to the sample to efficiently evaporate a liquid component contained in the sample without bumping. A vacuum concentration method, wherein the end of the concentration operation of the sample by the vacuum concentration method is judged from the amount of change in the temperature around the sample during the concentration operation per a predetermined time.
【請求項4】 上記濃縮操作の終了を判断する試料周囲
の温度の所定時間当たりの変化量が、試料周囲の減圧状
態を、試料の濃縮操作中において熱伝達媒体となる気体
を所定時間の経過毎に繰り返し試料周囲に導入して解除
した場合における、試料周囲の温度の所定時間当たりの
変化量であることを特徴とする、請求項3記載の真空濃
縮方法。
4. The amount of change in the temperature around the sample per predetermined time for judging the end of the concentration operation is such that the depressurized state around the sample indicates that a gas serving as a heat transfer medium during the concentration operation of the sample has passed a predetermined time. 4. The vacuum concentration method according to claim 3, wherein the amount of change is the amount of change in the temperature around the sample per predetermined time when it is repeatedly introduced and released around the sample every time.
【請求項5】 試料に遠心力を与える回転体と、該回転
体を収納する密閉状態となる容器と、該容器内を減圧状
態とする真空ポンプと、上記回転体を回転させる駆動部
と、該駆動部を収納する駆動部室と、上記容器内を加熱
する加熱手段とを有する真空濃縮装置において、上記容
器に、該容器内に熱伝達媒体となる気体を導入する開閉
弁付き配管を接続すると共に、該配管を上記駆動部室に
も接続し、減圧状態となった上記容器内及び駆動部室内
に同時に熱伝達媒体となる気体を導入し得るように構成
したことを特徴とする、真空濃縮装置。
5. A rotating body for imparting a centrifugal force to a sample, a sealed container for housing the rotating body, a vacuum pump for reducing the pressure in the container, and a drive unit for rotating the rotating body. In a vacuum concentrating device having a drive chamber for accommodating the drive and a heating means for heating the inside of the container, a pipe with an on-off valve for introducing a gas serving as a heat transfer medium into the container is connected to the container. At the same time, the pipe is connected to the drive unit chamber so that a gas serving as a heat transfer medium can be introduced into the depressurized container and the drive unit chamber at the same time. .
【請求項6】 上記熱伝達媒体となる気体を導入する配
管に、該配管内の圧力を容器内の圧力よりも僅かに高く
維持する弁装置を設けたことを特徴とする、請求項5記
載の真空濃縮装置。
6. The valve device for maintaining the pressure in the pipe, which is slightly higher than the pressure in the container, in the pipe for introducing the gas serving as the heat transfer medium. Vacuum concentrator.
JP20603394A 1994-08-08 1994-08-08 Vacuum concentration method and vacuum concentration device Expired - Lifetime JP3150540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20603394A JP3150540B2 (en) 1994-08-08 1994-08-08 Vacuum concentration method and vacuum concentration device
JP2000163870A JP3432480B2 (en) 1994-08-08 2000-06-01 Vacuum concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20603394A JP3150540B2 (en) 1994-08-08 1994-08-08 Vacuum concentration method and vacuum concentration device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000163870A Division JP3432480B2 (en) 1994-08-08 2000-06-01 Vacuum concentration method

Publications (2)

Publication Number Publication Date
JPH0847602A true JPH0847602A (en) 1996-02-20
JP3150540B2 JP3150540B2 (en) 2001-03-26

Family

ID=16516790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20603394A Expired - Lifetime JP3150540B2 (en) 1994-08-08 1994-08-08 Vacuum concentration method and vacuum concentration device

Country Status (1)

Country Link
JP (1) JP3150540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983504A (en) * 2013-02-08 2014-08-13 复旦大学 Positive pressure surface layer high temperature rapid condensation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983504A (en) * 2013-02-08 2014-08-13 复旦大学 Positive pressure surface layer high temperature rapid condensation method

Also Published As

Publication number Publication date
JP3150540B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP5775107B2 (en) Vacuum concentrator and vacuum concentration method
US5273589A (en) Method for low pressure rinsing and drying in a process chamber
US5806204A (en) Material dryer using vacuum drying and vapor condensation
JPH05505449A (en) Steam apparatus and method for drying articles such as semiconductor wafers using substances such as isopropyl alcohol
CN101432051B (en) Evaporator and method of operation thereof
JP3432480B2 (en) Vacuum concentration method
JPH0847602A (en) Vacuum evaporating method and vacuum evaporator
JP2004181022A (en) Medical waste treatment equipment
CN210130737U (en) Rapid sobering-up instrument
CN209406597U (en) A kind of traditional vacuum concentrating instrument
JPH0344558B2 (en)
JP3138797U (en) Biochemical sample dryer
US7555933B2 (en) Method and software for detecting vacuum concentrator ends-of-runs
JPH11319038A (en) Small high pressure steam sterilizer for medical use
JPH018713Y2 (en)
JPH05180560A (en) Drying/concentration method and apparatus
JPH072877U (en) Vacuum dryer
JPH03249902A (en) Centrifugal concentrating machine
CN116879467B (en) Free radical aerosol capturing device for air disinfection and detection method
KR100330734B1 (en) An apparatus for a vacuum concentration of a rotating type
JP3769497B2 (en) Vacuum microwave thawing method and vacuum microwave thawing machine
JPH07286775A (en) Method and device for evacuated drying
JP2003169649A (en) Vacuum microwave thawing machine
JPH08327226A (en) Vacuum drying method and vacuum dryer
WO2009023234A1 (en) Sample concentration method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20150119

EXPY Cancellation because of completion of term