JPH0846250A - Thermo-module for thermoelectric cooling - Google Patents

Thermo-module for thermoelectric cooling

Info

Publication number
JPH0846250A
JPH0846250A JP6200145A JP20014594A JPH0846250A JP H0846250 A JPH0846250 A JP H0846250A JP 6200145 A JP6200145 A JP 6200145A JP 20014594 A JP20014594 A JP 20014594A JP H0846250 A JPH0846250 A JP H0846250A
Authority
JP
Japan
Prior art keywords
thermoelectric
electrode
thermoelectric element
heat
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200145A
Other languages
Japanese (ja)
Inventor
Kimihisa Yoshida
公寿 吉田
Michio Matsuno
路雄 松野
Keiichi Miura
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP6200145A priority Critical patent/JPH0846250A/en
Publication of JPH0846250A publication Critical patent/JPH0846250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the positional deviation of an element in the case of manufacturing, and improve the cooling efficiency, by bonding an electrode and a thermoelectric element to a recessed part of the heat generating side insulating board in which recessed part an electrode pattern is formed. CONSTITUTION:In a thermo-module 1 for thermoelectric cooling, thermoelectric elements 5 are collectively bonding to a heat generating side insulating board 2 and a heat absorbing side insulating board 3 which face each other, via metal electrodes 4. An electrode pattern is formed on the heat generating side insulating board 2, and a recessed part 2C whose depth T is greater than the thickness of the metal electrode 4 is formed, to which part 2C the electrodes 4 and the elements 5 are bonded. Connection part material 6 is composed of material whose thermal conductivity is higher than the thermoelectric element 5, and thermaly connects the side surface of the thermoelectric element 5 with the heat generating side insulating board 2 forming the electrode pattern. Solder is used for bonding, and the heat in the element 5 can be dissipated to the heat generating side insulating board. The thermo-module for thermoelectric cooling can not only prevent the positional deviation of the element in the case of manufacturing but also improve the cooling efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却の効率を向上させ
る熱電冷却用サ−モモジュ−ルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric cooling thermo-module for improving cooling efficiency.

【0002】[0002]

【従来の技術】熱電冷却用サ−モモジュ−ルは、小型、
軽量で、形状の自由度が大きい。また、騒音や振動がな
く、フロン系冷媒を使用しない冷却方法としての社会的
要求が大きい。このような熱電冷却は、n型半導体とp
型半導体が金属電極を介して接合されており、これに電
流を流すと、n型からp型へ流れる金属電極の接合部で
は吸熱がおこり、p型からn型へ流れる金属電極の接合
部では発熱がおきる。また、熱電冷却用サ−モモジュ−
ルは、複数個の熱電素子を電気的に直列に接続してユニ
ット化し、これを金属電極と接合一体化されたアルミナ
製絶縁基板で上下を挟んだ構造をとっている。
2. Description of the Prior Art Thermoelectric cooling modules are small,
It is lightweight and has a high degree of freedom in shape. Further, there is great social demand as a cooling method that does not generate noise or vibration and does not use a CFC-based refrigerant. Such thermoelectric cooling is performed with an n-type semiconductor and a p-type semiconductor.
Type semiconductors are joined via a metal electrode, and when a current is applied to the type semiconductor, heat is absorbed at the junction of the metal electrodes flowing from n-type to p-type, and at the junction of the metal electrodes flowing from p-type to n-type. Fever occurs. Also, thermoelectric cooling thermo-module
The structure is such that a plurality of thermoelectric elements are electrically connected in series to form a unit, and the upper and lower sides are sandwiched by an alumina insulating substrate that is joined and integrated with a metal electrode.

【0003】熱電素子と金属電極は単に半田で接合され
ており、接合時の素子の位置ずれを起こしやすい。ま
た、熱電素子内で発生したジュ−ル熱は熱電素子と金属
電極の接合部のみから、金属電極及びアルミナ基板へ放
熱されるという欠点を有している。
Since the thermoelectric element and the metal electrode are simply joined by soldering, the element is likely to be displaced during joining. Further, there is a drawback that the Jule heat generated in the thermoelectric element is radiated to the metal electrode and the alumina substrate only from the joint portion between the thermoelectric element and the metal electrode.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記欠点を
解決するため、製造時の素子の位置ずれを防ぎ、冷却効
率を高めた熱電冷却用サ−モモジュ−ルである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks, the present invention is a thermoelectric cooling thermomodule which prevents displacement of elements during manufacturing and improves cooling efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は、発熱側絶縁基
板の電極パタ−ンを形成する凹部に電極と熱電素子が接
合されてなること、また、熱電素子の側面と発熱用絶縁
基板が熱電素子より熱伝導率の高い材料で熱的に接続さ
れていることを特徴とする。
According to the present invention, an electrode and a thermoelectric element are bonded to a recess forming an electrode pattern of a heat generating side insulating substrate, and a side surface of the thermoelectric element and a heat insulating substrate are provided. It is characterized in that they are thermally connected with a material having a higher thermal conductivity than the thermoelectric element.

【0006】[0006]

【作用】本発明の熱電冷却用サ−モモジュ−ルによれ
ば、電極パタ−ンを形成し凹部を有する発熱側絶縁基板
を使用し、凹部に熱電素子を挿入することにより熱電素
子の位置ずれを防いで容易に半田接合することができ
る。さらに、熱電素子側面に接続されている熱伝導率の
高い材料により素子内の熱を放熱し、冷却側へのジュ−
ル熱の流出を抑えることができる。
According to the thermoelectric cooling thermo-module of the present invention, the heat generating side insulating substrate having the electrode pattern and having the concave portion is used, and the thermoelectric element is displaced by inserting the thermoelectric element into the concave portion. Can be prevented and soldering can be easily performed. Further, the heat inside the element is radiated by the material with high thermal conductivity connected to the side surface of the thermoelectric element, and the cooling side is cooled.
It is possible to suppress the outflow of heat.

【0007】[0007]

【実施例】本発明を、実施例、比較例により詳細に説明
する。
The present invention will be described in detail with reference to Examples and Comparative Examples.

【0008】図1は、本発明の熱電冷却用サ−モモジュ
−ルの1例を示す縦断面図である。熱電冷却用サ−モモ
ジュ−ル1は、対向する発熱側絶縁基板2及び吸熱側絶
縁基板3に金属電極4を介して熱電素子5が接合一体化
されることにより、主として構成される。図2のように
発熱側絶縁基板2には電極パタ−ンを形成し、金属電極
4の厚みtよりも深さTが大きい凹部2Cが設けられ、凹
部2C内に金属電極4と熱電素子5を接合することで熱電
素子5の位置ずれを防いで、容易に半田付け接合するこ
とができる。前記凹部2Cは平板状の発熱側絶縁基板2に
直接、深さTを有する凹部を形成してもよいが、図示す
るように平板状の絶縁基板2aと、電極パタ−ンを複数個
打ち抜いた穴を有する金属電極4より厚い絶縁基板2bが
接合することにより、容易に金属電極4の厚みtより大
きい深さTを有する発熱側絶縁基板2の凹部2Cを形成す
ることができる。吸熱側絶縁基板3と金属電極4は活性
金属ろうで接合されており、発熱側2及び吸熱側絶縁基
板3に接合されている金属電極4は、n型熱電素子5aと
p型熱電素子5bとが電気的に直列になるように配置され
ている。熱電素子5と金属電極4とは前述したように半
田で接合され、この発明の熱電冷却用サ−モモジュ−ル
1が構成される。
FIG. 1 is a vertical sectional view showing an example of a thermoelectric cooling thermo-module according to the present invention. The thermoelectric cooling thermo-module 1 is mainly configured by integrally bonding the thermoelectric element 5 to the opposing heat generating side insulating substrate 2 and heat absorbing side insulating substrate 3 via the metal electrode 4. As shown in FIG. 2, an electrode pattern is formed on the heat generating side insulating substrate 2, and a recess 2C having a depth T larger than the thickness t of the metal electrode 4 is provided. The metal electrode 4 and the thermoelectric element 5 are provided in the recess 2C. By joining, the positional deviation of the thermoelectric element 5 can be prevented, and soldering can be easily performed. Although the concave portion 2C may be directly formed in the flat plate-shaped heat insulating substrate 2 with a depth T, as shown in the figure, the flat insulating substrate 2a and a plurality of electrode patterns are punched out. By joining the insulating substrate 2b thicker than the metal electrode 4 having holes, the recess 2C of the heat generating side insulating substrate 2 having the depth T larger than the thickness t of the metal electrode 4 can be easily formed. The heat absorbing side insulating substrate 3 and the metal electrode 4 are joined with an active metal brazing metal, and the metal electrode 4 joined to the heat generating side 2 and the heat absorbing side insulating substrate 3 is an n-type thermoelectric element 5a and a p-type thermoelectric element 5b. Are arranged so that they are electrically connected in series. The thermoelectric element 5 and the metal electrode 4 are joined by solder as described above, and the thermoelectric cooling thermo-module 1 of the present invention is constructed.

【0009】次に接続部材6は熱電素子より熱伝導率が
高い材料からなり、熱電素子5の側面と電極パタ−ンを
形成する発熱側絶縁基板2を熱的に接続するもので、半
田で接合されており、熱電素子5内の熱を発熱側絶縁基
板へ放熱することができる。
Next, the connecting member 6 is made of a material having a higher thermal conductivity than the thermoelectric element and thermally connects the side surface of the thermoelectric element 5 to the heat generating side insulating substrate 2 forming the electrode pattern. Since they are joined, the heat in the thermoelectric element 5 can be radiated to the heat generating side insulating substrate.

【0010】(実施例1)以下、この発明を適用した実
施例を説明する。本実施例は、発熱側絶縁基板及び吸熱
側絶縁基板として、断面20mm×20mm、厚さ0.
6mmのアルミナ基板、電極パタ−ンを打ち抜いた絶縁
基板として、2mm×6mmの穴を8個設けた、断面2
0mm×20mm、厚さ0.6mmのアルミナ基板、金
属電極として、断面2mm×6mm、厚さ0.5mmの
銅電極、2mm×2mm×4mmのn型ビスマステルル
系熱電素子(組成:Bi1.8Sb0.2Te2.85Se0.15
7個、2mm×2mm×4mmのp型ビスマステルル系
熱電素子(組成:Bi0.5Sb1.5Te2.91Se0.09)7
個、熱電素子の側面と電極パタ−ンを打ち抜いたアルミ
ナ基板とを、熱的に接続する材料として2mm×3mm
×0.5mmの銅板を用いた、7対の熱電冷却用サ−モ
モジュ−ルの例である。
(Embodiment 1) An embodiment to which the present invention is applied will be described below. In this embodiment, the heat generation side insulation substrate and the heat absorption side insulation substrate have a cross section of 20 mm × 20 mm and a thickness of 0.
A 6 mm alumina substrate and an insulating substrate with an electrode pattern punched out were provided with 8 holes of 2 mm x 6 mm, cross section 2
Alumina substrate of 0 mm × 20 mm and thickness of 0.6 mm, copper electrode having a cross section of 2 mm × 6 mm and thickness of 0.5 mm as a metal electrode, 2 mm × 2 mm × 4 mm n-type bismuth tellurium thermoelectric element (composition: Bi 1.8 Sb 0.2 Te 2.85 Se 0.15 )
7 pieces, 2 mm x 2 mm x 4 mm p-type bismuth tellurium thermoelectric element (composition: Bi 0.5 Sb 1.5 Te 2.91 Se 0.09 ) 7
2 mm x 3 mm as a material for thermally connecting the side surface of the thermoelectric element and the alumina substrate with the electrode pattern punched out
It is an example of 7 pairs of thermoelectric cooling modules using a copper plate of x 0.5 mm.

【0011】作製方法として、平板状の絶縁基板、電極
パタ−ンを打ち抜いた絶縁基板と銅電極を接合一体化し
て発熱側電極付き基板を作製した。吸熱側絶縁基板と銅
電極を接合一体化して吸熱側電極付き基板を作製した。
ここで、発熱側及び吸熱側電極付き基板の電極パタ−
ン位置は、n型及びp型熱電素子が電気的に直列になる
ように配置した。接合方法として、活性金属ろう(銀7
0.5重量%、銅26.5重量%、チタン3.0重量
%)を接合面に介在させ、アルゴン雰囲気中、950℃
の条件で行った。
As a manufacturing method, a flat plate-shaped insulating substrate, an insulating substrate punched with an electrode pattern and a copper electrode were joined and integrated to prepare a substrate with a heat generating side electrode. A heat absorbing side insulating substrate and a copper electrode were joined and integrated to produce a substrate with a heat absorbing side electrode.
Here, the electrode pattern of the substrate with the heat generation side and heat absorption side electrodes
The n-position was so arranged that the n-type and p-type thermoelectric elements were electrically in series. Active metal brazing (silver 7
0.5% by weight, 26.5% by weight of copper, 3.0% by weight of titanium) in the joint surface, and in an argon atmosphere at 950 ° C.
It went on condition of.

【0012】次に、熱電素子と発熱側電極付き基板の銅
電極とを半田で接合し、さらに熱電素子側面と発熱側絶
縁基板を接続部材としての銅板を介して半田で接合し
た。ここで、熱電素子側面に接合する銅板の面は2mm
×3mmであり、発熱側電極付き基板に接合する銅板の
面は2mm×0.5mmである。
Next, the thermoelectric element and the copper electrode of the substrate with the heat generation side electrode were joined by soldering, and further the side surface of the thermoelectric element and the heat generation side insulating substrate were joined by soldering through a copper plate as a connecting member. Here, the surface of the copper plate bonded to the side surface of the thermoelectric element is 2 mm
The surface of the copper plate bonded to the substrate with the heat generation side electrode is 2 mm × 0.5 mm.

【0013】次に、吸熱側電極付き基板と熱電素子とを
半田で接合した。ここで、吸熱側及び発熱側電極付き基
板に挟まれた熱電素子はn型とp型とが、電気的に直列
に接続されている。最後に、リ−ド線を半田で接合して
熱電冷却用サ−モモジュ−ルとした。
Next, the substrate with the heat absorbing side electrode and the thermoelectric element were joined by soldering. Here, the n-type and the p-type thermoelectric elements sandwiched between the substrate with electrodes on the heat absorption side and the heat generation side are electrically connected in series. Finally, the lead wire was joined with solder to obtain a thermoelectric cooling module.

【0014】(実施例2)本実施例は、熱電素子の側面
と発熱側電極付き基板とを、熱的に接続する材料として
2mm×2mm×0.5mmの銅板を用いた、7対の熱
電冷却用サ−モモジュ−ルの例である。熱電素子の側面
と発熱側電極付き基板とを、熱的に接続する銅板の形状
以外は実施例1と同様である。
(Embodiment 2) In this embodiment, 7 pairs of thermoelectric elements using a copper plate of 2 mm × 2 mm × 0.5 mm as a material for thermally connecting the side surface of the thermoelectric element and the substrate with the heat generation side electrode are used. It is an example of a cooling module. The same as Example 1 except for the shape of a copper plate that thermally connects the side surface of the thermoelectric element and the substrate with the heat generation side electrode.

【0015】(実施例3)本実施例は、熱電素子の側面
と発熱側電極付き基板とを、熱的に接続する材料として
2mm×1mm×0.5mmの銅板を用いた、7対の熱
電冷却用サ−モモジュ−ルの例である。熱電素子の側面
と発熱側電極付き基板とを、熱的に接続する銅板の形状
以外は実施例1と同様である。
(Embodiment 3) In this embodiment, 7 pairs of thermoelectric elements using a copper plate of 2 mm × 1 mm × 0.5 mm as a material for thermally connecting the side surface of the thermoelectric element and the substrate with the heating side electrode are used. It is an example of a cooling module. The same as Example 1 except for the shape of a copper plate that thermally connects the side surface of the thermoelectric element and the substrate with the heat generation side electrode.

【0016】(比較例)本比較例は従来型のサ−モモジ
ュ−ルであり、電極パタ−ンを形成した発熱絶縁基板
と、熱電素子の側面と発熱側電極付き基板とを熱的に接
続する材料は用いない、7対の熱電冷却用サ−モモジュ
−ルである。電極パタ−ンを形成した発熱絶縁基板と、
熱電素子の側面と発熱側電極付き基板とを熱的に接続す
る材料を用いないこと以外は実施例1と同様である。
(Comparative Example) This comparative example is a conventional thermo-module, in which a heat-insulating substrate having an electrode pattern formed thereon is thermally connected to a side surface of a thermoelectric element and a substrate having a heat-generating electrode. It is a thermoelectric cooling thermocouple module of 7 pairs without using the material. A heat-insulating substrate on which an electrode pattern is formed,
The procedure is the same as in Example 1 except that the material that thermally connects the side surface of the thermoelectric element and the substrate with the heat generation side electrode is not used.

【0017】以上説明した実施例1、2、3及び比較例
の熱電冷却用サ−モモジュ−ルについて、発熱側絶縁基
板表面と吸熱側絶縁基板表面の温度差を0Kとして、熱
電冷却用サ−モモジュ−ルに3A及び5Aの電流を流し
た時の吸熱側絶縁基板表面からの吸熱量を測定した。
In the thermoelectric cooling thermo-modules of Examples 1, 2 and 3 and the comparative example described above, the temperature difference between the surface of the heat generating side insulating substrate and the surface of the heat absorbing side insulating substrate is set to 0K, and the thermoelectric cooling service is set. The amount of heat absorption from the surface of the insulating substrate on the heat absorption side was measured when a current of 3 A and 5 A was applied to the module.

【0018】測定法は、発熱側絶縁基板を冷却水を流し
たヒ−トシンクに接触させ、吸熱側絶縁基板上にヒ−タ
−を設置した。発熱側絶縁基板が323Kとなるよう
に、サ−モモジュ−ル及びヒ−タ−に電流を流した後、
両側の絶縁基板の表面の温度差が0Kとなるようにヒ−
タ−にかける電力量を調整した。安定した状態で、両絶
縁基板の温度差が0Kとなった際のヒ−タ−の電力量を
吸熱量とした。ここで、測定は真空中で行った。測定結
果は表1に示した。
In the measuring method, the heat generating side insulating substrate was brought into contact with a heat sink in which cooling water was flown, and a heater was placed on the heat absorbing side insulating substrate. After passing the current through the thermo-module and the heater so that the heat generating side insulating substrate becomes 323K,
Heat so that the temperature difference between the surfaces of the insulating substrates on both sides becomes 0K.
The amount of power applied to the target was adjusted. In a stable state, the amount of electric power of the heater when the temperature difference between both insulating substrates became 0K was taken as the amount of heat absorption. Here, the measurement was performed in vacuum. The measurement results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】各実施例では、各熱電素子の4側面の内、
対面する2面を銅板で覆い、その覆う割合は、実施例1
では3/4、実施例2では1/2、実施例3では1/4
である。熱電素子を銅板で覆っていない比較例から、実
施例3、2、1の順に、3Aを流した場合、吸熱量は
2.02W、2.11W、2.24W、2.31Wとな
った。また、5Aを流した場合、吸熱量は2.65W、
2.90W、3.22W、3.47Wとなった。
In each embodiment, among the four side surfaces of each thermoelectric element,
The two surfaces facing each other are covered with a copper plate, and the covering ratio is as in Example 1.
, 3/4 in the second embodiment, ½ in the second embodiment, and ¼ in the third embodiment.
Is. From the comparative example in which the thermoelectric element was not covered with the copper plate, when 3A was flowed in the order of Examples 3, 2, and 1, the heat absorption amounts were 2.02W, 2.11W, 2.24W, and 2.31W. Also, when 5 A is flowed, the endothermic amount is 2.65 W,
It became 2.90W, 3.22W and 3.47W.

【0021】この様に、熱電素子の側面と電極パタ−ン
を打ち抜いた発熱側絶縁基板を熱電素子よりも高い熱伝
導率の材料で熱的に接続させることにより吸熱量を増大
させることができる。特に高電流で熱電冷却用サ−モモ
ジュ−ルを使用する際に効果が大きく、その場合、熱電
素子の側面を銅板で覆う割合が大きい程、効果は大きく
なる。また、実施例で作製した熱電冷却用サ−モモジュ
−ルの熱電素子は発熱側では凹部に接合されているた
め、製造時の素子の位置ずれを防止することができる。
As described above, the heat absorption amount can be increased by thermally connecting the side surface of the thermoelectric element and the heat generating side insulating substrate in which the electrode pattern is punched with a material having a higher thermal conductivity than the thermoelectric element. . In particular, the effect is great when the thermoelectric cooling thermomodule is used at a high current, and in this case, the larger the rate of covering the side surface of the thermoelectric element with the copper plate, the greater the effect. Further, since the thermoelectric element of the thermoelectric cooling thermomodule manufactured in the example is joined to the concave portion on the heat generating side, it is possible to prevent the element from being displaced during manufacturing.

【0022】[0022]

【発明の効果】以上説明したように本発明の熱電冷却用
サ−モモジュ−ルは、製造時の素子の位置ずれを防止す
るだけでなく、冷却の効率を向上させることもできる。
As described above, the thermoelectric cooling thermomodule of the present invention can not only prevent the displacement of the elements during manufacturing, but also improve the cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の熱電冷却用サ−モモジュ−ルの
1例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a thermoelectric cooling thermomodule according to the present invention.

【図2】図2は本発明の熱電冷却用サ−モモジュ−ルの
発熱側接合部の一部を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing a part of a heat generating side joint portion of a thermoelectric cooling thermomodule according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱電冷却用サ−モモジュ−ル 2 発熱側絶縁基板 2a 平板状の絶縁基板 2b 電極パタ−ンを打ち抜いた絶縁基板 2C 凹部 3 吸熱側絶縁基板 4 金属電極 5 熱電素子 5a n型熱電素子 5b p型熱電素子 6 接続部材 1 Thermoelectric Cooling Module 2 Heat Insulation Substrate 2a Flat Insulation Substrate 2b Insulation Substrate with Punched Electrode Pattern 2C Recess 3 Heat Absorption Insulation Substrate 4 Metal Electrode 5 Thermoelectric Element 5a n-type Thermoelectric Element 5b p Type thermoelectric element 6 Connection member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発熱側絶縁基板の、電極パタ−ンを形成
する凹部に電極と熱電素子が接合されてなることを特徴
とする熱電冷却用サ−モモジュ−ル。
1. A thermoelectric cooling thermo-module, wherein an electrode and a thermoelectric element are joined to a concave portion of the heat generating side insulating substrate which forms an electrode pattern.
【請求項2】 電極パタ−ンを形成する発熱側絶縁基板
の凹部の深さが、電極の厚みよりも大きいことを特徴と
する請求項1記載の熱電冷却用サ−モモジュ−ル。
2. The thermoelectric cooling thermo-module according to claim 1, wherein the depth of the concave portion of the heat generating side insulating substrate forming the electrode pattern is larger than the thickness of the electrode.
【請求項3】 発熱側絶縁基板の電極パタ−ンを形成す
る凹部は、平板状の絶縁基板と電極パタ−ンを打ち抜い
た穴を有する絶縁基板が接合されて形成されることを特
徴とする請求項1若しくは請求項2記載の熱電冷却用サ
−モモジュ−ル。
3. The concave portion forming the electrode pattern of the heat generating side insulating substrate is formed by joining a flat plate-shaped insulating substrate and an insulating substrate having a hole punched with the electrode pattern. The thermoelectric cooling thermomodule according to claim 1 or 2.
【請求項4】 熱電素子の側面と発熱用絶縁基板が熱電
素子より熱伝導率の高い材料で熱的に接続されているこ
とを特徴とする請求項1〜3のいずれか記載の熱電冷却
用サ−モモジュ−ル。
4. The thermoelectric cooling according to claim 1, wherein a side surface of the thermoelectric element and an insulating substrate for heat generation are thermally connected with a material having a higher thermal conductivity than the thermoelectric element. Thermo module.
JP6200145A 1994-08-02 1994-08-02 Thermo-module for thermoelectric cooling Pending JPH0846250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200145A JPH0846250A (en) 1994-08-02 1994-08-02 Thermo-module for thermoelectric cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200145A JPH0846250A (en) 1994-08-02 1994-08-02 Thermo-module for thermoelectric cooling

Publications (1)

Publication Number Publication Date
JPH0846250A true JPH0846250A (en) 1996-02-16

Family

ID=16419542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200145A Pending JPH0846250A (en) 1994-08-02 1994-08-02 Thermo-module for thermoelectric cooling

Country Status (1)

Country Link
JP (1) JPH0846250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382564B (en) * 2006-02-20 2013-01-11 Ind Tech Res Inst Light emitting diode package structure and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382564B (en) * 2006-02-20 2013-01-11 Ind Tech Res Inst Light emitting diode package structure and fabrication method thereof

Similar Documents

Publication Publication Date Title
JP4768961B2 (en) Thermoelectric module having thin film substrate
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JPH09329395A (en) Heat sink
JP2000068564A (en) Peltier element
JP2009188088A (en) Thermoelectric apparatus
JP2000058930A (en) Thermoelement, and its manufacture
JP2007048916A (en) Thermoelectric module
JP2007035907A (en) Thermoelectric module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR100663117B1 (en) Thermoelectric module
JP2006216642A (en) Thermoelement
JP2003174204A (en) Thermoelectric conversion device
US10833237B2 (en) Thermoelectric module
JPH0846250A (en) Thermo-module for thermoelectric cooling
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2004119833A (en) Thermoelement module and its manufacturing method
JPH104219A (en) Peltier element
JPH07335945A (en) Thermocouple array
JP2003234515A (en) Thermoelectric module
JP3583112B2 (en) Thermoelectric module and cooling device
KR102581613B1 (en) Thermoelectric element
JPH0337246Y2 (en)
JP2010232259A (en) Thermoelectric conversion module, optical transmission module, cooling device, power generator, and thermostat
JPH10303470A (en) Thermoelectric cooler
JP4509589B2 (en) Peltier module

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622