JPH0845947A - Thermal treatment method of silicon substrate - Google Patents

Thermal treatment method of silicon substrate

Info

Publication number
JPH0845947A
JPH0845947A JP18261494A JP18261494A JPH0845947A JP H0845947 A JPH0845947 A JP H0845947A JP 18261494 A JP18261494 A JP 18261494A JP 18261494 A JP18261494 A JP 18261494A JP H0845947 A JPH0845947 A JP H0845947A
Authority
JP
Japan
Prior art keywords
gas
silicon substrate
heat treatment
atmosphere
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18261494A
Other languages
Japanese (ja)
Inventor
Yasuo Tsumori
泰男 津森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18261494A priority Critical patent/JPH0845947A/en
Publication of JPH0845947A publication Critical patent/JPH0845947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a thermal treatment method wherein the surface of a silicon substrate is lessened in number of crystal defects, and a silicon integrated device is enhanced in electrical properties. CONSTITUTION:A silicon substrate is thermally treated through such a manner that it is thermally treated at temperatures of 1000 to 1350 deg.C or preferably 1100 to 1350 deg.C for above 10 minutes or preferably above 30 minutes in an atmosphere of hydrogen gas, inert gas, or mixed gas of inert gas loaded with 1ppba to 1ppma of SiH4 gas, Si2H6 gas, or mixed gas of SiH4 gas and Si2H6 gas. By this setup, the silicon substrate lessened in number of crystal defects in its surface, possessed of an oxide film high in dielectric strength, and small in leakage current can be manufactured, and a silicon integrated device higher in reliability can be manufactured by the use of the above silicon substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板表面の結
晶欠陥の低減とシリコン集積デバイスの電気特性を向上
させるシリコン基板の熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a silicon substrate which reduces crystal defects on the surface of the silicon substrate and improves the electrical characteristics of a silicon integrated device.

【0002】[0002]

【従来の技術】シリコン集積デバイスの微細化に伴い、
シリコン基板表面の結晶欠陥の低減、MOSトランジス
タのゲート酸化膜に使用されるシリコン酸化膜の高い絶
縁破壊耐圧強度特性(以下、単に耐圧特性と略す)およ
びMOSトランジスタのpn接合の逆バイアスリーク電
流特性(以下、単にリーク電流特性と略す)の低減が求
められている。
2. Description of the Related Art With the miniaturization of silicon integrated devices,
Reduction of crystal defects on the surface of a silicon substrate, high breakdown voltage strength characteristics of silicon oxide film used for a gate oxide film of a MOS transistor (hereinafter simply referred to as breakdown voltage characteristics), and reverse bias leakage current characteristics of a pn junction of a MOS transistor (Hereinafter, it is simply abbreviated as a leak current characteristic).

【0003】この問題に対処するため特開昭51−13
4071号公報は、シリコン単結晶を不活性ガスまたは
還元性ガス雰囲気中、350℃から1350℃で熱処理
する方法を開示している。同公報により開示されている
熱処理方法により、結晶欠陥除去、ライフタイム、リー
ク電流、耐圧などの特性に優れた単結晶が得られる。ま
た、特開昭62−123098号公報は、水素ガス、ま
たは水素ガスが窒素ガス、不活性ガス若しくはこれらの
ガスで希釈された混合ガス雰囲気中で800℃から13
50℃までの温度で1秒間ないし48時間にわたって熱
処理する方法を開示している。同公報により開示されて
いる熱処理方法により、より効率的にシリコン基板表面
近傍の結晶欠陥密度の低減が可能となる。
To address this problem, Japanese Patent Laid-Open No. 51-13
Japanese Patent No. 4071 discloses a method of heat-treating a silicon single crystal at 350 ° C. to 1350 ° C. in an inert gas or reducing gas atmosphere. By the heat treatment method disclosed in the publication, a single crystal having excellent characteristics such as crystal defect removal, lifetime, leak current, and breakdown voltage can be obtained. Further, JP-A-62-123098 discloses that hydrogen gas or a mixed gas atmosphere in which hydrogen gas is diluted with nitrogen gas, an inert gas or these gases is used at 800 ° C. to 13 ° C.
Disclosed is a method of heat treatment at a temperature of up to 50 ° C. for 1 second to 48 hours. The heat treatment method disclosed in the publication makes it possible to more efficiently reduce the crystal defect density near the surface of the silicon substrate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開昭51−134071号公報や特開昭62−1230
98号公報などに開示されている熱処理を行なったシリ
コン基板であっても、シリコン集積デバイスを製造する
ために必要な熱処理を施すと再び結晶欠陥が発生するこ
とがある。
However, the above-mentioned JP-A-51-134071 and JP-A-62-1230.
Even for a silicon substrate that has been subjected to the heat treatment disclosed in Japanese Patent Publication No. 98, etc., crystal defects may occur again when the heat treatment necessary for manufacturing a silicon integrated device is performed.

【0005】また、シリコン集積デバイスの高集積化、
低消費電力化に伴い、より高い耐圧特性およびより少な
いリーク電流特性が求められている。
In addition, high integration of silicon integrated devices,
With the reduction in power consumption, higher breakdown voltage characteristics and less leakage current characteristics are required.

【0006】したがって、本発明は、従来技術では不可
能であったシリコン基板表面のより効率的な結晶欠陥の
低減と、より高い耐圧特性、より低いリーク電流特性を
有するシリコン基板を製造するための熱処理方法を提供
するものである。
Therefore, the present invention is for producing a silicon substrate having a more efficient reduction of crystal defects on the surface of the silicon substrate, a higher breakdown voltage characteristic, and a lower leakage current characteristic, which were impossible in the prior art. A heat treatment method is provided.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく、新規なシリコン基板の熱処理方法について
鋭意検討した結果、本発明を完成するに至ったものであ
る。
The present inventor has completed the present invention as a result of extensive studies on a novel method for heat treatment of a silicon substrate in order to achieve the above object.

【0008】すなわち、本発明の目的は、1ppba以
上でかつ1ppma以下のSiH4ガスを添加した水素
ガス、不活性ガスまたは水素ガスと不活性ガスとの混合
ガス雰囲気下で1000〜1350℃で、10分間以上
熱処理することを特徴とするシリコン基板の熱処理方法
により達成される。
That is, the object of the present invention is 1000 to 1350 ° C. in a hydrogen gas added with SiH 4 gas of 1 ppba or more and 1 ppma or less, an inert gas or a mixed gas atmosphere of hydrogen gas and an inert gas, This is achieved by a heat treatment method for a silicon substrate, which is characterized by performing heat treatment for 10 minutes or more.

【0009】また、本発明尾目的は、1ppba以上で
かつ1ppma以下のSiH4 ガスを添加した水素ガ
ス、不活性ガスまたは水素ガスと不活性ガスとの混合ガ
ス雰囲気下で1100〜1350℃で、30分間以上熱
処理することを特徴とするシリコン基板の熱処理方法に
よっても達成される。
Another object of the present invention is to provide a hydrogen gas containing 1 ppba or more and 1 ppma or less of SiH 4 gas, an inert gas or a mixed gas atmosphere of hydrogen gas and an inert gas at 1100 to 1350 ° C. It can also be achieved by a heat treatment method for a silicon substrate, which is characterized by performing heat treatment for 30 minutes or more.

【0010】さらに、本発明の目的は、1ppba以上
でかつ1ppma以下のSi2 6ガスを添加した水素
ガス、不活性ガスまたは水素ガスと不活性ガスとの混合
ガス雰囲気下で1000〜1350℃で、10分間以上
熱処理することを特徴とするシリコン基板の熱処理方法
によっても達成される。
Further, an object of the present invention is 1000 to 1350 ° C. in a hydrogen gas added with Si 2 H 6 gas of 1 ppba or more and 1 ppma or less, an inert gas or a mixed gas atmosphere of hydrogen gas and an inert gas. The heat treatment method for a silicon substrate is characterized in that the heat treatment is performed for 10 minutes or more.

【0011】さらにまた、本発明の目的は、1ppba
以上でかつ1ppma以下のSi26 ガスを添加した
水素ガス、不活性ガスまたは水素ガスと不活性ガスとの
混合ガス雰囲気下で1100〜1350℃で、30分間
以上熱処理することを特徴とするシリコン基板の熱処理
方法によっても達成される。
Still further, an object of the present invention is 1 ppba.
The heat treatment is performed at 1100 to 1350 ° C. for 30 minutes or more in a hydrogen gas added with Si 2 H 6 gas of 1 ppma or less and an inert gas or a mixed gas atmosphere of a hydrogen gas and an inert gas. It is also achieved by a method of heat treating a silicon substrate.

【0012】また、本発明の目的は、1ppba以上で
かつ1ppma以下のSiH4 ガスとSi2 6 ガスと
の混合ガスを添加した水素ガス、不活性ガスまたは水素
ガスと不活性ガスとの混合ガス雰囲気下で1000〜1
350℃で、10分間以上熱処理することを特徴とする
シリコン基板の熱処理方法によっても達成される。
Another object of the present invention is to add hydrogen gas, an inert gas or a mixture of hydrogen gas and an inert gas to which a mixed gas of SiH 4 gas and Si 2 H 6 gas of 1 ppba or more and 1 ppma or less is added. 1000 to 1 under gas atmosphere
It can also be achieved by a heat treatment method for a silicon substrate, which is characterized by performing heat treatment at 350 ° C. for 10 minutes or more.

【0013】さらに、本発明の目的は、1ppba以上
でかつ1ppma以下のSiH4 ガスとSi2 6 ガス
との混合ガスを添加した水素ガス、不活性ガスまたは水
素ガスと不活性ガスとの混合ガス雰囲気下で1100〜
1350℃で、30分間以上熱処理することを特徴とす
るシリコン基板の熱処理方法によっても達成される。
Further, an object of the present invention is to add hydrogen gas, an inert gas or a mixture of hydrogen gas and an inert gas to which a mixed gas of SiH 4 gas and Si 2 H 6 gas of 1 ppba or more and 1 ppma or less is added. 1100 under gas atmosphere
It is also achieved by a heat treatment method for a silicon substrate, which is characterized by performing heat treatment at 1350 ° C. for 30 minutes or more.

【0014】[0014]

【作用】シリコン基板を熱処理することによる該シリコ
ン基板表面層の結晶欠陥の低減、耐圧特性およびリーク
電流特性の向上のメカニズムについて本発明者が詳細な
調査を行なったところ、以下のメカニズムに従っている
ことが明らかとなった。
When the present inventor conducted a detailed investigation on the mechanism of reducing the crystal defects in the surface layer of the silicon substrate and improving the withstand voltage characteristic and the leak current characteristic by heat-treating the silicon substrate, the following mechanism was observed. Became clear.

【0015】まず、耐圧特性やリーク電流特性を劣化さ
せる主要因は、シリコン基板表面層に存在する酸素析出
物、転位、積層欠陥などの結晶欠陥である。従って、シ
リコン基板表面層の結晶欠陥の低減は、耐圧特性やリー
ク電流特性の向上につながる。
First, the main cause of deterioration in breakdown voltage characteristics and leak current characteristics is crystal defects such as oxygen precipitates, dislocations and stacking faults existing in the surface layer of the silicon substrate. Therefore, reduction of crystal defects in the surface layer of the silicon substrate leads to improvement in breakdown voltage characteristics and leak current characteristics.

【0016】次に、シリコン半導体デバイスの製造には
一般的にCZ法(チョクラルスキー引上げ法)によって
製造されたシリコン基板が用いられる。該CZ法により
製造されたシリコン基板中には格子間酸素が過飽和に存
在するため、必ず酸素析出物も存在している。この酸素
析出物がシリコン結晶冷却中やその後の熱処理中に、よ
り大きな酸素析出物に成長したり、転位や積層欠陥など
の2次欠陥を発生させる。このことから、シリコン基板
表面層の酸素析出物の低減により、シリコン基板表面層
の結晶欠陥の低減、耐圧特性およびリーク電流特性の向
上につながるものである。
Next, a silicon substrate manufactured by the CZ method (Czochralski pulling method) is generally used for manufacturing a silicon semiconductor device. Since interstitial oxygen is supersaturated in the silicon substrate manufactured by the CZ method, oxygen precipitates are always present. The oxygen precipitates grow into larger oxygen precipitates or secondary defects such as dislocations and stacking faults are generated during cooling of the silicon crystal and subsequent heat treatment. Therefore, reduction of oxygen precipitates on the surface layer of the silicon substrate leads to reduction of crystal defects in the surface layer of the silicon substrate and improvement of withstand voltage characteristics and leak current characteristics.

【0017】熱処理によるシリコン基板の表面層の改質
は、シリコン基板の表面層内に存在する過飽和な格子間
酸素を外方拡散させることにより、該表面層内に存在す
る酸素析出物周辺の格子間酸素濃度を下げ、酸素析出物
を溶解させるものである。したがって、格子間酸素の外
方拡散量が多いほど、より多くの酸素析出物が溶解され
る。該格子間酸素の外方拡散量は、表面の酸素濃度が低
いほどより多くなる。これは、格子間酸素の拡散がシリ
コン基板表面と内部との濃度差により起こるためで、濃
度差が大きいほどより多くの格子間酸素が外方拡散す
る。
The surface layer of the silicon substrate is modified by heat treatment by outwardly diffusing supersaturated interstitial oxygen existing in the surface layer of the silicon substrate, thereby forming a lattice around the oxygen precipitates existing in the surface layer. The oxygen concentration is lowered to dissolve oxygen precipitates. Therefore, the greater the outward diffusion amount of interstitial oxygen, the more oxygen precipitates are dissolved. The outward diffusion amount of interstitial oxygen increases as the oxygen concentration on the surface decreases. This is because the diffusion of interstitial oxygen occurs due to the difference in concentration between the surface of the silicon substrate and the inside, and the greater the difference in concentration, the greater the amount of interstitial oxygen that diffuses outward.

【0018】また、熱処理中のシリコン基板表面の酸素
濃度は、シリコン基板表面への外方拡散による酸素の供
給量と気相中への酸素の蒸発量の差により決まる。この
ことから、シリコン基板表面での酸素濃度を低減させる
ためには気相中への酸素の蒸発を促進すればよい。
The oxygen concentration on the surface of the silicon substrate during the heat treatment is determined by the difference between the amount of oxygen supplied to the surface of the silicon substrate by outward diffusion and the amount of evaporation of oxygen into the gas phase. From this, in order to reduce the oxygen concentration on the surface of the silicon substrate, the evaporation of oxygen into the gas phase may be promoted.

【0019】そこで、本発明では、水素ガス、不活性ガ
スまたは水素ガスと不活性ガスとの混合ガス雰囲気中に
SiH4 ガス、Si2 6 ガスまたはSiH4 ガスとS
26 ガスとの混合ガスを添加することにより、下記
のメカニズムに従い、シリコン基板表面での気相中への
酸素の蒸発を促進するものである。すなわち、雰囲気ガ
ス中に添加されたSiH4 ガスやSi2 6 ガスは、シ
リコン基板表面の酸素と下記に示す(1)式や(2)式
の反応を起こす。
Therefore, in the present invention, SiH 4 gas, Si 2 H 6 gas or SiH 4 gas and S are added in a hydrogen gas, an inert gas or a mixed gas atmosphere of hydrogen gas and an inert gas.
By adding a mixed gas with i 2 H 6 gas, the evaporation of oxygen into the vapor phase on the surface of the silicon substrate is promoted according to the following mechanism. That is, the SiH 4 gas or Si 2 H 6 gas added to the atmospheric gas causes the reaction of oxygen on the surface of the silicon substrate according to the following equations (1) and (2).

【0020】 SiH4 +O→SiO+2H2 ・・・・・(1) Si2 6 +2O→2SiO+3H2 ・・・・・(2) 上記(1)式および/または(2)式の反応により、シ
リコン基板表面の酸素は、SiOとして効率的に蒸発で
きる。このことから、シリコン基板表面の酸素濃度が低
減でき、さらに上述のメカニズムにより、格子間酸素の
外方拡散量が増大し、ひいては該シリコン基板表面層の
結晶欠陥が低減できるものである。
SiH 4 + O → SiO + 2H 2 (1) Si 2 H 6 + 2O → 2SiO + 3H 2 (2) Silicon is produced by the reaction of the above formula (1) and / or (2). Oxygen on the substrate surface can be efficiently evaporated as SiO. From this fact, the oxygen concentration on the surface of the silicon substrate can be reduced, and further, the outward diffusion amount of interstitial oxygen can be increased by the mechanism described above, and consequently the crystal defects of the surface layer of the silicon substrate can be reduced.

【0021】なお、一般的に水素ガスにSiH4 または
Si2 6 を添加して熱処理する方法として、エピタキ
シャル基板の製造方法が知られている。しかしながら、
本発明におけるSiH4 ガスおよび/またはSi2 6
ガスの添加量の上限は、1ppmaであること、並びに
SiH4 ガスおよび/またはSi2 6 ガスがシリコン
基板表面で上記(1)式および/または(2)式の反応
を起こすことから、シリコン基板上ではエピタキシャル
成長は起こり得ない。したがって、本発明は、一般的に
知られているエピタキシャル基板の製造方法ではないと
言える。
As a method of adding SiH 4 or Si 2 H 6 to hydrogen gas and performing heat treatment, a method of manufacturing an epitaxial substrate is generally known. However,
SiH 4 gas and / or Si 2 H 6 in the present invention
The upper limit of the amount of added gas is 1 ppma, and SiH 4 gas and / or Si 2 H 6 gas causes the reaction of the above formula (1) and / or (2) on the surface of the silicon substrate. Epitaxial growth cannot occur on the substrate. Therefore, it can be said that the present invention is not a generally known method for manufacturing an epitaxial substrate.

【0022】次に、本発明に係るシリコン基板の熱処理
方法としては、水素ガスおよび/または不活性ガス雰囲
気中に、SiH4 ガスおよび/またはSi2 6 ガスを
1ppba以上でかつ1ppma以下の範囲で添加し
て、通常1000〜1350℃、望ましくは1100〜
1350℃で、10分間以上、望ましくは30分間以
上、熱処理を行うものである。
Next, as the heat treatment method for a silicon substrate according to the present invention, the SiH 4 gas and / or the Si 2 H 6 gas is in the range of 1 ppba or more and 1 ppma or less in a hydrogen gas and / or an inert gas atmosphere. And is usually 1000 to 1350 ° C., preferably 1100 to
Heat treatment is performed at 1350 ° C. for 10 minutes or longer, preferably 30 minutes or longer.

【0023】上記熱処理時において、本発明に用いるこ
とのできる雰囲気ガスとしては、上述の如く、水素ガ
ス、不活性ガスおよび水素ガスと不活性ガスとの任意の
混合組成比による混合ガスよりなる群から選ばれてなる
1種の雰囲気ガスを用いることができる。これは、従来
の酸化性ガス雰囲気下に比して、熱処理時間の短縮化お
よび酸素析出物の消滅の点で本発明の雰囲気ガスの方が
優れていることによる。なお、本発明においては、1p
pbaは10億分の1のモル分率、1ppmaは100
万分の1のモル分率を表す。また、本発明に用いること
のできる不活性ガスとは、ヘリウム、キセノン、アルゴ
ンの単独またはそれらの混合ガスのことである。
At the time of the heat treatment, the atmosphere gas that can be used in the present invention is, as described above, a group consisting of hydrogen gas, an inert gas, and a mixed gas of hydrogen gas and an inert gas having an arbitrary mixing composition ratio. One atmosphere gas selected from the above can be used. This is because the atmosphere gas of the present invention is superior in terms of shortening the heat treatment time and eliminating oxygen precipitates, as compared with the conventional oxidizing gas atmosphere. In the present invention, 1p
pba is one-millionth of a mole fraction, 1ppma is 100
It represents a mole fraction of 1 / 10,000. The inert gas that can be used in the present invention is helium, xenon, argon alone or a mixed gas thereof.

【0024】さらに、上記雰囲気ガスとしては、シリコ
ン基板表面のマイクロフラネスの増大を抑制する観点か
ら、該雰囲気ガスに含まれる酸素量および水分量の総和
の2倍以上のSiH4 ガスおよび/またはSi2 6
スによる添加ガスを配合した該雰囲気ガスを用いるが望
ましい。これにより、該酸素および水分をSiOおよび
2 の形で蒸発させることができるため、シリコン基板
への影響を抑制することができるものである。このこと
から、本発明において該雰囲気ガス中に酸素および水分
が含まれている場合には、該酸素量および水分量の総和
の2倍のSiH4 ガスおよび/またはSi2 6 ガスが
余分に消費されることを考慮して、本発明の範囲内であ
る1ppba以上でかつ1ppma以下のSiH4 ガス
および/またはSi2 6 ガスによる添加ガスを添加す
ることが望ましい態様の1種であると言える。
Further, as the above atmosphere gas, from the viewpoint of suppressing the increase in microflurness on the surface of the silicon substrate, SiH 4 gas and / or SiH 4 gas which is at least twice the total amount of oxygen and water contained in the atmosphere gas is used. It is desirable to use the atmospheric gas mixed with the additive gas of Si 2 H 6 gas. As a result, the oxygen and water can be evaporated in the form of SiO and H 2 , so that the influence on the silicon substrate can be suppressed. From this, in the present invention, when the atmosphere gas contains oxygen and water, the SiH 4 gas and / or Si 2 H 6 gas which is twice the total amount of the oxygen amount and the water amount is added. Considering that it is consumed, it is one of desirable modes to add an additive gas of SiH 4 gas and / or Si 2 H 6 gas of 1 ppba or more and 1 ppma or less within the scope of the present invention. I can say.

【0025】続いて、上述の雰囲気ガス中に添加される
添加ガスとしては、SiH4 ガス、Si2 6 ガスおよ
びSiH4 ガスとSi2 6 ガスとの任意の混合組成比
による混合ガスよりなる群から選ばれてなる1種の添加
ガスを用いることができる。また、該添加ガスの添加量
は、雰囲気ガス中に、通常1ppba以上でかつ1pp
ma以下の範囲で添加するものである。該添加量が1p
pba未満の場合には、上記(1)式および/または
(2)式の反応により十分にシリコン基板表面の酸素濃
度を低減できないため、シリコンの結晶欠陥を除去でき
ず、耐圧特性、リーク電流特性の向上が不十分となり、
高い信頼性を必要とするシリコン集積デバイスなどに適
用できないなど好ましくない。また、該添加量が1pp
maを越える場合には、添加ガスの一部がエピタキシャ
ル成長を起こすため好ましくない。
Subsequently, as the additive gas added to the above-mentioned atmosphere gas, SiH 4 gas, Si 2 H 6 gas and a mixed gas of SiH 4 gas and Si 2 H 6 gas having an arbitrary mixing composition ratio are used. One kind of additive gas selected from the group consisting of can be used. The amount of the added gas added is usually 1 ppba or more and 1 ppb or more in the atmosphere gas.
It is added in the range of ma or less. The addition amount is 1p
When it is less than pba, the oxygen concentration on the surface of the silicon substrate cannot be sufficiently reduced by the reaction of the above formula (1) and / or (2), so that the crystal defects of silicon cannot be removed, and the breakdown voltage characteristic and the leak current characteristic Is insufficiently improved,
It is not preferable because it cannot be applied to a silicon integrated device that requires high reliability. The addition amount is 1 pp
If it exceeds ma, a part of the added gas causes epitaxial growth, which is not preferable.

【0026】また、上記熱処理条件としては、通常10
00〜1350℃、望ましくは1100〜1350℃
で、10分間以上、望ましくは30分間以上、熱処理を
行うものである。該熱処理温度が1000℃未満の場合
には、シリコンの結晶欠陥を除去するのに相当長い熱処
理時間が必要であるため、製造効率が悪くなる欠点があ
るほか、またより低い温度条件では、シリコンの結晶欠
陥を除去できず、耐圧特性、リーク電流特性の向上が不
十分となり、高い信頼性を必要とするシリコン集積デバ
イスなどに適用できないなど好ましくなく、また、該熱
処理温度が1350℃を越える場合には、シリコンの溶
融点(1414℃)に接近するため、基板(ウェハ)の
形状が変形し易くなるなど好ましくない。また熱処理時
間が10分間未満の場合には、熱処理による結晶欠陥の
低減などが十分に達成できないため好ましくない。
The heat treatment condition is usually 10
00 to 1350 ° C, preferably 1100 to 1350 ° C
The heat treatment is performed for 10 minutes or longer, preferably 30 minutes or longer. When the heat treatment temperature is lower than 1000 ° C., a considerably long heat treatment time is required to remove crystal defects of silicon, which has a drawback that the production efficiency is deteriorated. Crystal defects cannot be removed, improvement in withstand voltage characteristics and leak current characteristics becomes insufficient, and it is not preferable that it cannot be applied to silicon integrated devices requiring high reliability. Further, when the heat treatment temperature exceeds 1350 ° C. Is close to the melting point (1414 ° C.) of silicon, which is not preferable because the shape of the substrate (wafer) is easily deformed. If the heat treatment time is less than 10 minutes, it is not preferable because reduction of crystal defects due to the heat treatment cannot be sufficiently achieved.

【0027】また、本発明に用いられるシリコン基板と
しては、特に制限されるものでないが、例えば、ミラー
ウェハ加工を行い、熱処理前に、例えば、1重量%の希
弗酸水溶液に浸漬して表面に存在する自然酸化膜を除去
し、次に超純水ですすぎ洗浄をした後に、スピン乾燥を
行ったものなどを用いることが望ましい。
Although the silicon substrate used in the present invention is not particularly limited, for example, the mirror wafer is processed, and before the heat treatment, the silicon substrate is immersed in, for example, a 1% by weight dilute hydrofluoric acid aqueous solution for surface treatment. It is preferable to use the one in which the natural oxide film existing in the above is removed, and then rinsed with ultrapure water and then spin-dried.

【0028】[0028]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0029】本発明例1〜52および比較例53〜65
は、面方位(100)、格子間酸素原子濃度1×1018
cm-3、ボロン原子を1×1015cm-3ドープした直径
150mmのCZ法により製造されたシリコン基板を用
いた。
Inventive Examples 1-52 and Comparative Examples 53-65
Is the plane orientation (100) and the interstitial oxygen atom concentration is 1 × 10 18.
cm -3, a silicon substrate produced by the boron atom 1 × 10 15 cm -3 CZ method doped diameter 150 mm.

【0030】本発明例1〜52では、まず、該シリコン
基板を希弗酸水溶液に浸漬して表面に存在する自然酸化
膜を除去し、次に超純水ですすぎ洗浄をした後に、スピ
ン乾燥した。その後直ちに、該シリコン基板を通常の縦
型炉内に挿入し、それぞれ下記の表1〜表3に示す条件
にしたがって、1ppba以上でかつ1ppma以下の
SiH4 ガス、Si2 6 ガスまたはSiH4 ガスとS
2 6 ガスとの混合ガスを添加した水素ガス、不活性
ガスまたは水素ガスと不活性ガスとの混合ガス雰囲気下
で1000℃から1350℃で10分間から24時間の
熱処理を行なった。
In Examples 1 to 52 of the present invention, the silicon substrate was first immersed in a dilute aqueous solution of hydrofluoric acid to remove the natural oxide film existing on the surface, and then rinsed with ultrapure water and then spin dried. did. Immediately thereafter, the silicon substrate was inserted into a normal vertical furnace, and SiH 4 gas, Si 2 H 6 gas or SiH 4 gas of 1 ppba or more and 1 ppma or less was inserted according to the conditions shown in Tables 1 to 3 below. Gas and S
Heat treatment was performed at 1000 ° C. to 1350 ° C. for 10 minutes to 24 hours in a hydrogen gas added with a mixed gas of i 2 H 6 gas, an inert gas, or a mixed gas atmosphere of a hydrogen gas and an inert gas.

【0031】次に、比較例53〜65についても、それ
ぞれ下記表4に示す条件にしたがって、以下に説明する
内容により熱処理を行った(ただし、比較例65では、
熱処理は行わなかった。)。
Next, also in Comparative Examples 53 to 65, heat treatment was performed according to the contents described below according to the conditions shown in Table 4 below (however, in Comparative Example 65,
No heat treatment was performed. ).

【0032】比較例53では、熱処理温度は900℃と
し、他の条件は本発明例4および26と同じにした。
In Comparative Example 53, the heat treatment temperature was 900 ° C., and the other conditions were the same as in Invention Examples 4 and 26.

【0033】比較例54では、熱処理温度は900℃と
し、他の条件は本発明例20および42と同じにした。
In Comparative Example 54, the heat treatment temperature was 900 ° C., and the other conditions were the same as in Invention Examples 20 and 42.

【0034】比較例55では、熱処理温度は1400℃
とし、他の条件は本発明例4および26と同じにした。
In Comparative Example 55, the heat treatment temperature is 1400 ° C.
Other conditions were the same as those of Examples 4 and 26 of the invention.

【0035】比較例56では、熱処理温度は1400℃
とし、他の条件は本発明例20および42と同じにし
た。
In Comparative Example 56, the heat treatment temperature was 1400 ° C.
Other conditions were the same as those of Examples 20 and 42 of the invention.

【0036】比較例57では、熱処理時間は5分間と
し、他の条件は本発明例1〜6と同じにした。
In Comparative Example 57, the heat treatment time was 5 minutes, and the other conditions were the same as in Invention Examples 1 to 6.

【0037】比較例58では、熱処理雰囲気はSiH4
ガスおよびSi2 6 ガスの添加を行なわなかった場合
で、他の条件は本発明例4、7〜16と同じにした。ま
たこの比較例は従来技術のうち特開昭62−12309
8号に開示されている熱処理条件である。
In Comparative Example 58, the heat treatment atmosphere was SiH 4
Gas and Si 2 H 6 gas were not added, and the other conditions were the same as in Invention Examples 4 and 7 to 16. Further, this comparative example is disclosed in Japanese Patent Laid-Open No. 62-12309 among the prior arts.
These are the heat treatment conditions disclosed in No. 8.

【0038】比較例59では、熱処理雰囲気はSiH4
ガスおよびSi2 6 ガスの添加を行なわなかった場合
で、他の条件は本発明例20と同じにした。
In Comparative Example 59, the heat treatment atmosphere was SiH 4
Gas and Si 2 H 6 gas were not added, and the other conditions were the same as in Invention Example 20.

【0039】比較例60では、熱処理雰囲気はSiH4
ガスを0.1ppba添加した場合で、他の条件は本発
明例4、7〜10と同じにした。
In Comparative Example 60, the heat treatment atmosphere was SiH 4
In the case of adding 0.1 ppba of gas, the other conditions were the same as in Invention Examples 4 and 7 to 10.

【0040】比較例61では、熱処理雰囲気はSiH4
ガスを2ppma添加した場合で、他の条件は本発明例
4、7〜10と同じにした。
In Comparative Example 61, the heat treatment atmosphere was SiH 4
Other conditions were the same as those of Inventive Examples 4 and 7 to 10 when the gas was added at 2 ppma.

【0041】比較例62では、熱処理雰囲気はSiH4
ガスを0.1ppba添加した場合で、他の条件は本発
明例11〜13と同じにした。
In Comparative Example 62, the heat treatment atmosphere was SiH 4
Other conditions were the same as those of Examples 11 to 13 of the present invention when 0.1 ppba of gas was added.

【0042】比較例63では、熱処理雰囲気はSiH4
ガスを2ppma添加した場合で、他の条件は本発明例
11〜13と同じにした。
In Comparative Example 63, the heat treatment atmosphere was SiH 4
Other conditions were the same as those of Examples 11 to 13 of the present invention when the gas was added at 2 ppma.

【0043】比較例64では、熱処理雰囲気はSiH4
ガスおよびSi2 6 ガスをそれぞれ1ppma添加し
た場合で、他の条件は本発明例14および15と同じに
した。
In Comparative Example 64, the heat treatment atmosphere was SiH 4
Gas and Si 2 H 6 gas were added at 1 ppma, respectively, and other conditions were the same as those of Examples 14 and 15 of the present invention.

【0044】次に、シリコン表面層の結晶欠陥の評価
は、該シリコン基板表面層の酸化誘起積層欠陥(以下、
単にOSFと略す)密度の評価により行なった。本発明
例1〜52および比較例53〜64の熱処理終了後に比
較例65のシリコン基板とともに、該シリコン基板を1
重量%の希弗酸水溶液に浸漬して、表面に形成されたシ
リコン酸化膜を除去し、さらに超純水ですすぎ洗浄をし
た後、スピン乾燥した。その後にOSF評価用熱処理と
して、該シリコン基板を熱処理炉内で800℃の乾燥酸
素雰囲気中で3時間熱処理した後、そのまま1100℃
まで3℃/minの昇温速度で昇温し、1100℃で1
時間の湿式酸化を行ない、炉外に引き出した。評価用熱
処理を終了した該シリコン基板は、10重量%の希弗酸
水溶液中で酸化膜を除去し、欠陥観察用のライトエッチ
ング液中で10分間のエッチングを行ない、超純水です
すぎ洗浄を行なった後、乾燥し、微分干渉顕微鏡でOS
F密度の計測を行なった。なお、ライトエッチングの液
組成は、超LSIプロセスデータハンドブック(編集委
員:赤坂洋一、柏木正弘、前田和夫、吉見武夫 発行
所;サイエンスフォーラム社 発行年:1990年)の
442頁に開示されている組成に従った。
Next, the evaluation of the crystal defects in the silicon surface layer is performed by the oxidation-induced stacking fault (hereinafter,
The evaluation was performed simply by abbreviated as OSF). After completion of the heat treatments of Examples 1 to 52 of the present invention and Comparative Examples 53 to 64, the silicon substrate of Comparative Example 65 was used together with 1
The silicon oxide film formed on the surface was removed by immersing in a dilute aqueous solution of dilute hydrofluoric acid (wt%), rinsed with ultrapure water, and then spin dried. After that, as a heat treatment for OSF evaluation, the silicon substrate is heat-treated in a heat treatment furnace in a dry oxygen atmosphere at 800 ° C. for 3 hours, and then at 1100 ° C. as it is.
Up to 3 ° C / min at 1100 ° C.
Wet oxidation was carried out for a period of time and the product was taken out of the furnace. After the heat treatment for evaluation is completed, the oxide film is removed in a dilute hydrofluoric acid solution of 10% by weight, etching is performed in a light etching solution for defect observation for 10 minutes, and rinsed with ultrapure water. After performing, dry and OS with a differential interference microscope
The F density was measured. The liquid composition for light etching is disclosed on page 442 of the VLSI Process Data Handbook (Editor: Yoichi Akasaka, Masahiro Kashiwagi, Kazuo Maeda, Takeo Yoshimi Publishing; Science Forum Publishing Year: 1990). Obeyed.

【0045】また、耐圧特性の評価は、ウェハ表面上に
150個製作した面積0.20cm2 のMOSダイオー
ドの絶縁破壊電界を測定することによって行なった。ま
ず、これらのウェハを希弗酸水溶液に浸漬して、表面に
形成されたシリコン酸化膜を除去し、さらに超純水です
すぎ洗浄をした後、スピン乾燥した。MOSダイオード
の厚さ25.0nmのシリコン酸化膜は、これらのスピ
ン乾燥ウェハを1000℃の乾燥酸素雰囲気中で酸化し
て形成した。MOSダイオードの電極は、リンをドープ
した多結晶シリコン膜を減圧の化学蒸着で形成した。M
OSダイオードの絶縁破壊電界は、ウェハの裏面をゼロ
電位に保ち、表面の電極に負電位を掃引印加して、MO
Sダイオードに流れる電流が100mA/cm2 に達し
た時の電位を絶縁破壊電位として測定することによって
求めた。耐圧特性は、MOSダイオードの絶縁破壊電位
の基板面内の平均値をシリコン酸化膜厚で除して得られ
る値を「平均破壊電界」と定義した指標を用い、より大
きな平均破壊電界ほど耐圧特性が優れているとした。
The withstand voltage characteristics were evaluated by measuring the breakdown electric field of 150 MOS diodes having an area of 0.20 cm 2 produced on the wafer surface. First, these wafers were immersed in a dilute hydrofluoric acid solution to remove the silicon oxide film formed on the surface, rinsed with ultrapure water, and then spin dried. The 25.0 nm thick silicon oxide film of the MOS diode was formed by oxidizing these spin-dried wafers in a dry oxygen atmosphere at 1000 ° C. The electrodes of the MOS diode were formed by depositing a phosphorus-doped polycrystalline silicon film by low pressure chemical vapor deposition. M
The dielectric breakdown electric field of the OS diode keeps the back surface of the wafer at zero potential, sweeps and applies a negative potential to the electrodes on the front surface, and
It was determined by measuring the potential when the current flowing through the S diode reached 100 mA / cm 2 as the dielectric breakdown potential. For the breakdown voltage characteristic, the index obtained by dividing the average value of the dielectric breakdown potential of the MOS diode in the substrate surface by the silicon oxide film thickness is used as an “average breakdown electric field”. Is said to be excellent.

【0046】さらに、リーク電流特性の評価は、ウェハ
表面上に150個製作した直径3mmのpn接合ダイオ
ードの逆方向リーク電流を測定することによって行っ
た。まず、これらのウェハを希弗酸水溶液に浸漬して、
表面に形成されたシリコン酸化膜を除去し、さらに超純
水ですすぎ洗浄をした後、スピン乾燥した。その後、1
000℃の乾燥酸素雰囲気中で100nmの酸化膜を形
成し、pn接合形成領域のみに、シリコン基板表面から
イオン注入によりリンを1×1015cm-2ドープし、そ
の後にpn接合領域以外の領域にイオン注入によりホウ
素を1×1012cm-2ドープした。その後に、該シリコ
ン基板を窒素中で1000℃で30分間の熱処理を行な
い、pn接合領域部直上の酸化膜を除去し、Alの引き
出し電極を形成した。その後に該シリコン基板を水素雰
囲気中で400℃で30分間の熱処理を行ない、裏面酸
化膜を剥離した後、Auによりオーミックコンタクトを
形成した。pn接合ダイオードのリーク電流は、ウェハ
の裏面をゼロ電位に保ち、表面の電極に10Vを印加し
た時に流れる電流を測定した。リーク電流特性は、pn
接合ダイオードのリーク電流の基板面内の平均値をpn
接合面積で除して得られる値を「平均リーク電流密度」
と定義した指標を用い、より小さい平均リーク電流ほど
優れているとした。
Further, the leakage current characteristics were evaluated by measuring the reverse leakage current of 150 pn junction diodes with a diameter of 3 mm produced on the wafer surface. First, immerse these wafers in dilute hydrofluoric acid solution,
The silicon oxide film formed on the surface was removed, further rinsed with ultrapure water, and then spin dried. Then 1
An oxide film of 100 nm is formed in a dry oxygen atmosphere at 000 ° C., and 1 × 10 15 cm −2 of phosphorus is ion-implanted from the surface of the silicon substrate to the pn junction formation region only, and then the region other than the pn junction region is doped. 1 × 10 12 cm −2 was doped with boron by ion implantation. After that, the silicon substrate was heat-treated in nitrogen at 1000 ° C. for 30 minutes to remove the oxide film right above the pn junction region portion, and an Al lead electrode was formed. After that, the silicon substrate was heat-treated at 400 ° C. for 30 minutes in a hydrogen atmosphere to remove the back surface oxide film, and then an ohmic contact was formed with Au. As the leak current of the pn junction diode, the current flowing when the back surface of the wafer was kept at zero potential and 10 V was applied to the electrode on the front surface was measured. The leakage current characteristic is pn
The average value of the leakage current of the junction diode in the substrate surface is pn
"Average leak current density" is the value obtained by dividing by the junction area.
The smaller the average leak current, the better.

【0047】さらにまた、エピタキシャル成長の有無の
評価は、熱処理前後のシリコン基板重量を測定し、単位
面積当たりの重量変化をシリコンの密度で除すことによ
りエピタキシャル膜厚を算出した。算出したエピタキシ
ャル膜厚が10nm以上の場合はエピタキシャル成長が
起っているとして不合格とした。
Furthermore, the presence or absence of epitaxial growth was evaluated by measuring the weight of the silicon substrate before and after the heat treatment and dividing the weight change per unit area by the density of silicon to calculate the epitaxial film thickness. When the calculated epitaxial film thickness was 10 nm or more, it was determined that epitaxial growth had occurred and was rejected.

【0048】表1〜表4に本発明例1〜52並びに比較
例53〜65の熱処理条件と評価結果を示した。
Tables 1 to 4 show heat treatment conditions and evaluation results of Examples 1 to 52 of the present invention and Comparative Examples 53 to 65.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】上記表1〜表4より、本発明例1〜52で
は、シリコン基板表面層の欠陥密度、耐圧特性(平均破
壊電界)、リーク電流特性(平均リーク電流密度)と
も、比較例58に示した特開昭62−123098号公
報に記載の従来技術に比して優れた特性を示した。ま
た、該シリコン基板表面にエピタキシャル成長は起らな
かった。
From Tables 1 to 4 above, in Examples 1 to 52 of the present invention, the defect density of the surface layer of the silicon substrate, the breakdown voltage characteristic (average breakdown electric field), and the leakage current characteristic (average leakage current density) are the same as those of Comparative Example 58. Compared with the prior art disclosed in Japanese Patent Laid-Open No. 62-123098, the characteristics are superior. Further, epitaxial growth did not occur on the surface of the silicon substrate.

【0054】比較例53〜56は、熱処理温度の条件が
本発明の範囲から外れているため、欠陥密度、耐圧特
性、リーク電流特性とも、比較例58に示した従来例に
劣っている。
Since the heat treatment temperature conditions of Comparative Examples 53 to 56 are out of the range of the present invention, the defect density, breakdown voltage characteristic and leak current characteristic are inferior to those of the conventional example shown in Comparative Example 58.

【0055】比較例57は、熱処理時間の条件が本発明
の範囲から外れているため、欠陥密度、耐圧特性、リー
ク電流特性とも、比較例58に示した従来例と同等であ
る。
In Comparative Example 57, the condition of the heat treatment time is out of the range of the present invention, so that the defect density, the breakdown voltage characteristic, and the leak current characteristic are the same as those of the conventional example shown in Comparative Example 58.

【0056】比較例59、60および62は、熱処理雰
囲気中のSiH4 およびSi2 6の添加量が本発明の
範囲より少ないため、欠陥密度、耐圧特性、リーク電流
特性とも、比較例58に示した従来例に劣っている。
In Comparative Examples 59, 60 and 62, since the amounts of SiH 4 and Si 2 H 6 added in the heat treatment atmosphere were less than the range of the present invention, the defect density, breakdown voltage characteristic and leak current characteristic were the same as those of Comparative Example 58. It is inferior to the conventional example shown.

【0057】比較例61、63および64は、熱処理雰
囲気中のSiH4 およびSi2 6の添加量が本発明の
範囲より多いため、欠陥密度、耐圧特性、リーク電流特
性については、比較例58に示した従来例より優れてい
るものの、シリコン基板表面にエピタキシャル成長が起
こっている。
In Comparative Examples 61, 63 and 64, since the amounts of SiH 4 and Si 2 H 6 added in the heat treatment atmosphere were larger than the range of the present invention, the defect density, the breakdown voltage characteristic and the leak current characteristic were compared with Comparative Example 58. Although it is superior to the conventional example shown in (1), epitaxial growth occurs on the surface of the silicon substrate.

【0058】[0058]

【発明の効果】以上詳述した如く、本発明によれば、従
来技術では不可能であった、シリコン基板表面のより効
率的な結晶欠陥の低減と、より高い耐圧特性、より少な
いリーク電流特性を有するシリコン基板を製造すること
が可能となり、該シリコン基板を用いることでより高い
信頼性を有するシリコン集積デバイスの製造が可能とな
るので、産業上極めて大きな効果がある。
As described in detail above, according to the present invention, more efficient reduction of crystal defects on the surface of a silicon substrate, higher breakdown voltage characteristics, and lower leakage current characteristics, which were impossible in the prior art, are achieved. It becomes possible to manufacture a silicon substrate having the above-mentioned characteristics, and by using the silicon substrate, it becomes possible to manufacture a silicon integrated device having higher reliability, which is extremely advantageous in industry.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1ppba以上でかつ1ppma以下の
SiH4 ガスを添加した水素ガス、不活性ガスまたは水
素ガスと不活性ガスとの混合ガス雰囲気下で1000〜
1350℃で、10分間以上熱処理することを特徴とす
るシリコン基板の熱処理方法。
1. A hydrogen gas to which SiH 4 gas of 1 ppba or more and 1 ppma or less is added, an inert gas or a mixed gas atmosphere of hydrogen gas and an inert gas of 1000 to
A heat treatment method for a silicon substrate, which comprises performing heat treatment at 1350 ° C. for 10 minutes or more.
【請求項2】 1ppba以上でかつ1ppma以下の
SiH4 ガスを添加した水素ガス、不活性ガスまたは水
素ガスと不活性ガスとの混合ガス雰囲気下で1100〜
1350℃で、30分間以上熱処理することを特徴とす
るシリコン基板の熱処理方法。
2. A hydrogen gas to which SiH 4 gas of 1 ppba or more and 1 ppma or less is added, an inert gas, or 1100 to 1000 in a mixed gas atmosphere of a hydrogen gas and an inert gas.
A heat treatment method for a silicon substrate, which comprises performing heat treatment at 1350 ° C. for 30 minutes or more.
【請求項3】 1ppba以上でかつ1ppma以下の
Si2 6 ガスを添加した水素ガス、不活性ガスまたは
水素ガスと不活性ガスとの混合ガス雰囲気下で1000
〜1350℃で、10分間以上熱処理することを特徴と
するシリコン基板の熱処理方法。
3. 1000 in a hydrogen gas added with Si 2 H 6 gas of 1 ppba or more and 1 ppma or less, an inert gas or a mixed gas atmosphere of a hydrogen gas and an inert gas.
A method for heat treating a silicon substrate, characterized in that the heat treatment is performed at ˜1350 ° C. for 10 minutes or more.
【請求項4】 1ppba以上でかつ1ppma以下の
Si2 6 ガスを添加した水素ガス、不活性ガスまたは
水素ガスと不活性ガスとの混合ガス雰囲気下で1100
〜1350℃で、30分間以上熱処理することを特徴と
するシリコン基板の熱処理方法。
4. A hydrogen gas to which Si 2 H 6 gas of 1 ppba or more and 1 ppma or less is added, an inert gas, or 1100 in a mixed gas atmosphere of a hydrogen gas and an inert gas.
A method for heat treating a silicon substrate, characterized in that the heat treatment is performed at ˜1350 ° C. for 30 minutes or more.
【請求項5】 1ppba以上でかつ1ppma以下の
SiH4 ガスとSi2 6 ガスとの混合ガスを添加した
水素ガス、不活性ガスまたは水素ガスと不活性ガスとの
混合ガス雰囲気下で1000〜1350℃で、10分間
以上熱処理することを特徴とするシリコン基板の熱処理
方法。
5. A hydrogen gas added with a mixed gas of SiH 4 gas of 1 ppba or more and 1 ppma or less and Si 2 H 6 gas, an inert gas, or a mixed gas atmosphere of a hydrogen gas and an inert gas of 1000 to 1000 A heat treatment method for a silicon substrate, which comprises performing heat treatment at 1350 ° C. for 10 minutes or more.
【請求項6】 1ppba以上でかつ1ppma以下の
SiH4 ガスとSi2 6 ガスとの混合ガスを添加した
水素ガス、不活性ガスまたは水素ガスと不活性ガスとの
混合ガス雰囲気下で1100〜1350℃で、30分間
以上熱処理することを特徴とするシリコン基板の熱処理
方法。
6. A hydrogen gas to which a mixed gas of SiH 4 gas of 1 ppba or more and 1 ppma or less and Si 2 H 6 gas is added, an inert gas, or 1100 to 1000 in a mixed gas atmosphere of a hydrogen gas and an inert gas. A heat treatment method for a silicon substrate, which comprises performing heat treatment at 1350 ° C. for 30 minutes or more.
JP18261494A 1994-08-03 1994-08-03 Thermal treatment method of silicon substrate Pending JPH0845947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18261494A JPH0845947A (en) 1994-08-03 1994-08-03 Thermal treatment method of silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18261494A JPH0845947A (en) 1994-08-03 1994-08-03 Thermal treatment method of silicon substrate

Publications (1)

Publication Number Publication Date
JPH0845947A true JPH0845947A (en) 1996-02-16

Family

ID=16121376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18261494A Pending JPH0845947A (en) 1994-08-03 1994-08-03 Thermal treatment method of silicon substrate

Country Status (1)

Country Link
JP (1) JPH0845947A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180220B1 (en) 1997-02-26 2001-01-30 Memc Electronic Materials, Inc. Ideal Oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6191010B1 (en) 1998-09-02 2001-02-20 Memc Electronic Materials, Inc. Process for preparing an ideal oxygen precipitating silicon wafer
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6284384B1 (en) 1998-12-09 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
US6339016B1 (en) 2000-06-30 2002-01-15 Memc Electronic Materials, Inc. Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US6361619B1 (en) 1998-09-02 2002-03-26 Memc Electronic Materials, Inc. Thermally annealed wafers having improved internal gettering
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
DE10124144A1 (en) * 2001-05-17 2002-12-05 Infineon Technologies Ag Eliminating morphological and crystallographic defects in semiconductor surfaces comprises producing semiconductor substrate, and surface treating substrate by activating and tempering
JP2003124220A (en) * 2001-10-10 2003-04-25 Sumitomo Mitsubishi Silicon Corp Method for manufacturing silicon wafer and silicon wafer
US6599815B1 (en) 2000-06-30 2003-07-29 Memc Electronic Materials, Inc. Method and apparatus for forming a silicon wafer with a denuded zone
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
US6828690B1 (en) 1998-08-05 2004-12-07 Memc Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US7135351B2 (en) 2001-04-11 2006-11-14 Memc Electronic Materials, Inc. Method for controlling of thermal donor formation in high resistivity CZ silicon

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180220B1 (en) 1997-02-26 2001-01-30 Memc Electronic Materials, Inc. Ideal Oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6204152B1 (en) 1997-02-26 2001-03-20 Memc Electronic Materials, Spa Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6849119B2 (en) 1997-02-26 2005-02-01 Memc Electronic Materials, Inc. Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
US6537368B2 (en) 1997-02-26 2003-03-25 Memc Electronic Materials Spa Ideal oxygen precipitating epitaxial silicon wafers and oxygen out-diffusion-less process therefor
US6586068B1 (en) 1997-02-26 2003-07-01 Memc Electronic Materials, Inc. Ideal oxygen precipitating silicon wafer having an asymmetrical vacancy concentration profile and a process for the preparation thereof
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US7442253B2 (en) 1997-04-09 2008-10-28 Memc Electronic Materials, Inc. Process for forming low defect density, ideal oxygen precipitating silicon
US7229693B2 (en) 1997-04-09 2007-06-12 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6555194B1 (en) 1997-04-09 2003-04-29 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US7618879B2 (en) 1998-08-05 2009-11-17 Memc Electronics Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US7242037B2 (en) 1998-08-05 2007-07-10 Memc Electronic Materials, Inc. Process for making non-uniform minority carrier lifetime distribution in high performance silicon power devices
US6828690B1 (en) 1998-08-05 2004-12-07 Memc Electronic Materials, Inc. Non-uniform minority carrier lifetime distributions in high performance silicon power devices
US6361619B1 (en) 1998-09-02 2002-03-26 Memc Electronic Materials, Inc. Thermally annealed wafers having improved internal gettering
US6342725B2 (en) 1998-09-02 2002-01-29 Memc Electronic Materials, Inc. Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US6191010B1 (en) 1998-09-02 2001-02-20 Memc Electronic Materials, Inc. Process for preparing an ideal oxygen precipitating silicon wafer
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6579779B1 (en) 1998-09-02 2003-06-17 Memc Electronic Materials, Inc. Process for the preparation of an ideal oxygen precipitating silicon wafer having an asymmetrical vacancy concentration profile capable of forming an enhanced denuded zone
US6432197B2 (en) 1998-09-02 2002-08-13 Memc Electronic Materials, Inc. Process for the preparation of non-oxygen precipitating Czochralski silicon wafers
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6686260B2 (en) 1998-09-02 2004-02-03 Memc Electronics Materials, Inc. Process for producing thermally annealed wafers having improved internal gettering
US6709511B2 (en) 1998-09-02 2004-03-23 Memc Electronic Materials, Inc. Process for suppressing oxygen precipitation in vacancy dominated silicon
US6713370B2 (en) 1998-09-02 2004-03-30 Memc Electronic Materials, Inc. Process for the preparation of an ideal oxygen precipitating silicon wafer capable of forming an enhanced denuded zone
US6743289B2 (en) 1998-10-14 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing low defect density single crystal silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6958092B2 (en) 1998-12-09 2005-10-25 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US6537655B2 (en) 1998-12-09 2003-03-25 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US6284384B1 (en) 1998-12-09 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafer with intrinsic gettering
US6666915B2 (en) 1999-06-14 2003-12-23 Memc Electronic Materials, Inc. Method for the preparation of an epitaxial silicon wafer with intrinsic gettering
US6339016B1 (en) 2000-06-30 2002-01-15 Memc Electronic Materials, Inc. Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US6599815B1 (en) 2000-06-30 2003-07-29 Memc Electronic Materials, Inc. Method and apparatus for forming a silicon wafer with a denuded zone
US7135351B2 (en) 2001-04-11 2006-11-14 Memc Electronic Materials, Inc. Method for controlling of thermal donor formation in high resistivity CZ silicon
DE10124144B4 (en) * 2001-05-17 2007-12-13 Qimonda Ag Method for eliminating morphological and crystallographic defects in semiconductor surfaces
DE10124144A1 (en) * 2001-05-17 2002-12-05 Infineon Technologies Ag Eliminating morphological and crystallographic defects in semiconductor surfaces comprises producing semiconductor substrate, and surface treating substrate by activating and tempering
JP2003124220A (en) * 2001-10-10 2003-04-25 Sumitomo Mitsubishi Silicon Corp Method for manufacturing silicon wafer and silicon wafer

Similar Documents

Publication Publication Date Title
JP7541551B2 (en) Method for processing silicon wafers with intrinsic gettering and gate oxide integrity yield - Patents.com
JPH0845947A (en) Thermal treatment method of silicon substrate
US4435447A (en) Method for forming an insulating film on a semiconductor substrate surface
KR20000006300A (en) Semiconductor substrate and manufacturing method of semiconductor substrate
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH11168106A (en) Treatment method of semiconductor substrate
US4666532A (en) Denuding silicon substrates with oxygen and halogen
JPH10303208A (en) Semiconductor board and its manufacture
JP2000082804A (en) Semiconductor provided with defect-free region
JPH1131691A (en) Method for forming thermal oxidized film for silicon carbide semiconductor device
JPH05291097A (en) Silicon substrate and manufacture thereof
JP3298467B2 (en) Manufacturing method of epitaxial wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
JPS59202640A (en) Treatment for semiconductor wafer
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JPH04294540A (en) Manufacture of semiconductor device
JP4151876B2 (en) Silicon wafer manufacturing method
JPH11288942A (en) Manufacture of semiconductor device
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JPH033244A (en) Heat treatment method for semiconductor silicon substrate
JPH09223699A (en) Silicon wafer and its manufacturing method
JPH06349839A (en) Heat treatment method of semiconductor substrate
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JPH11297704A (en) Evaluation method for oxygen deposit density