JPH0845753A - Ignition coil - Google Patents

Ignition coil

Info

Publication number
JPH0845753A
JPH0845753A JP7172031A JP17203195A JPH0845753A JP H0845753 A JPH0845753 A JP H0845753A JP 7172031 A JP7172031 A JP 7172031A JP 17203195 A JP17203195 A JP 17203195A JP H0845753 A JPH0845753 A JP H0845753A
Authority
JP
Japan
Prior art keywords
iron core
permanent magnet
ignition coil
magnet
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7172031A
Other languages
Japanese (ja)
Other versions
JP2715403B2 (en
Inventor
Shinji Oyabu
真二 大薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7172031A priority Critical patent/JP2715403B2/en
Publication of JPH0845753A publication Critical patent/JPH0845753A/en
Application granted granted Critical
Publication of JP2715403B2 publication Critical patent/JP2715403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To contrive miniaturization of the dimensions of an ignition coil and an increase its output by a method wherein the ignition coil is provided with a magnet in a core. CONSTITUTION:A core has only a gap where a tabular permanent magnet is inserted. The core is formed in such a way that the minimum sectional area of the core and the area facing the gap in the core are wider than the minimum sectional area of the core and the numerical values of the minimum sectional area of the core and the area facing the gap part are respectively within the range of a prescribed numerical value, while the permanent magnet is a rare- earth magnet, such as a samarium-cobalt magnet, has a strength of suth the extent that the core is magnetically saturated and is formed in such a way that the numerical values of the thickness and sectional area of the magnet are respectively within the range of a prescribed numerical value. Accordingly, a small-sized and high-performance ignition coil, which can obtain a high secondary generated voltage for its size, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として車両用内燃機関
に用いられる改良された点火コイルに関する。
FIELD OF THE INVENTION The present invention relates to an improved ignition coil primarily used in internal combustion engines for vehicles.

【0002】[0002]

【従来の技術】永久磁石を鉄心の空隙部に挿入すること
により点火コイル等の電磁コイルに蓄積されるエネルギ
ーを増大する提案は、例えば、従来技術文献の実開48
−49425号、西独実用新案登録第7924989
号、特開昭59−167006号、米国特許第4,54
6,753号などによってなされている。しかしなが
ら、上記の従来技術文献のいずれにおいても、どのよう
な形状、寸法等の鉄心及び永久磁石を含む磁気回路を有
する構成とすれば効率のよい点火コイルを得ることがで
きるかという点については何ら確立された技術の開示は
なく、また今まで実用に供された点火コイルにおいて
も、特に永久磁石を加えた割には、従前のものに比しさ
ほどの性能向上、あるいは小形化が達成されていない。
一方、近年、点火コイルの鉄心中に挿入して使用すれ
ば、その鉄心を飽和させるほどの磁束を生じさせうる、
Sm(サマリューム)、Nd(ネオジウム)等の元素を
含有する強力な永久磁石材料が開発され、かつ、量産さ
れるようになってその用途の拡大が期待されるに至っ
た。そのため上記のような点火コイルに適用するのに好
適な特性を有する永久磁石の材料の入手が容易になって
きた。
2. Description of the Related Art Proposals for increasing the energy stored in an electromagnetic coil such as an ignition coil by inserting a permanent magnet into an air gap of an iron core have been made, for example, in Japanese Utility Model Publication 48 of the prior art document.
-49425, West German Utility Model Registration No. 79244989
No. 59-167006, U.S. Pat. No. 4,54.
No. 6,753. However, in any of the above-mentioned prior art documents, what is the shape, size, etc. of the configuration that has a magnetic circuit including an iron core and a permanent magnet? There is no disclosure of established technology, and even in the ignition coils that have been put to practical use up to now, performance improvement or miniaturization has been achieved in comparison with the conventional ones, especially with the addition of permanent magnets. Absent.
On the other hand, in recent years, if it is used by inserting it into the iron core of the ignition coil, it is possible to generate a magnetic flux enough to saturate the iron core.
A strong permanent magnet material containing elements such as Sm (samarium) and Nd (neodymium) has been developed and mass-produced, and its application has been expected to expand. Therefore, it has become easy to obtain the material of the permanent magnet having the characteristics suitable for being applied to the ignition coil as described above.

【0003】[0003]

【発明が解決しようとする課題】本発明は、適切な形
状、寸法等の鉄心及び永久磁石を含む磁気回路を有する
構成を用いて上記の強力な永久磁石材料を有効に活用
し、飛躍的に小形軽量化された点火コイルを提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention dramatically utilizes the above-mentioned strong permanent magnet material effectively by using a structure having a magnetic circuit including an iron core and a permanent magnet having an appropriate shape and size. An object of the present invention is to provide a small and lightweight ignition coil.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の目的を
達成するために、種々の研究と実験との結果から得られ
た事実およびデータに基づいて求められた鉄心および永
久磁石の大きさ並びにそれらの関係が、 2<SM /SF <6 1.5<SG /SF <4.5 という条件を満たすように構成された点火コイルを提供
する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention is based on the facts and data obtained from the results of various studies and experiments to determine the sizes of iron cores and permanent magnets. And their relationship provides an ignition coil configured to meet the conditions 2 <SM / SF <6 1.5 <SG / SF <4.5.

【0005】また、本発明は、 0.6mm <LM < 1.8mm 2<SM /SF <6 1.5<SG /SF <4.5 という条件を満たすように構成された点火コイルを提供
する。ここで、LM は、永久磁石の厚みを、SM は空隙
部における磁石の断面積を、SF は一次コイルへの通電
により発生する磁束が鎖交する鉄心の最小の断面積を、
SG は空隙部に面する鉄心の面積を示す。
The present invention also provides an ignition coil configured to satisfy the condition of 0.6 mm <LM <1.8 mm 2 <SM / SF <6 1.5 <SG / SF <4.5. . Where LM is the thickness of the permanent magnet, SM is the cross-sectional area of the magnet in the air gap, and SF is the minimum cross-sectional area of the iron core with which the magnetic flux generated by energizing the primary coil interlinks.
SG represents the area of the iron core facing the void.

【0006】なお、比率SM /SF と前記比率SG /S
F とは共に2以上4.5以下の範囲内にあることが望ま
しい。また、永久磁石は、サマリューム、ネオジウム等
の元素を含有する永久磁石、すなわちいわゆる希土類を
含有する希土類磁石であることが望ましく、例えばサマ
リューム−コバルト(SmCo5 )磁石とすることがで
きる。
The ratio SM / SF and the ratio SG / S
It is desirable that both F and F are in the range of 2 or more and 4.5 or less. Further, the permanent magnet is preferably a permanent magnet containing an element such as Somerium or neodymium, that is, a rare earth magnet containing a so-called rare earth, for example, a Somerium-Cobalt (SmCo 5 ) magnet can be used.

【0007】[0007]

【作用】本発明の点火コイルにおいては、一次コイル及
び二次コイルが巻装された閉磁路を形成する鉄心の一部
分に設けられた空隙部に永久磁石が挿入されており、一
次コイルに通電する以前には、上記永久磁石の磁化力に
より一次コイルの通電による磁化方向とは逆の向きに鉄
心を負方向の最大使用磁束密度まで磁化しておく。次
に、上記点火コイルの使用時には、一次コイルに励磁電
流を流すことにより上記永久磁石の磁化力とは逆方向の
磁化力を発生させ、それにより鉄心を正方向の最大使用
磁束密度まで磁化する。この状態で、点火時期において
一次電流を遮断すれば、二次コイルの有効交差磁束とし
ては、永久磁石を含まないで一次コイルの通電によって
のみ鉄心を正方向の最大使用磁束密度まで磁化する従来
の点火コイルによって利用できる有効交差磁束の倍量利
用できる。従って一定の火花エネルギを発生させるため
に必要な点火コイルの体積とてしは、本発明による点火
コイルは、従来の点火コイルと比べて格段に小さくする
ことが可能になる。
In the ignition coil of the present invention, the permanent magnet is inserted into the void portion provided in a part of the iron core forming the closed magnetic circuit around which the primary coil and the secondary coil are wound, and the primary coil is energized. Previously, the iron core was magnetized by the magnetizing force of the permanent magnet in the direction opposite to the magnetizing direction due to energization of the primary coil up to the maximum usable magnetic flux density in the negative direction. Next, when the ignition coil is used, an exciting current is passed through the primary coil to generate a magnetizing force in a direction opposite to the magnetizing force of the permanent magnet, thereby magnetizing the iron core to the maximum usable magnetic flux density in the positive direction. . In this state, if the primary current is cut off at the ignition timing, the effective cross magnetic flux of the secondary coil does not include a permanent magnet, and the iron core is magnetized to the maximum usable magnetic flux density in the positive direction only by energizing the primary coil. Double the amount of effective cross flux available with the ignition coil. Therefore, as for the volume of the ignition coil required to generate a constant spark energy, the ignition coil according to the present invention can be made significantly smaller than the conventional ignition coil.

【0008】[0008]

【実施例】以下、本発明をさらに詳細に説明する。な
お、長さ寸法を示す英文字Lは明細書中では数字などと
の混同を避ける意味で大文字のLを用いるが、図中には
小文字を用いて記述している。図1は、一例として、い
わゆる外鉄形鉄心を用いた場合における、本発明による
点火コイルの永久磁石を嵌装した鉄心の基本的な磁気回
路の構成図である。図1の本発明の点火コイルの磁気回
路において、SF は磁束Φが通る巻線部の鉄心の断面積
を示しSG は永久磁石挿入部の鉄心の断面積を示し、L
F は鉄心の平均磁路長を示し、SM は永久磁石の断面積
を示しLM は永久磁石の厚みを示している。
The present invention will be described in more detail below. In the specification, an English letter L indicating a length dimension is an uppercase letter L in order to avoid confusion with a numeral or the like, but the lowercase letter is used in the drawing. As an example, FIG. 1 is a configuration diagram of a basic magnetic circuit of an iron core fitted with a permanent magnet of an ignition coil according to the present invention when a so-called outer iron core is used. In the magnetic circuit of the ignition coil of the present invention shown in FIG. 1, SF represents the cross-sectional area of the iron core of the winding portion through which the magnetic flux Φ passes, SG represents the cross-sectional area of the iron core of the permanent magnet insertion portion, and L
F represents the average magnetic path length of the iron core, SM represents the cross-sectional area of the permanent magnet, and LM represents the thickness of the permanent magnet.

【0009】図2は、本発明による点火コイルの基本的
な磁気動作を説明するための動作特性図である。図2を
参照すると、本発明の点火コイルの巻線部の鉄心上に巻
数nの一次コイルを巻回し、負方向の磁束−Φ´を生じ
させる永久磁石の磁化の向きとは逆の向きの磁束+Φ´
が巻線部の鉄心中に生じるように、一次コイルに励磁電
流IP ´を流した場合における一次コイルの蓄積エネル
ギは、図2の中のハッチング部の面積W´で表わされ、
そのW´の大きさは、
FIG. 2 is an operating characteristic diagram for explaining the basic magnetic operation of the ignition coil according to the present invention. Referring to FIG. 2, the primary coil of the winding number n is wound around the iron core of the winding portion of the ignition coil of the present invention, and the direction opposite to the magnetization direction of the permanent magnet that causes the negative magnetic flux −Φ ′ is generated. Magnetic flux + Φ '
Is generated in the iron core of the winding portion, the energy stored in the primary coil when the exciting current IP 'flows through the primary coil is represented by the hatched area W'in FIG.
The size of W'is

【0010】[0010]

【数1】 である。そして、この永久磁石入り点火コイルの一次コ
イルの蓄積エネルギW´を最大にするためには、図3に
示した本発明の好適実施例の点火コイルの磁気動作特性
図の左下の負の磁束の領域において、鉄心の負の磁束の
飽和点の近傍のC点まで永久磁石の磁化力によって鉄心
を磁化する必要がある。
[Equation 1] Is. In order to maximize the stored energy W'of the primary coil of the ignition coil with a permanent magnet, the negative magnetic flux at the lower left of the magnetic operation characteristic diagram of the ignition coil of the preferred embodiment of the present invention shown in FIG. In the region, it is necessary to magnetize the iron core to the point C near the saturation point of the negative magnetic flux of the iron core by the magnetizing force of the permanent magnet.

【0011】一方、図3の中の正の磁束の領域を示した
図4を参照し、本発明の点火コイルの一次コイルの励磁
電流の最大値に対応した好適な鉄心の最大使用磁束密度
の値のとり方について説明する。図4において、曲線a
は鉄心の磁化曲線を、直線bは永久磁石の磁化曲線を、
曲線cは曲線a及び直線bのそれぞれの磁化力の和の磁
化力を示す一次コイルの磁化曲線を示している。そし
て、本発明の点火コイルの鉄心の好適な最大使用磁束密
度BF の値は、図4において、直線bに平行に引いた曲
線aの切線の切点Tに対応した鉄心の磁束密度の値とし
て与えられる。
On the other hand, referring to FIG. 4 showing the region of the positive magnetic flux in FIG. 3, the maximum usable magnetic flux density of the preferred iron core corresponding to the maximum value of the exciting current of the primary coil of the ignition coil of the present invention is shown. How to take the value will be described. In FIG. 4, the curve a
Is the magnetization curve of the iron core, the straight line b is the magnetization curve of the permanent magnet,
The curve c shows the magnetization curve of the primary coil showing the sum of the magnetizing forces of the curve a and the straight line b. The value of the preferred maximum magnetic flux density BF of the iron core of the ignition coil of the present invention is the value of the magnetic flux density of the iron core corresponding to the cut point T of the cutting line of the curve a drawn in parallel with the straight line b in FIG. Given.

【0012】他方、一次コイルの磁化曲線の傾きは、永
久磁石の透磁率μによって決まるので図3のハッチング
部の面積Wで表わされる一次コイルの蓄積エネルギを大
きくするためには、μの値ができるだけ1に近い永久磁
石材料を選定することが肝要である。次に図1に示した
本発明の点火コイルの永久磁石の厚さLM の大きさと断
面積比
On the other hand, since the inclination of the magnetization curve of the primary coil is determined by the magnetic permeability μ of the permanent magnet, in order to increase the energy stored in the primary coil represented by the area W of the hatched portion in FIG. It is important to select a permanent magnet material that is as close to 1 as possible. Next, the size of the thickness LM of the permanent magnet of the ignition coil of the present invention shown in FIG.

【0013】[0013]

【数2】 の値との関係を調べる。[Equation 2] Check the relationship with the value of.

【0014】図3の中の正の磁束の領域について考える
と、そこに示されたように、一次コイルの励磁電流によ
る磁化力nIp/2は、鉄心の磁化力HF ・LF (ただ
しHF は鉄心中の磁界)と永久磁石を含む空隙部にかか
る磁化力H・LM (ただしHは該空隙部に生じる磁界)
との和であるから、従って
Considering the region of positive magnetic flux in FIG. 3, as shown therein, the magnetizing force nIp / 2 due to the exciting current of the primary coil is equal to the magnetizing force HF.LF of the iron core (where HF is the iron (Magnetic field in the heart) and magnetizing force H · LM (where H is the magnetic field generated in the void) applied to the void containing the permanent magnet.
Is the sum of

【0015】[0015]

【数3】 他方に、永久磁石内の磁束密度はBM =μHと表される
ので、
(Equation 3) On the other hand, since the magnetic flux density in the permanent magnet is expressed as BM = μH,

【0016】[0016]

【数4】 [Equation 4]

【0017】磁石を含む空隙部における平均磁束密度B
G とすれば
Average magnetic flux density B in the void including the magnet
If G

【0018】[0018]

【数5】BG ・SG =BF ・SF 後述するように、本発明の点火コイルの鉄心及び永久磁
石の好適な構成においては、
[Expression 5] BG · SG = BF · SF As will be described later, in the preferred configuration of the iron core and the permanent magnet of the ignition coil of the present invention,

【0019】[0019]

【数6】SG ≒SM のように選定されるため[Equation 6] Since it is selected as SG ≈ SM

【0020】[0020]

【数7】SG ≒BM であり、上記の等式は、## EQU7 ## SG ≈BM, and the above equation becomes

【0021】[0021]

【数8】BM ・SG =BF ・SF と表される。従って、
上記のBM の式と組み合わせて、
## EQU8 ## It is expressed as BM.SG = BF.SF. Therefore,
In combination with the above formula of BM,

【0022】[0022]

【数9】 [Equation 9]

【0023】これより、LM の大きさを表す式として、From this, as an expression representing the size of LM,

【0024】[0024]

【数10】 [Equation 10]

【0025】が導かれ、上式を変形すれば、断面積比If the above equation is transformed by

【0026】[0026]

【数11】 を表す式として、[Equation 11] As an expression

【0027】[0027]

【数12】 が導かれる。(Equation 12) Is guided.

【0028】また、本発明の点火コイルでは、図3の動
作特性曲線図のハッチング部分のうち、負の磁束の領域
は、一次コイルの磁化力によって、磁石の持つエネルギ
に逆らって鉄心中に正の磁束を通す向きに磁化する領域
であるから、前述の如く、最初は図3の左下の鉄心の負
の磁束の飽和点の近傍のC点まで永久磁石の磁化力によ
って鉄心を磁化しておき、次に、一次コイルに励磁電流
Ipを流すことにより生じる磁化力nIpにより図3の
右上の正の磁束の飽和点の近傍のT点まで鉄心を磁化し
た場合において、その材質及び形状によって与えられる
永久磁石の持つ最大エネルギEM と図3にWで示された
一次コイルの蓄積エネルギとの関係は
Further, in the ignition coil of the present invention, in the hatched portion of the operation characteristic curve diagram of FIG. 3, the negative magnetic flux region is positive in the iron core against the energy of the magnet due to the magnetizing force of the primary coil. As described above, the iron core is first magnetized by the magnetizing force of the permanent magnet up to the point C near the saturation point of the negative magnetic flux of the iron core in the lower left of FIG. 3, as described above. Next, when the iron core is magnetized to the point T near the saturation point of the positive magnetic flux in the upper right of FIG. 3 by the magnetizing force nIp generated by flowing the exciting current Ip in the primary coil, it is given by the material and shape of the iron core. The relationship between the maximum energy EM of the permanent magnet and the stored energy of the primary coil shown by W in FIG.

【0029】[0029]

【数13】 である。(Equation 13) Is.

【0030】図3の面積Wの大きさは、The size of the area W in FIG. 3 is

【0031】[0031]

【数14】 である。他方、永久磁石の最大エネルギ積は(B・H)
MAX で表され、そして永久磁石の持つ最大エネルギEM
の理論値は、
[Equation 14] Is. On the other hand, the maximum energy product of a permanent magnet is (BH)
Maximum energy EM represented by MAX and possessed by a permanent magnet
The theoretical value of

【0032】[0032]

【数15】EM =(B・H)MAX ・(SM ・LM ) と表される。本発明の点火コイルにおいては、図4に示
した前述の永久磁石の磁化曲線bの傾きによって決まる
永久磁石の動作点としては、最大エネルギ積(B・H)
MAX を与える動作もしくはその近傍の動作点が選定され
る。
[Expression 15] EM = (B.H) MAX. (SM.LM) In the ignition coil of the present invention, the maximum energy product (BH) is set as the operating point of the permanent magnet determined by the inclination of the magnetization curve b of the permanent magnet shown in FIG.
An operation point that gives MAX or an operation point in the vicinity thereof is selected.

【0033】従って、一次コイルの蓄積エネルギTherefore, the energy stored in the primary coil

【0034】[0034]

【数16】W=BF ・SF ・nIp =2EM =2(B・H)MAX ・(SM ・LM ) 上式より、断面積比[Equation 16] W = BF · SF · nIp = 2EM = 2 (B · H) MAX · (SM · LM) From the above equation, the cross-sectional area ratio

【0035】[0035]

【数17】 を表す式として、[Equation 17] As an expression

【0036】[0036]

【数18】 が得られる。(Equation 18) Is obtained.

【0037】上記の2つの式(1)及び(2)は、本発
明の点火コイルにおいて、永久磁石のエネルギを最も効
果的に利用するために選定されるべき磁気回路の各部の
寸法の関係を表している。次に、本発明による点火コイ
ルを具体的に構成した後、その性能テストを行った結果
について説明する。ここで、本発明の点火コイルを具体
的に構成するために、前述の式(1)及び(2)に対し
て適用するべく選定された諸元の値は下記の通りであ
る。永久磁石材料はSm O5を用いたが、その諸元は、
The above two equations (1) and (2) represent the dimensional relationship of each part of the magnetic circuit which should be selected in order to most effectively use the energy of the permanent magnet in the ignition coil of the present invention. It represents. Next, the results of performance tests of the ignition coil according to the present invention after being concretely configured will be described. Here, in order to specifically configure the ignition coil of the present invention, the values of the parameters selected to be applied to the above equations (1) and (2) are as follows. Permanent magnet material has been used S m C O5, its specifications are

【0038】[0038]

【数19】(BH)MAX =20メガG・Oe μ =1.05 また、鉄心材料は無方向性けい素鋼板を用いたがその諸
元は、
(BH) MAX = 20 Mega G · Oe μ = 1.05 Further, as the core material, a non-oriented silicon steel plate was used, but the specifications are as follows:

【0039】[0039]

【数20】SF =49mm2 、BF =1.4Wb/m2 nIp=800AT、HF =150AT/m LF =0.1m 上記の諸元を式(1)及び(2)に代入して求めた断面
[Equation 20] SF = 49 mm 2 , BF = 1.4 Wb / m 2 nIp = 800 AT, HF = 150 AT / m LF = 0.1 m The above specifications were substituted into the equations (1) and (2). Cross section ratio

【0040】[0040]

【数21】 及び[Equation 21] as well as

【0041】[0041]

【数22】 のそれぞれとLM との関係を図5及び図6に示した。な
お、同時にLM を変えたとき得られるそれぞれの各部寸
法を有する点火コイルについて性能テストを行い、得ら
れた二次コイル発生電圧V2 を、それぞれ図5及び図6
中に図示した。なお、図6は、図5に示された二次発生
電圧V2 の分布を示す曲線を、永久磁石の厚みLM と二
次発生電圧V2 との間の関係を示す二次元特性曲線に変
えて見易く表示したものである。
[Equation 22] The relationship between each of these and LM is shown in FIGS. 5 and 6. A performance test was conducted on ignition coils having respective dimensions obtained when LM was changed at the same time, and the obtained secondary coil generated voltage V 2 was measured as shown in FIGS.
Illustrated inside. Note that FIG. 6 changes the curve showing the distribution of the secondary generated voltage V 2 shown in FIG. 5 into a two-dimensional characteristic curve showing the relationship between the thickness LM of the permanent magnet and the secondary generated voltage V 2. The display is easy to see.

【0042】このようにして得られた図5及び図6に図
示の結果によってわかったことは、本発明の点火コイル
の最適の寸法条件としては、
What was found from the results shown in FIGS. 5 and 6 thus obtained is that the optimum dimensional conditions for the ignition coil of the present invention are as follows.

【0043】[0043]

【数23】(イ)SG ≒SM すなわち永久磁石挿入部の鉄心断面積と永久磁石とがほ
ぼ等しくなった状態の近傍にあること、及び
(B) SG ≈ SM, that is, the iron core cross-sectional area of the permanent magnet insertion portion and the permanent magnet are in the vicinity of a substantially equal state, and

【0044】[0044]

【数24】 の値が下記の範囲内にあれば、二次発生電圧V2 が顕著
に高くなること、
[Equation 24] If the value of is within the following range, the secondary generated voltage V 2 will be remarkably high.

【0045】[0045]

【数25】0.6mm<LM <1.8mm 2<SM /SF <6 1.5<SG /SF <4.5 である。[Equation 25] 0.6 mm <LM <1.8 mm 2 <SM / SF <6 1.5 <SG / SF <4.5.

【0046】なお、上記の本発明の点火コイルの性能テ
ストの終了後の調査結果によれば、使用した永久磁石の
諸特性には上記性能テストの前後を通して変化は認めら
れず、従って本発明の点火コイルは、所望の性能を維持
しつつ連続的使用に耐えうることは明らかである。以上
に説明した最適の寸法条件を満たすような構成を有する
本発明による点火コイルと、従来技術による点火コイル
との間の具体的な数値の比較について以下に説明する。
According to the results of the investigation after the performance test of the ignition coil of the present invention, no change was observed in the characteristics of the permanent magnet used before and after the performance test. It is clear that the ignition coil can withstand continuous use while maintaining the desired performance. A comparison of specific numerical values between the ignition coil according to the present invention and the ignition coil according to the prior art, which have the above-described configuration satisfying the optimum size condition, will be described below.

【0047】図7及び図8は、本発明の点火コイルと従
来技術の点火コイルとが同一の性能を有するように、両
者は、同じ抵抗値を有し、かつ、同じ巻数の巻線を用い
ることにより同じAT値を有し、同じ大きさの二次発生
電圧を生じるように構成した場合における、それぞれ本
発明及び従来技術による点火コイルの縦断面構造を示し
ている。
FIGS. 7 and 8 show that the ignition coil of the present invention and the ignition coil of the prior art have the same performance so that they have the same resistance value and the same number of turns. Thus, there are shown longitudinal sectional structures of the ignition coil according to the present invention and the prior art, respectively, in the case where the secondary coils have the same AT value and are configured to generate the same secondary generated voltage.

【0048】下記の比較表は、図7及び図8にそれぞれ
示した本発明及び従来技術による点火コイルの諸元を比
較して示したものである。
The following comparison table compares the specifications of the ignition coil according to the present invention and the prior art shown in FIGS. 7 and 8, respectively.

【0049】[0049]

【表1】 [Table 1]

【0050】上記のように構成された本発明による点火
コイルと従来技術による点火コイルの諸元の比較結果に
よれば、同一性能を発揮させるような構成とした場合、
本発明の点火コイルでは、その巻線部の鉄心断面積SF
を、従来技術の点火コイルのそれの約1/2に激減させ
ることができ、従って巻線部の鉄心の周囲長は約
According to the results of comparison of the specifications of the ignition coil according to the present invention and the ignition coil according to the prior art constructed as described above, in the case where the same performance is exhibited,
In the ignition coil of the present invention, the core cross-sectional area SF of the winding portion is
Can be drastically reduced to about 1/2 of that of the ignition coil of the prior art, so that the circumference of the winding core is about

【0051】[0051]

【数26】 (Equation 26)

【0052】に減少し、それにより鉄心重量は1/3近
くまで減少し、全巻線スペースは1/2近くまで減少す
る。その結果、完成品総重量は1/2以下に減少させる
ことができ、かくして本発明の点火コイルは、従来技術
の点火コイルと比べて、飛躍的な小形軽量化を達成する
ことができることが明らかになった。
As a result, the weight of the iron core is reduced to nearly 1/3, and the total winding space is reduced to nearly 1/2. As a result, the total weight of the finished product can be reduced to 1/2 or less, and thus it is clear that the ignition coil of the present invention can achieve a drastic reduction in size and weight as compared with the ignition coils of the prior art. Became.

【0053】[0053]

【発明の効果】本発明による点火コイルにおいては、そ
の磁気回路中に嵌装された強力な永久磁石の機能を有効
に活用するために、適切な形状、寸法等の鉄心及び永久
磁石を含む磁気回路を有する構成を具現することによ
り、同一性能を有する従来技術による点火コイルと比べ
て、飛躍的に小形軽量化された点火コイルが得られると
いうすぐれた効果を奏する。
In the ignition coil according to the present invention, in order to effectively utilize the function of the strong permanent magnet fitted in the magnetic circuit, the magnet including the iron core and the permanent magnet having an appropriate shape and size is used. By embodying the configuration having the circuit, it is possible to obtain an excellent effect that an ignition coil which is drastically reduced in size and weight can be obtained as compared with the ignition coil according to the prior art having the same performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の点火コイルの永久磁石を嵌装
した鉄心の基本的な磁気回路の構成図である。
FIG. 1 is a configuration diagram of a basic magnetic circuit of an iron core fitted with a permanent magnet of an ignition coil of the present invention.

【図2】図2は、本発明の点火コイルの基本的磁気動作
を説明するための動作特性図である。
FIG. 2 is an operating characteristic diagram for explaining a basic magnetic operation of the ignition coil according to the present invention.

【図3】図3は、本発明の好適実施例の点火コイルの磁
気動作特性図である。
FIG. 3 is a magnetic operating characteristic diagram of an ignition coil according to a preferred embodiment of the present invention.

【図4】図4は、図3の磁気動作特性図の正の磁束の領
域について、鉄心の最大使用磁束密度の値のとり方を説
明するための説明図である。
FIG. 4 is an explanatory diagram for explaining how to obtain a value of the maximum usable magnetic flux density of the iron core in the positive magnetic flux region of the magnetic operation characteristic diagram of FIG. 3.

【図5】図5は、本発明の具体的実施例の点火コイルに
おける断面積比SG /SF 及びSM /SF 並びに二次コ
イル発生電圧V2 と永久磁石の厚みLM との関係を示す
特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the cross-sectional area ratios SG / SF and SM / SF, the secondary coil generated voltage V2, and the thickness LM of the permanent magnet in the ignition coil according to the specific embodiment of the present invention. is there.

【図6】図6は、本発明の具体的実施例の点火コイルに
おける断面積比SG /SF 及びSM /SF 並びに二次コ
イル発生電圧V2 と永久磁石の厚みLM との関係を示す
特性図であり、二次発生電圧V2 対永久磁石の厚みLM
の特性曲線を図示している。
FIG. 6 is a characteristic diagram showing the relationship between the cross-sectional area ratios SG / SF and SM / SF, the secondary coil generated voltage V2, and the thickness LM of the permanent magnet in the ignition coil of the specific example of the present invention. Yes, secondary generated voltage V2 vs. thickness of permanent magnet LM
The characteristic curve of is illustrated.

【図7】図7は、本発明と従来技術との比較を行なうた
めに作成した、本発明による点火コイルの縦断面図であ
る。
FIG. 7 is a vertical cross-sectional view of an ignition coil according to the present invention, which was prepared to compare the present invention with a conventional technique.

【図8】図8は、本発明と従来技術との比較を行なうた
めに作成した、従来技術による点火コイルの縦断面図で
ある。
FIG. 8 is a vertical cross-sectional view of an ignition coil according to the related art, which is prepared for comparing the present invention with the related art.

【符号の説明】[Explanation of symbols]

SM 永久磁石の断面積 LM (lM ) 久磁石の厚み SF 巻線部の鉄心断面積(鉄心の最小断面積) SG 永久磁石挿入部の鉄心断面積(空隙部に面する鉄
心の面積) LF (lF ) 鉄心の平均磁路長 BM 永久磁石内の磁束密度 μ 永久磁石の透磁率 BF 鉄心の最大使用磁束密度 BG 磁石を含む空隙部の平均磁束密度 nIp 一次電流Ip により生じる磁化力 HF 鉄心中の磁界 H 鉄心の空隙部(永久磁石)の中の磁界
SM Cross-sectional area of permanent magnet LM (1M) Permanent magnet thickness SF Core cross-sectional area of winding core (minimum cross-sectional area of iron core) SG Core cross-sectional area of permanent magnet insertion part (area of core facing void) LF ( 1F) Average magnetic path length of the iron core BM Magnetic flux density in the permanent magnet μ Permeability of the permanent magnet BF Maximum magnetic flux density of the iron core BG Average magnetic flux density in the gap containing the magnet nIp Magnetizing force generated by the primary current Ip HF In the iron core Magnetic field H Magnetic field in the void (permanent magnet) of the iron core

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (イ)その一部に設けられた空隙部を介
して閉磁路を形成する鉄心と、 (ロ)前記鉄心の外周に巻回され、通電されることによ
り鉄心を励磁する一次コイルと、 (ハ)前記鉄心に巻回された二次コイルと、 (ニ)前記鉄心の空隙部に挿入され、前記一次コイルへ
の通電による励磁方向とは逆方向に磁化された板状の永
久磁石とを備えた点火コイルであって、 (ホ)前記空隙部は、前記鉄心の磁束経路上に唯一箇所
だけ設けられており、 (ヘ)前記鉄心と前記永久磁石とは、前記空隙部におけ
る前記磁石の断面積をSM 、前記空隙部に面する鉄心の
面積をSG 、さらに前記一次コイルへの通電による磁束
が鎖交する前記鉄心の最小の断面積をSF とした場合
に、下記の条件を満たすように構成されたことを特徴と
する点火コイル。 2<SM /SF <6 1.5<SG /SF <4.5
1. An iron core that forms a closed magnetic circuit through a void portion provided in a part of the iron core, and (b) a primary coil that is wound around the outer circumference of the iron core and that excites the iron core when energized. A coil, (c) a secondary coil wound around the iron core, and (d) a plate-like magnet which is inserted into the void of the iron core and magnetized in a direction opposite to the direction of excitation by energization of the primary coil. An ignition coil including a permanent magnet, (e) the void is provided only on a magnetic flux path of the iron core, and (f) the iron core and the permanent magnet are the void. Where SM is the cross-sectional area of the magnet, SG is the area of the iron core facing the air gap, and SF is the minimum cross-sectional area of the iron core where the magnetic flux due to energization of the primary coil interlinks, Ignition coil characterized by being configured to meet the conditions 2 <SM / SF <6 1.5 <SG / SF <4.5
【請求項2】 (イ)その一部に設けられた空隙部を介
して閉磁路を形成する鉄心と、 (ロ)前記鉄心の外周に巻回され、通電されることによ
り鉄心を励磁する一次コイルと、 (ハ)前記鉄心に巻回された二次コイルと、 (ニ)前記鉄心の空隙部に挿入され、前記一次コイルへ
の通電による励磁方向とは逆方向に磁化された板状の永
久磁石とを備えた点火コイルであって、 (ホ)前記空隙部は、前記鉄心の磁束経路上に唯一箇所
だけ設けられており、 (ヘ)前記鉄心と前記永久磁石とは、前記磁石の厚みを
LM 、前記空隙部における前記磁石の断面積をSM 、前
記空隙部に面する鉄心の面積をSG 、さらに前記一次コ
イルへの通電による磁束が鎖交する前記鉄心の最小の断
面積をSF とした場合に、下記の条件を満たすように構
成されたことを特徴とする点火コイル。 0.6mm <LM < 1.8mm 2<SM /SF <6 1.5<SG /SF <4.5
2. An iron core which forms a closed magnetic circuit through a void portion provided in a part thereof, and (b) a primary coil which is wound around an outer periphery of the iron core and which is energized to energize the iron core. A coil, (c) a secondary coil wound around the iron core, and (d) a plate-like magnet which is inserted into the void of the iron core and magnetized in a direction opposite to the direction of excitation by energization of the primary coil. An ignition coil comprising a permanent magnet, (e) the void portion is provided only on a magnetic flux path of the iron core, (f) the iron core and the permanent magnet are The thickness is LM, the cross-sectional area of the magnet in the void is SM, the area of the iron core facing the void is SG, and the minimum cross-sectional area of the iron core where the magnetic flux due to energization of the primary coil is linked to SF. If the above conditions are met, the following conditions are satisfied. Ignition coil, characterized. 0.6mm <LM <1.8mm 2 <SM / SF <6 1.5 <SG / SF <4.5
【請求項3】 前記比率SM /SF と前記比率SG /S
F とは共に2以上4.5以下の範囲内にあることを特徴
とする請求項1または2記載の点火コイル。
3. The ratio SM / SF and the ratio SG / S
The ignition coil according to claim 1 or 2, wherein both F and F are in the range of 2 or more and 4.5 or less.
【請求項4】 前記永久磁石は、サマリューム、ネオジ
ウム等の元素を含有する永久磁石であることを特徴とす
る請求項1ないし3のいずれかに記載の点火コイル。
4. The ignition coil according to claim 1, wherein the permanent magnet is a permanent magnet containing an element such as Somerium or Neodymium.
【請求項5】 前記永久磁石は、サマリューム−コバル
ト(SmCo5 )系磁石であることを特徴とする請求項
4記載の点火コイル。
5. The ignition coil according to claim 4, wherein the permanent magnet is a Samarium-Cobalt (SmCo 5 ) magnet.
JP7172031A 1995-07-07 1995-07-07 Ignition coil Expired - Lifetime JP2715403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172031A JP2715403B2 (en) 1995-07-07 1995-07-07 Ignition coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172031A JP2715403B2 (en) 1995-07-07 1995-07-07 Ignition coil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63186814A Division JP2734540B2 (en) 1988-07-28 1988-07-28 Ignition coil

Publications (2)

Publication Number Publication Date
JPH0845753A true JPH0845753A (en) 1996-02-16
JP2715403B2 JP2715403B2 (en) 1998-02-18

Family

ID=15934253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172031A Expired - Lifetime JP2715403B2 (en) 1995-07-07 1995-07-07 Ignition coil

Country Status (1)

Country Link
JP (1) JP2715403B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093405A (en) * 2004-09-24 2006-04-06 Matsushita Electric Works Ltd High-voltage generator and head light lighting device
JP2006287090A (en) * 2005-04-04 2006-10-19 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007066961A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Ignition coil for internal combustion engine
JP2015201555A (en) * 2014-04-09 2015-11-12 株式会社デンソー Magnetic circuit for ignition coil, and ignition coil device
US10041463B2 (en) 2014-04-10 2018-08-07 Denso Corporation Ignition device
JP2021125664A (en) * 2020-02-10 2021-08-30 株式会社デンソー Ignition coil
US11830667B2 (en) 2019-08-22 2023-11-28 Denso Corporation Ignition coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093405A (en) * 2004-09-24 2006-04-06 Matsushita Electric Works Ltd High-voltage generator and head light lighting device
JP2006287090A (en) * 2005-04-04 2006-10-19 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007066961A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Ignition coil for internal combustion engine
JP2015201555A (en) * 2014-04-09 2015-11-12 株式会社デンソー Magnetic circuit for ignition coil, and ignition coil device
US10041463B2 (en) 2014-04-10 2018-08-07 Denso Corporation Ignition device
US11830667B2 (en) 2019-08-22 2023-11-28 Denso Corporation Ignition coil
JP2021125664A (en) * 2020-02-10 2021-08-30 株式会社デンソー Ignition coil
US11538627B2 (en) 2020-02-10 2022-12-27 Denso Corporation Ignition coil

Also Published As

Publication number Publication date
JP2715403B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
EP0352453B1 (en) Ignition coil
KR20070074059A (en) Magnetic core and inductor, transformer comprising the same
JPH0845753A (en) Ignition coil
JP2013534720A (en) Ignition coil with energy storage and conversion
JPS6091600A (en) Structure of ferromagnetic unit of ion source formed by permanent magnet and solenoid
US10236117B2 (en) Ignition coil for internal-combustion engine
JP2734540B2 (en) Ignition coil
US6188304B1 (en) Ignition coil with microencapsulated magnets
JP3391049B2 (en) Ignition coil
JP2007066961A (en) Ignition coil for internal combustion engine
JPH07263256A (en) Ignition coil
Komoriya et al. Prototype tests of transverse-flux-type SR motor and characteristics improvement
JP2597870B2 (en) Manufacturing method of ignition coil
JPH10340821A (en) Ignition coil
JP2009076734A (en) Ignition coil for internal combustion engine
JP2008294192A (en) Ignition coil for internal combustion engine
JPH0418716A (en) Ignition coil for internal combustion engine
JP2597869B2 (en) Manufacturing method of ignition coil
JPS60162458A (en) Permanent magnet type rotary electric machine and manufacture thereof
JPH04102307A (en) Ignition coil for internal combustion engine
JP2611713B2 (en) Ignition device for internal combustion engine
US20210057148A1 (en) Ignition coil
JPH01185907A (en) Ignition coil
JPH01300696A (en) Magnetic circuit using permanent magnet
JP2003022919A (en) Magnetic element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971006

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11