JPH01185907A - Ignition coil - Google Patents

Ignition coil

Info

Publication number
JPH01185907A
JPH01185907A JP63011754A JP1175488A JPH01185907A JP H01185907 A JPH01185907 A JP H01185907A JP 63011754 A JP63011754 A JP 63011754A JP 1175488 A JP1175488 A JP 1175488A JP H01185907 A JPH01185907 A JP H01185907A
Authority
JP
Japan
Prior art keywords
core
magnetic flux
magnetic
coil
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63011754A
Other languages
Japanese (ja)
Inventor
Hideji Yamada
秀二 山田
Masayuki Habaguchi
正幸 幅口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63011754A priority Critical patent/JPH01185907A/en
Publication of JPH01185907A publication Critical patent/JPH01185907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the volume of a core and to make the core small-sized and lightweight by a method wherein a flux generation means is arranged at the core, the magnetic flux in the direction opposite to the magnetic flux to be generated when electricity is applied to a primary coil is generated and the flux generation means is arranged in a position other than a region where a coil is wound. CONSTITUTION:A flux generation means 32 is arranged at a core 10; the magnetic flux is generated in the direction opposite to the magnetic flux to be generated when electricity is applied to a primary coil 14; the flux generation means 32 is arranged in a position other than a region where coils 14, 18 are wound on the core 10. Accordingly, it is possible to increase magnetic energy from which only the magnetic flux in the opposite direction can be taken out from the core 10; the magnetic energy can be increased as compared with a case where the flux generation means is not provided at the core of the same cross-sectional area. By this setup, it is possible to reduce a cross-sectional area of the core and to make the core small-sized and lightweight.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関の点火コイルの改良に関し、より具
体的にはコアに永久磁石を介挿して一次コイルに通電し
た際に生じる磁束と逆の方向に磁束を生ぜしめることに
よって点火性能を向上させた点火コイルに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to improving an ignition coil for an internal combustion engine, and more specifically to improving the magnetic flux generated when a permanent magnet is inserted in the core and the primary coil is energized. This invention relates to an ignition coil that improves ignition performance by generating magnetic flux in the opposite direction.

(従来の技術) 従来の内燃機関の点火コイルは周知の如く一次コイルと
二次コイルとを巻回したコア(鉄芯)よりなり、その一
次コイルの通電電流を断続して二次コイルに高電圧を発
生せしめて燃焼室内の混合気を着火している。斯る従来
技術の一例としては特開昭58−54618号公報記載
の技術を挙げることが出来、この従来例の場合には閉磁
路型のコアを備えた点火コイルを開示している。
(Prior Art) As is well known, the ignition coil of a conventional internal combustion engine consists of a core (iron core) around which a primary coil and a secondary coil are wound. It generates voltage to ignite the air-fuel mixture in the combustion chamber. An example of such a conventional technique is the technique described in Japanese Patent Laid-Open No. 58-54618, which discloses an ignition coil having a closed magnetic circuit type core.

(発明が解決しようとする課題) ところで点火コイルにおいてはコアが単位体積当り蓄え
ることが出来る磁気エネルギWは一般に(透磁率μ=一
定のとき)、 w=j: HdB ”’4BH(J) で表され、具体的にはコアの体積と該コアの材質から決
まる飽和磁束密度で決定されることになる。而して点火
コイルにおいても車載時のレイアウト等の理由から小型
軽量化が期待されるのであるが、そのためには従来の場
合主としてコア材として可能な限り飽和点の高いものを
選択することとなり、其の様なコア材は比較的高価であ
り加工性が比較的悪いことから結果的にコストアップを
招く等の不都合があった。よって点火コイルの小型軽量
化を十分達成することが困難であった。
(Problem to be solved by the invention) By the way, in the ignition coil, the magnetic energy W that the core can store per unit volume is generally (when magnetic permeability μ = constant), w = j: HdB ''4BH (J). Specifically, it is determined by the saturation magnetic flux density, which is determined by the volume of the core and the material of the core.The ignition coil is also expected to be smaller and lighter due to the layout when mounted on the vehicle. However, in order to do this, in the conventional case, the core material had to be selected with the highest possible saturation point, and as such core materials are relatively expensive and have relatively poor workability, However, it has been difficult to sufficiently reduce the size and weight of the ignition coil.

従って、本発明の目的は従来技術の上述の欠点を解消す
ることにあり、コアの体積を低減して小型軽量化を可能
とした点火コイルを提供することを目的とする。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide an ignition coil that can be made smaller and lighter by reducing the volume of the core.

(課題を解決するための手段及び作用)上記の目的を達
成するために本発明は、磁化可能な閉磁路コアと該コア
に巻回された一次コイル及び二次コイルとよりなる点火
コイルにおいて、該コアに磁束発生手段を配置して前記
一次コイルに通電した際に生する磁束と逆方向の磁束を
生せしめると共に、該磁束発生手段をコアにおいてコイ
ルが巻回されている領域以外の位置に配置する如く構成
した。
(Means and operations for solving the problems) In order to achieve the above object, the present invention provides an ignition coil comprising a magnetizable closed magnetic circuit core and a primary coil and a secondary coil wound around the core. A magnetic flux generating means is disposed in the core to generate a magnetic flux in the opposite direction to the magnetic flux generated when the primary coil is energized, and the magnetic flux generating means is placed in a position in the core other than the area where the coil is wound. It was configured as follows.

即ち、本発明者達は点火コイルの小型軽量化に付いて種
々模索したところ、コアに磁束発生手段、例えば永久磁
石を介挿し一次コイルに通電して磁束を生せしめる際に
其れと逆方向に磁束を発生させておくことによってコア
から取り出すことが出来る磁気エネルギが増加すること
を見出して本発明をなしたものである。即ち、同−断面
積及び同−素材且つ同一巻線仕様のコアにおいても逆方
向に磁束を発生せしめることによって、然らざる場合に
比し、コアから取り出すことが出来る磁気エネルギが増
加することを発見したものであり、これによってコアの
断面積を低減して点火コイル自体の小型軽量化が可能と
なることを見出したものである。而して、該永久磁石の
介挿位置としてもコアにおいてコイル巻回領域外を選ぶ
ことによってコアから取り出すことが出来る磁気エネル
ギが更に増加することを見出して本発明をなしたもので
ある。
That is, the inventors of the present invention have searched various ways to reduce the size and weight of the ignition coil, and found that by inserting a magnetic flux generating means, such as a permanent magnet, into the core, when the primary coil is energized to generate magnetic flux, the magnetic flux is generated in the opposite direction. The present invention was made based on the discovery that the magnetic energy that can be taken out from the core increases by generating magnetic flux in the core. In other words, by generating magnetic flux in the opposite direction even in cores with the same cross-sectional area, the same material, and the same winding specifications, the magnetic energy that can be extracted from the core increases compared to the case otherwise. They discovered that this allows the ignition coil itself to be made smaller and lighter by reducing the cross-sectional area of the core. The present invention was made based on the discovery that by selecting a position outside the coil winding area of the core as the insertion position of the permanent magnet, the magnetic energy that can be extracted from the core can be further increased.

(実施例) 以下、添付図面に即して本発明の詳細な説明する。便宜
上第2図を先に参照して説明すると、本発明に係る点火
コイルは図示の如く、珪素鋼板等を積層してなる平面口
字状の閉磁路型のコア10を備えており、コア10はセ
ンタコア10a及びサイドコアlObからなる本体部を
備えると共に、その開口端には差込コア10cが嵌合自
在な構成とされる。センタコア10aの外周にはボビン
12が設けられ、そのボビン12上には公知の如く適宜
巻数の一次コイル14が巻回される。
(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. For convenience, the ignition coil according to the present invention will be described with reference to FIG. has a main body portion consisting of a center core 10a and a side core lOb, and is configured such that an insertion core 10c can be freely fitted into the open end thereof. A bobbin 12 is provided around the outer periphery of the center core 10a, and a primary coil 14 having an appropriate number of turns is wound on the bobbin 12 as is well known.

該一次コイル14の外方には櫛歯状突起を備えた第2の
ボビン16が配設され、その上に二次コイル18が同様
に適宜巻数巻回される。これらコイル14.18は端子
(図示せず)を介して外部回路と公知の如く接続される
(尚、図示の便宜のためコイル14.18の巻数は簡略
化して示した)。該二次コイル18の外方にはケース2
0が装着されてコイル14.18を外部から保護すると
共に、該ケース20と前記したボビン乃至コイルとの空
隙部分には防爆・絶縁用の樹脂22が充填される。而し
て、コア10の組み立て時にはセンタコア10aをボビ
ン12の内腔に挿入した後差込コア10cを嵌合して一
体化することになるが、その状態において差込コア10
cとサイドコアlObとの間には第3図に示す如くエア
ギャップ部26が形成される。又、センタコア及びサイ
ドコアの端部には耳部28,2Bが形成され、そこに取
付穴30.30が穿設される。
A second bobbin 16 having comb-like protrusions is disposed outside the primary coil 14, and a secondary coil 18 is similarly wound thereon with an appropriate number of turns. These coils 14, 18 are connected to an external circuit through terminals (not shown) in a known manner (note that the number of turns of the coils 14, 18 is simplified for ease of illustration). A case 2 is provided outside the secondary coil 18.
0 is attached to protect the coils 14 and 18 from the outside, and the gap between the case 20 and the bobbin or coil described above is filled with an explosion-proof/insulating resin 22. When assembling the core 10, the center core 10a is inserted into the inner cavity of the bobbin 12, and then the insertion core 10c is fitted and integrated.
As shown in FIG. 3, an air gap portion 26 is formed between c and the side core lOb. Additionally, ears 28, 2B are formed at the ends of the center core and side cores, and mounting holes 30, 30 are bored therein.

上記構成において本発明に係る点火コイルの特徴は先ず
コア10に磁束発生手段として永久磁石を介挿した点に
ある。即ち、本実施例の場合第3図に良く示す如く、サ
イドコア10bと差込コア10cとの間に形成されるエ
アギャップ部26に永久磁石32を配置する如く構成し
た。この点に付いて第1図及び第4図を参照して説明す
ると、コア10に巻回された一次コイル14にはバッテ
リ40から図示しないイグニション・キーを介して電源
電圧が供給されており、該通電電流がコンタクト・ポイ
ント乃至はイグナイタ(共に図示せず)等からなるスイ
ッチ42によって遮断されることにより、二次コイル1
8に高電圧が発生して放電部44でスパークすることに
なる。ここまでの構成は従来技術と異ならない。而して
、本発明においてはコア10に永久磁石32を介挿する
ことによって、スイッチ42の接続によって生する一次
コイルの磁束ΦCの発生方向(第1図に符号イで示す)
と逆の方向(同様に符号口で示す)に磁束Φ−を生じる
如く構成したものである。即ち、第4図に示す如〈従来
のコアにあっては破線で示す如くプラス方向の磁束ΦC
のみを利用するとした場合、本発明においては一点鎖線
で示す如くコアlOはマイナス方向に磁束−Φmを受け
つつプラス方向に磁束ΦCを生じることになり、結果的
に実線で示す如くΦc−(−Φm)=Φc+Φmなる磁
束の変化量が生じ、従来例に比してΦmだけ磁束の変化
量が増加するものである。この反対方向に磁束を生ぜし
めることによって出力が向上する理由に付いて第5図を
参照して説明すると、同図は実測データであるが(図中
Mgは永久磁石を示す)、これから明らかな様に磁界強
さHの大きい、即ちアンペアターンATの大きい実使用
範囲においてパーミアンスPが小さくならないためであ
る。つまり、磁気エネルギWは前述の式とは別に w=SみLJdl =’4L  I”    [J  コ  ・  ・  
・  ・  ・  ・  ・  ・  ・  ・ (1
)でも表されるが(透磁率μ−一定のとき、L:インダ
クタンス、I:電流)、この式から磁気エネルギWはイ
ンダクタンスLの増加と共に増大することが分かる。こ
のインダクタンスしは、L=μSNz/I [H] ・
・・・・・・・(2)で示される(μ:透磁率、S:断
面積、N:巻数、l:磁路長)。又、パーミアンスPは
、P=μS/l・・・・・・・・・・・・・(3)であ
るから、式(2) (3)よりインダクタンスLはL=
PN”  [H]  ・・・・・・・・・・・(4)と
なり、これから磁気エネルギWがパーミアンスPに比例
して増加することが分かる。即ち、第5図に示す如く逆
方向に磁束Φmを発生させることによってパーミアンス
が実使用範囲で小さくならないので、大きな磁気エネル
ギを得ることが出来ることになる。式(1)(2)(3
)から磁気エネルギWはμ−一定とすれば、 W−μSN”  1” /21 [J]  ・・・・・
(5)と書き直すことが出来る。この透磁率μをインク
レメント透磁率(μ−ΔB/ΔH)とすると、透磁率μ
はB−H曲線の傾きにより決定されるので、B−H曲線
が飽和領域に入らないようにすれば、つまりμ−一定と
すれば電流■の2乗に比例して磁気エネルギWが太き(
なることになり、出力を向上させることが出来ることに
なる。
In the above configuration, the ignition coil according to the present invention is characterized in that a permanent magnet is inserted into the core 10 as a magnetic flux generating means. That is, in the case of this embodiment, as clearly shown in FIG. 3, the permanent magnet 32 is arranged in the air gap 26 formed between the side core 10b and the insertion core 10c. To explain this point with reference to FIGS. 1 and 4, power supply voltage is supplied to the primary coil 14 wound around the core 10 from the battery 40 via an ignition key (not shown). The secondary coil 1 is cut off by a switch 42 consisting of a contact point or an igniter (both not shown), etc.
A high voltage is generated at 8, causing sparks at the discharge section 44. The configuration up to this point is no different from the prior art. Accordingly, in the present invention, by inserting the permanent magnet 32 into the core 10, the direction of generation of the magnetic flux ΦC of the primary coil generated by the connection of the switch 42 (indicated by the symbol A in FIG. 1) is controlled.
The structure is such that the magnetic flux Φ- is generated in the opposite direction (also indicated by the reference sign). That is, as shown in Fig. 4, in the conventional core, the magnetic flux ΦC in the positive direction is
In the present invention, as shown by the dashed line, the core lO receives the magnetic flux -Φm in the negative direction and generates the magnetic flux ΦC in the positive direction, and as a result, as shown by the solid line, Φc-(- The amount of change in magnetic flux is Φm)=Φc+Φm, and the amount of change in magnetic flux is increased by Φm compared to the conventional example. The reason why the output is improved by generating magnetic flux in the opposite direction will be explained with reference to Figure 5. Although the figure is actually measured data (Mg in the figure indicates a permanent magnet), it is clear from this that the output is improved by generating magnetic flux in the opposite direction. This is because the permeance P does not become small in the practical use range where the magnetic field strength H is large, that is, the ampere turn AT is large. In other words, the magnetic energy W is calculated separately from the above formula by w=S LJdl ='4L I'' [J co・・
・ ・ ・ ・ ・ ・ ・ ・ (1
) (where magnetic permeability μ is constant, L: inductance, I: current), and it can be seen from this equation that magnetic energy W increases as inductance L increases. This inductance is L=μSNz/I [H] ・
It is represented by (2) (μ: magnetic permeability, S: cross-sectional area, N: number of turns, l: magnetic path length). Also, the permeance P is P=μS/l (3), so from equations (2) and (3), the inductance L is L=
PN'' [H] ・・・・・・・・・・・・(4) From this, it can be seen that the magnetic energy W increases in proportion to the permeance P. In other words, as shown in Fig. 5, the magnetic flux increases in the opposite direction. By generating Φm, the permeance does not become small in the actual usage range, so it is possible to obtain large magnetic energy.Equations (1), (2), and (3).
), if the magnetic energy W is μ-constant, then W-μSN"1" /21 [J] ...
It can be rewritten as (5). If this magnetic permeability μ is an incremental magnetic permeability (μ−ΔB/ΔH), then the magnetic permeability μ
is determined by the slope of the B-H curve, so if the B-H curve is kept from entering the saturation region, that is, if μ is constant, the magnetic energy W increases in proportion to the square of the current ■. (
This means that the output can be improved.

続いて、本発明に係る点火コイルの実験例について述べ
る。
Next, an experimental example of the ignition coil according to the present invention will be described.

■先ず、サイズ1010X10コア(ケイ素鋼板製)の
磁気エネルギの点火プラグへの変換効率を第6図より計
算した。この場合磁化されたコアの有する磁気エネルギ
はW−S g’ HaBで表され、同図において斜線部
が其れに該当する。この場合、 コア寸法  磁気エネルギ 点火エネルギ 効率101
0X10  47.6mJ   32.OmJ  67
%であった。
■First, the conversion efficiency of magnetic energy of a size 1010×10 core (made of silicon steel plate) into a spark plug was calculated from FIG. In this case, the magnetic energy possessed by the magnetized core is expressed as W-S g' HaB, and the shaded area in the figure corresponds to it. In this case, Core dimensions Magnetic energy Ignition energy Efficiency 101
0X10 47.6mJ 32. OmJ 67
%Met.

■続いてコアの断面積及び形状を決定した。■Next, the cross-sectional area and shape of the core were determined.

即ち、第7図に示す如く各種サイズのコアに対して永久
磁石を介挿した場合及び介挿しない場合に付いて予め実
験を行った結果、同一巻線仕様では永久磁石(10xl
OxJtさ2胴)を使用すればコア断面積Sが約40%
低減可能であることが判明したので、10×10嗅10
0卿2の60%としてS=8X8=64mm” と決定
した。
That is, as shown in Figure 7, as a result of preliminary experiments with and without inserting permanent magnets into cores of various sizes, we found that with the same winding specifications, permanent magnets (10xl
If you use OxJt (2 cylinders), the core cross-sectional area S will be approximately 40%.
Since it was found that it is possible to reduce
It was determined that S = 8 x 8 = 64 mm'' as 60% of 0 Sir 2.

■次いで、このサイズのコアに付いて永久磁石を介挿し
ない場合の磁気エネルギを第8図より算出したところ、
34.4 m Jであった。
■Next, we calculated the magnetic energy from Figure 8 for a core of this size without inserting a permanent magnet, and found that
It was 34.4 mJ.

■次いで、パーミアンス係数を以下の式より仮磁路法で
算出した。
(2) Next, the permeance coefficient was calculated using the temporary magnetic path method using the following formula.

パーミアンス係数■S/1ζ5.3 ■次いで、上記■■より永久磁石を介挿して増加させる
べきコアの磁気エネルギΔWを算出した。
Permeance coefficient ■S/1ζ5.3 ■Next, from the above ■■, the magnetic energy ΔW of the core to be increased by inserting a permanent magnet was calculated.

6w = 47.6−34.4 = 13.2 m J
第8図より磁束密度Bの増加分ΔBは、ΔB=0.23
[T]となった。
6w = 47.6-34.4 = 13.2 m J
From Figure 8, the increase ΔB in magnetic flux density B is ΔB=0.23
It became [T].

−〇次いで、第9図(a)乃至(d)及び第7図に示し
た実験データより、永久磁石のサイズを7×8×厚さ2
11IIlと仮に決定した。又、永久磁石の材質として
は、サマリウム・コバルト系磁石CORMAX−230
0(住友特殊金属製、商品名)を選択した。
-〇 Next, from the experimental data shown in Figures 9 (a) to (d) and Figure 7, the size of the permanent magnet was determined to be 7 x 8 x thickness 2.
It was tentatively determined to be 11IIIl. In addition, the material of the permanent magnet is samarium cobalt magnet CORMAX-230.
0 (manufactured by Sumitomo Special Metals, trade name) was selected.

■次いで、この永久磁石の動作点を確認した。この永久
磁石が安定して動作する条件は第10図に示す如く HC−袈0rSt>Hd+H1・・・・・・・ ・(6
)となる。尚、この場合 Hc :保持力 Hc−worst  :使用雰囲気温度、条件、製造バ
ラツキ等を考慮した保磁力Hc の最悪値 Hd :自己減磁界 Hl :コイルにより磁石内に生する磁場、Hi =に
−AT/Ig  (AT :起磁力(アンペアターン)
、k:起磁力 損失係数、1g :ギヤツプ長) その結果、第10図より計算上の値は、Hd=1゜6 
KOe、 Hi =3.9 KOe、、Hc−wors
t =8.8 KOe(温度140°C、カタログ値)
となった。故に式(6)から、8.8 > 1.6 +
 3.9となり、満足出来るものと判断出来た。又、磁
気エネルギも第10図よりΔB=0.4[T]と増加し
た分アンプすることが確認出来たので、その増加分は w=(ΔB’/ΔB)  ・ΔW=0.410.23X
 13.2 = 23.0 m J となり、磁気エネルギの総和は34.4 + 23.0
 =57、4 m Jとなるので、満足出来るものと判
断出来た。
■Next, the operating point of this permanent magnet was confirmed. The conditions for this permanent magnet to operate stably are as shown in Figure 10.
). In this case, Hc: Coercive force Hc-worst: Worst value of coercive force Hc taking into consideration operating ambient temperature, conditions, manufacturing variations, etc. Hd: Self-demagnetizing field Hl: Magnetic field generated within the magnet by the coil, Hi = - AT/Ig (AT: Magnetomotive force (ampere turns)
, k: magnetomotive force loss coefficient, 1g: gap length) As a result, the calculated value from Figure 10 is Hd = 1°6
KOe, Hi =3.9 KOe,, Hc-wors
t = 8.8 KOe (temperature 140°C, catalog value)
It became. Therefore, from equation (6), 8.8 > 1.6 +
The score was 3.9, which was judged to be satisfactory. Also, from Figure 10, it was confirmed that the magnetic energy was amplified by an increase of ΔB = 0.4 [T], so the increase was w = (ΔB'/ΔB) ・ΔW = 0.410.23X
13.2 = 23.0 m J, and the total magnetic energy is 34.4 + 23.0
= 57.4 mJ, so it was judged to be satisfactory.

以上について実験結果をまとめると第11図に示す如く
になり、実測値は以下の如くであったコアサイズ   
磁気エネルギ[mJ]実測値  計算値 10 X 10磁石なし 47.6.  −8磁8磁石
なし 34.4  − 8磁8磁石あり 51,1  57.4磁束密度増加分
ΔB [T] 実測値  計算値 to X 10磁石なし □□ 8磁8磁石なし □□ 8磁8磁石あり 0.25   0.4点火エネルギ[
mJ] 実測値  計算値 10磁10磁石なし 32.0  − 8磁8磁石なし 20.0  23.08磁8磁石あり
 33.0  34.2(点火エネルギ計算値は磁気エ
ネ ルギに効率を乗じて算出した) 以上の如く、実験を通じて求められた値も磁気発生手段
を介挿することによって磁気エネルギ及び点火エネルギ
が大幅に、実験例の場合50%向上することを示してい
る。従って、それによってコア・サイズを低減して点火
コイル自体を小型軽量化することが出来、車載時のレイ
アウトが容易となり、更に取付方法が簡単になる乃至は
材料費等のコストが低減する等の利点が生する。尚、上
記において永久磁石は第10図に関して述べた如く、使
用温度でHc  (望ましくはHc −worst)>
Hd+Hiの範囲内で使用し、永久磁石が一次コイルに
よる磁場Hiによって破壊されない限度において使用す
る。その点から永久磁石としては前述の如く現状ではH
cの大きいサマリウム・コバルト系等の稀土類・鉄系の
磁石が望ましい。
The experimental results for the above are summarized as shown in Figure 11, and the actual measured values were as follows:
Magnetic energy [mJ] Actual value Calculated value 10 x 10 without magnet 47.6. - 8 magnets without 8 magnets 34.4 - 8 magnets with 8 magnets 51.1 57.4 Magnetic flux density increase ΔB [T] Actual value Calculated value to With magnet 0.25 0.4 Ignition energy [
mJ] Actual value Calculated value 10 magnets 10 without magnets 32.0 - 8 magnets without 8 magnets 20.0 23.08 with 8 magnets 33.0 34.2 (Ignition energy calculation value is calculated by multiplying magnetic energy by efficiency As described above, the values obtained through experiments also indicate that by inserting the magnetic generation means, the magnetic energy and ignition energy can be significantly improved, by 50% in the case of the experimental example. Therefore, it is possible to reduce the core size and make the ignition coil itself smaller and lighter, which facilitates the layout when mounted on a vehicle, and also simplifies the installation method and reduces costs such as materials. Benefits arise. In addition, as mentioned above with reference to FIG. 10, the permanent magnet has Hc (preferably Hc -worst)> at the operating temperature.
It is used within the range of Hd+Hi and as long as the permanent magnet is not destroyed by the magnetic field Hi caused by the primary coil. From this point of view, as mentioned above, currently H
Rare earth/iron based magnets such as samarium/cobalt based magnets have a large c value.

而して、エアギャップ部に介挿される永久磁石はコアの
材質(ケイ素鋼板等)に比し透磁率が格段に低いので、
磁束発生手段としてのみならず本来のエアギャップ手段
としての機能をも果たすことが出来るが、本発明の更な
る特徴は、このニアギャップ部形成位置、即ち永久磁石
の介挿位置をコイル巻回領域外とした点にある。この点
に付いて第12図を参照して説明すると、コア10にお
いて一次コイル14及び二次コイル18が巻回されてい
るセンタコア領域(同図に斜線で示す)にエアギャップ
部を形成して其処に永久磁石を介挿することを排し、そ
れ以外の領域に介挿する如く構成したものである。即ち
、本発明者達は第13図に示す如く、センタコア10a
のコイル巻回領域にエアギャップ部を形成して其処に永
久磁石を介挿する場合(同図に■で示す)、サイドコア
10bにエアギャップ部を形成して其処に介挿する場合
(同図に■で示す)、及び差込コア10cとサイドコア
10b間にエアギャップ部を形成して其処に永久磁石を
介挿する場合(同図に■で示す)に付いて実験したとこ
ろ、以下の如き実測値を得た。
The permanent magnet inserted into the air gap has a much lower magnetic permeability than the core material (silicon steel plate, etc.).
Although it can function not only as a magnetic flux generating means but also as an original air gap means, a further feature of the present invention is that the near gap formation position, that is, the insertion position of the permanent magnet, is located in the coil winding area. There is a point left out. To explain this point with reference to FIG. 12, an air gap portion is formed in the center core region (indicated by diagonal lines in the figure) around which the primary coil 14 and the secondary coil 18 are wound in the core 10. It is constructed so that a permanent magnet is not inserted there, and is inserted in other areas. That is, the present inventors have developed a center core 10a as shown in FIG.
When an air gap is formed in the coil winding area and a permanent magnet is inserted therein (indicated by ■ in the figure), when an air gap is formed in the side core 10b and a permanent magnet is inserted there (indicated by ■ in the figure) As a result of experiments, we found the following cases: Actual measurements were obtained.

■  ■   ■ 二次発生電圧   [kV]  26.5 32.7 
33.3点火エネルギ   [mJ]  24.4 3
2.4 34.9一次インダクタンス[mHコ 7.1
9 11.98 12.05上記において■の場合に点
火エネルギが比較的低いことが読み取れるが、これは■
の場合には介挿位置の両側にコイルが存在するため電流
がコイルを流れたとき生じる磁界によってエアギャップ
部の漏れ磁束が妨げられてコア断面に等しい領域におい
てのみ磁束路が形成されるに過ぎずパーミアンスが低下
し、その結果前記式(4)に示した如くインダクタンス
が小さくなって磁気エネルギも小さくなるものと考えら
れる。それに反し■■の場合には■に付いてのみ矢印へ
で示す如くエアギャップ部に形成される磁束路はコア断
面相当領域を超えて其の外側にまで延出するので漏れ磁
束が有効に作用してパーミアンスが低下することなく、
その結果磁気エネルギも大きくなるものと考えられる。
■ ■ ■ Secondary generated voltage [kV] 26.5 32.7
33.3 Ignition energy [mJ] 24.4 3
2.4 34.9 Primary inductance [mH] 7.1
9 11.98 12.05 In the above case, it can be seen that the ignition energy is relatively low in the case of ■.
In the case of , since there are coils on both sides of the insertion position, the leakage magnetic flux in the air gap is blocked by the magnetic field generated when current flows through the coil, and a magnetic flux path is only formed in an area equal to the core cross section. It is thought that the permeance decreases, and as a result, the inductance decreases as shown in equation (4) above, and the magnetic energy also decreases. On the other hand, in the case of ■■, the magnetic flux path formed in the air gap exceeds the area corresponding to the core cross section and extends to the outside, as shown by the arrow attached to ■, so the leakage magnetic flux acts effectively. without degrading permeance.
As a result, it is thought that the magnetic energy also increases.

以上の理由から本実施例においては第1図に示す如く、
エアギャップ部26を■位置に形成し、そこに永久磁石
32を介挿する如く構成したものであり、これによって
点火性能を更に向上させる如く構成したものである。
For the above reasons, in this embodiment, as shown in FIG.
The air gap part 26 is formed at the position (3), and the permanent magnet 32 is inserted therein, thereby further improving the ignition performance.

(発明の効果) 本発明に係る点火コイルは磁化可能な閉磁路コアと該コ
アに巻回された一次コイル及び二次コイルとからなる点
火コイルにおいて該コアに磁束発生手段を配置して前記
一次コイルに通電した際に生する磁束と逆の方向に磁束
を生ぜしめると共に該磁束発生手段をコアにおいてコイ
ルが巻回されている領域以外の位置に配置する如く構成
したので、逆方向の磁束分だけコアから取り出すことが
出来る磁気エネルギを増加させることが可能となる。よ
って同一断面積のコアにおいては従来の磁束発生手段を
有しない場合に比し磁気エネルギを増加させることが可
能となるので、コアの断面積を低減して点火コイル自体
を小型軽量化することが出来る。更に、該磁束発生手段
をコアに介挿する位置に付いてもコイル巻回領域の外と
する如く構成したので、それによって増加磁気エネルギ
を更に有効に利用することが出来る利点を備える
(Effects of the Invention) The ignition coil according to the present invention includes a magnetizable closed magnetic circuit core, a primary coil and a secondary coil wound around the core, and a magnetic flux generating means is disposed in the core. Since magnetic flux is generated in the opposite direction to the magnetic flux generated when the coil is energized, and the magnetic flux generating means is arranged in a position other than the area where the coil is wound in the core, the magnetic flux in the opposite direction is generated. This makes it possible to increase the magnetic energy that can be taken out from the core. Therefore, in a core with the same cross-sectional area, it is possible to increase the magnetic energy compared to the case without conventional magnetic flux generation means, so it is possible to reduce the cross-sectional area of the core and make the ignition coil itself smaller and lighter. I can do it. Furthermore, since the magnetic flux generating means is arranged so as to be inserted into the core outside the coil winding area, there is an advantage that the increased magnetic energy can be used more effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る点火コイルを概略的に示す説明図
、第2図は第1図点火コイルのより詳細な構成を示す説
明縦断面図、第3図はコアのエアギャップ部に永久磁石
を介挿する状態を示す説明斜視図、第4図は本発明に係
る点火コイルの磁気エネルギ増加を説明するB−H曲線
図、第5図は其の理由を説明するパーミアンス−AT特
性図、第6図は実験例において10 X 10mmコア
の磁気エネルギ計算に使用したB−H曲線図、第7図は
各種サイズのコアに付いて永久磁石を介挿した場合及び
介挿しない場合に付いて磁気特性を調べた先行実験デー
タ、第8図は前記実験例で使用したB−H曲線図、第9
図(a)乃至(d)は前記実験例で使用した永久磁石の
厚さとパーミアンス係数等の関係を示す説明図、第10
図は前記実験例で使用した永久磁石の減磁曲線図、第1
1図は前記実験例の測定結果を示すB−H曲線図、第1
2図は永久磁石のコアでの介挿位置を示す説明図及び第
13図はその実験を示す説明図である。 10・・・コア、12.16・・・ボビン、14・・・
一次コイル、18・・・二次コイル、26・・・エアギ
ャップ部、32・・・永久磁石(磁束発生手段) 出願人     本田技研工業株式会社代理人    
 弁理士 吉 1) 豊第1図 第3図 M     IIJIAJ  [初 第6図 第8図 B 第9図 11\□ Mg4v  □プに          ノ
1\□M9厚く−−二叉;=第10図 第11図
Fig. 1 is an explanatory diagram schematically showing an ignition coil according to the present invention, Fig. 2 is an explanatory longitudinal cross-sectional view showing a more detailed configuration of the ignition coil in Fig. 1, and Fig. 3 is a permanent FIG. 4 is a B-H curve diagram explaining the increase in magnetic energy of the ignition coil according to the present invention, and FIG. 5 is a permeance-AT characteristic diagram explaining the reason. , Figure 6 is a B-H curve diagram used to calculate the magnetic energy of a 10 x 10 mm core in the experimental example, and Figure 7 is a diagram of cores of various sizes with and without permanent magnets inserted. Figure 8 shows the B-H curve diagram used in the above experimental example, and Figure 9 shows the previous experimental data in which the magnetic properties were investigated.
Figures (a) to (d) are explanatory diagrams showing the relationship between the thickness of the permanent magnet used in the experimental example and the permeance coefficient, etc.
The figure is a demagnetization curve diagram of the permanent magnet used in the above experimental example.
Figure 1 is a B-H curve diagram showing the measurement results of the above experimental example.
FIG. 2 is an explanatory diagram showing the insertion position of the permanent magnet in the core, and FIG. 13 is an explanatory diagram showing the experiment. 10...core, 12.16...bobbin, 14...
Primary coil, 18...Secondary coil, 26...Air gap portion, 32...Permanent magnet (magnetic flux generating means) Applicant: Honda Motor Co., Ltd. Agent
Patent Attorney Yoshi 1) Yutaka Figure 1 Figure 3 M IIJIAJ [First Figure 6 Figure 8 B Figure 9 11\□ Mg4v □Puni ノ1\□M9 Thick--Forked; = Figure 10 Figure 11 figure

Claims (2)

【特許請求の範囲】[Claims] (1)磁化可能な閉磁路コアと該コアに巻回された一次
コイル及び二次コイルとからなる点火コイルにおいて、
該コアに磁束発生手段を配置して前記一次コイルに通電
した際に生する磁束と逆の方向に磁束を生ぜしめると共
に、該磁束発生手段をコアにおいてコイルが巻回されて
いる領域以外の位置に配置する如く構成したことを特徴
とする点火コイル。
(1) In an ignition coil consisting of a magnetizable closed magnetic circuit core and a primary coil and a secondary coil wound around the core,
A magnetic flux generating means is disposed in the core to generate a magnetic flux in a direction opposite to the magnetic flux generated when the primary coil is energized, and the magnetic flux generating means is placed at a position in the core other than the area where the coil is wound. An ignition coil characterized in that it is configured such that it is arranged in
(2)前記磁束発生手段が永久磁石であることを特徴と
する請求項第1項記載の点火コイル。
(2) The ignition coil according to claim 1, wherein the magnetic flux generating means is a permanent magnet.
JP63011754A 1988-01-20 1988-01-20 Ignition coil Pending JPH01185907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011754A JPH01185907A (en) 1988-01-20 1988-01-20 Ignition coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011754A JPH01185907A (en) 1988-01-20 1988-01-20 Ignition coil

Publications (1)

Publication Number Publication Date
JPH01185907A true JPH01185907A (en) 1989-07-25

Family

ID=11786784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011754A Pending JPH01185907A (en) 1988-01-20 1988-01-20 Ignition coil

Country Status (1)

Country Link
JP (1) JPH01185907A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218810A (en) * 1984-03-30 1985-11-01 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ignition coil for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218810A (en) * 1984-03-30 1985-11-01 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ignition coil for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3165000B2 (en) Ignition device for internal combustion engine
US5101803A (en) Ignition coil
KR101818995B1 (en) Ignition coil with energy storage and transformation
US5128645A (en) Ignition coil for an internal combustion engine
US6188304B1 (en) Ignition coil with microencapsulated magnets
US20020171524A1 (en) Ignition coil
US7098765B2 (en) Ignition coil having magnetic flux reducing inner structure
JPH01185907A (en) Ignition coil
JP2597870B2 (en) Manufacturing method of ignition coil
JP2597869B2 (en) Manufacturing method of ignition coil
EP0635856B1 (en) Ignition coil
JP2827046B2 (en) Ignition coil for internal combustion engine
JP2827043B2 (en) Ignition coil for internal combustion engine
JP2830367B2 (en) Ignition coil for internal combustion engine
JP3031158U (en) Ignition coil for internal combustion engine
JP2936239B2 (en) Ignition coil for internal combustion engine
EP0173100A3 (en) High power ignition transformer
JPH09306761A (en) Ignition coil for internal combustion engine
JPH03136219A (en) Ignition coil for internal combustion engine
JP2952701B2 (en) Ignition coil for internal combustion engine
JP3042144U (en) Ignition coil for internal combustion engine
JPH10275732A (en) Ignition coil for internal combustion engine
JP3200794B2 (en) Ignition coil for internal combustion engine
JP2756600B2 (en) Ignition coil for internal combustion engine
JP2611713B2 (en) Ignition device for internal combustion engine